Персональная и автоматическая корректировка рентгеновской системы на основе оптического обнаружения и интерпретации трехмерной сцены
Иллюстрации
Показать всеГруппа изобретений относится к медицинской технике, а именно к диагностическим магнитно-резонансным системам. Система для регулирования содержит устройство регулирования рентгеновской визуализации, которая содержит порт ввода для приема данных трехмерного изображения, полученных с помощью датчика при трехмерном наблюдении объекта, причем принятые таким образом данные трехмерного изображения содержат информацию о пространственной глубине, при этом данные трехмерного изображения описывают геометрическую форму объекта в трех измерениях, анализатор данных трехмерного изображения, выполненный с возможностью вычислять по принятым данным трехмерного изображения данные анатомических ориентиров объекта, причем вычисленные данные управления устройством визуализации включают в себя демаркационные данные, определяющие границу окна коллимирования устройства визуализации для области объекта, представляющей интерес, устанавливать из принятых данных трехмерного изображения данные положения анатомических ориентиров объекта, блок управления, причем функционирование устройства рентгеновской визуализации включает в себя операцию коллимирования для рентгеновского пучка, исходящего из рентгеновского источника. Система регулирования выполняется посредством работы устройства регулирования с использованием машиночитаемого носителя. Использование группы изобретений обеспечивает расширение арсенала средств для персональной и автоматической корректировки рентгеновской системы. 4 н. и 7 з.п. ф-лы, 3 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к визуализации на основе излучения и, в частности к устройству управления, способу управления, системе визуализации, компьютерному программному элементу и к машиночитаемому носителю.
УРОВЕНЬ ТЕХНИКИ
Подходящее коллимирование рентгеновского пучка является важным, когда используют устройство рентгеновской визуализации.
Коллимирование рентгеновского пучка на релевантную анатомическую структуру снижает количество ионизирующего излучения, которому подвергается пациент и, таким образом, минимизирует риски облучения. Кроме того, подходящее коллимирование снижает количество рассеянного излучения, поскольку облучают меньший объем, результатом чего является улучшенный контраст деталей и качество изображения.
Для получения, например, рентгенограммы грудной клетки, для существующего потока операций коллимирования необходим техник-лаборант для того, чтобы сопровождать пациента к рентгеновскому детектору устройства визуализации и для того, чтобы регулировать детектор и рентгеновскую трубку до подходящей высоты и корректировать настройки коллиматора. Затем техник покидает помещение для исследования и выполняет рентгеновское экспонирование. Измерения времени показали, что приблизительно 1/3 времени сеанса визуализации занимает подходящее расположение пациента и системы, включая коллимирование.
В US 7494276 описана система помощи оператору при работе с рентгеновским устройством.
В US 2009/0285357, являющейся ближайшим уровнем техники, раскрыта автоматическая система позиционирования пациента для радиографического аппарата, включающего систему трехмерной визуализации для оптического сканирования пациента.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Следовательно, существует потребность в альтернативном устройстве для того, чтобы облегчать нагрузку медицинского персонала при регулировке устройств визуализации или при подготовке или во время сеанса или цикла получения изображения.
Цель настоящего изобретения достигают посредством объекта изобретения из независимых пунктов формулы изобретения, где дополнительные варианты осуществления включены в зависимые пункты формулы изобретения. Понятно, что следующий аспект изобретения в равной мере применим к способу управления, системе визуализации, компьютерному программному элементу и машиночитаемому носителю.
Согласно первому аспекту изобретения предложено устройство регулирования устройства рентгеновской визуализации, которое содержит:
порт ввода для приема данных трехмерного изображения, полученных с помощью датчика при трехмерном наблюдении объекта, пока указанный объект находится между рентгеновским источником устройства визуализации и указанным рентгеновским детектором устройства визуализации. Данные трехмерного изображения, полученные таким образом, содержат информацию о пространственной глубине, которая варьирует в зависимости от внешней поверхности объекта. Данные трехмерного изображения описывают геометрическую форму объекта в трех измерениях;
анализатор данных трехмерного изображения, выполненный для того, чтобы вычислять по принимаемым данным трехмерного изображения данные анатомических ориентиров объекта для того, чтобы таким образом получать данные управления устройством визуализации для того, чтобы управлять указанным устройством визуализации; причем вычисленные данные управления устройством визуализации включают в себя демаркационные данные, определяющие границу окна (W) коллимирования устройства визуализации для области (ROI) указанного объекта (PAT), представляющей интерес; и (ii) устанавливать, из принятых данных трехмерного изображения, данные положения анатомических ориентиров объекта, причем демаркационные данные основаны на указанных данных положения анатомических ориентиров;
блок управления, выполненный с возможностью использования вычисленных данных управления для того, чтобы управлять функционированием указанного устройства рентгеновской визуализации до или во время получения изображения указанного объекта, на основе указанных данных положения указанных анатомических ориентиров указанного объекта, причем такое функционирование указанного устройства рентгеновской визуализации включает в себя операцию коллимирования для рентгеновского пучка, исходящего из указанного рентгеновского источника.
Предложенное устройство регулирования устройства рентгеновской визуализации имеет возможность персонального/адаптивного и автоматического или полуавтоматического коллимирования и/или выравнивания геометрии устройства рентгеновской визуализации на основе оптического обнаружения и интерпретации трехмерной сцены. Пространственные данные трехмерной геометрической формы объекта (например, пациента), анатомические ориентиры организма, полученные из них, и заданную геометрию устройства рентгеновской визуализации вместе используют для того, чтобы управлять i) персональным коллимированием на желаемую анатомическую структуру, представляющую интерес, и/или ii) персональным выравниванием устройства визуализации (таким как ориентация трубки и детектора относительно пациента) и/или блокировкой экспонирования для того, чтобы избегать рентгеновского экспонирования во время движения пациента.
Во время получения изображения не нужно наносить маркеры на организм пациента. Пациент входит в помещение для исследования «как есть» и в нем в направлении желаемого пятна-мишени. Или автоматически, или по запросу от оператора устройства визуализации датчик возобновляет свое функционирование обнаружения. Трехмерную форму и геометрию трехмерных контуров пациента после этого используют для того, чтобы обнаруживать анатомические ориентиры, такие как конечности, туловище, шея, голова, плечо, общая высота тела, общая ширина тела и т.д. В зависимости от типа рентгеновского изображения, которое нужно получать, конкретные или некоторые из идентифицированных ориентиров наряду с их координатами положения, которые также можно извлекать из полученных данных трехмерного изображения, после этого используют для того, чтобы определять окно коллимирования в трехмерном пространстве.
Согласно одному из вариантов осуществления осуществляют трехмерное наблюдение за организмом пациента в полном объеме, в альтернативном варианте осуществления трехмерное наблюдение является только частичным, например ограничено туловищем пациента. Распознавание жестов и/или поз также можно использовать для того, чтобы различать пациентов и медицинский персонал, которому случается присутствовать во время получения изображения, что часто верно при вмешательствах с рентгеновским сопровождением, таких как лечение сосудов сердца. Согласно изобретению вычисленные данные управления содержат демаркационные данные, определяющие границы окна коллимирования устройства визуализации для области, представляющей интерес, указанного объекта.
Согласно одному из вариантов осуществления анализатор данных трехмерного изображения функционирует для того, чтобы обновлять окно коллимирования устройства визуализации в то время, когда обнаруживают движение объекта или по запросу пользователя, тем самым обновленное окно коллимирования устройства визуализации следит за движением объекта, блок управления использует обновленное окно коллимирования устройства визуализации для того, чтобы управлять получением изображения устройством визуализации во время движения объекта. Датчик выполнен с возможностью отслеживать движение объекта в трех пространственных измерениях. Согласно одному из вариантов осуществления имеет место приводимая в действие пользователем «однокнопочная» функциональность для адаптации окна коллимирования прямо перед испусканием рентгеновских лучей.
Согласно изобретению анализатор данных трехмерного изображения выполнен с возможностью устанавливать данные положения анатомических ориентиров объекта. Демаркационные данные основаны на указанных данных положения анатомических ориентиров. Другими словами, положение внутренних органов или анатомических структур, представляющих интерес, устанавливают по внешним признакам, таким как взаимное пространственное расположение и геометрическая форма внешних анатомических ориентиров. Согласно одному из вариантов осуществления имеет место база данных или таблица соответствия, где конкретные ориентиры связывают с рентгеновскими исследованиями различных типов. Когда пользователь вводит описание типа исследования, такое как «рентгенограмма грудной клетки», описание релевантных ориентиров можно загружать и использовать для обнаружения положения ориентира в данных трехмерного изображения. Затем положения ориентиров используют в качестве демаркационных данных для окна коллимирования.
Согласно одному из вариантов осуществления объектом является организм человека или животного, данные положения ориентиров указывают на положения множества суставов организма человека или животного или других анатомических ориентиров, как можно идентифицировать в качестве характерной вариации информации о пространственной глубине, например, конечностей, головы, части шеи, части плеча или других расположений частей организма.
Согласно одному из вариантов осуществления данные трехмерного изображения используют для распознавания скелета. В одном из вариантов осуществления для грудной клетки или рентгенограммы грудной клетки тазобедренные суставы и плечевые суставы идентифицируют по значениям глубины, составляющим данные трехмерного изображения, и линию, соединяющую два тазобедренных сустава используют в качестве нижней демаркации для окна коллимирования. Линия, соединяющая плечевые суставы, представляет собой верхнюю демаркацию, причем два бока туловища образуют латеральную демаркацию. Используя доступ к базе данных экспертных медицинских знаний и статистические анатомические даные, собираемые от большого числа пациентов, соответствие вычисленного окна можно оценивать и корректировать, например, с использованием схемы оценок. Высокая оценка указывает на то, что вычисленное окно хорошо соответствует данным текущего пациента (возраст, пол и т.д.). Либо экспертные данные вводит пользователь, либо устройство выполнено с возможностью соединения с базой данных для их извлечения. Можно учитывать вариации в анатомических структурах пациентов, таким образом увеличивая надежность вычисления окна коллимирования. Тогда знания можно использовать для того, чтобы подгонять вычисленное окно коллимирования. В варианте осуществления для грудной клетки, используя вычисленную демаркацию в качестве системы отсчета, верхние две трети тогда используют в качестве фактического окна коллимирования, поскольку можно ожидать, что здесь расположены легкие. Другими словами, окно коллимирования, как вычисляют по ориентирам, можно точно настраивать посредством устройства по известным положениям органов для заданного органа, представляющего интерес. В других вариантах осуществления окно коллимирования, как разграничивают посредством ориентиров, используют без дополнительной точной настройки.
Согласно изобретению управляемое функционирование устройства визуализации включает i) функционирование коллимирования для пучка, испускаемого указанным рентгеновским источником, и предпочтительно ii) выравнивание рентгеновской трубки и/или детектора относительно объекта и/или корректировку рабочего напряжения рентгеновского источника XR кВ пик. и/или мА-с (миллиампер/секунда) и/или времени экспонирования и/или дозы. Рабочее напряжение можно задавать в ответ на физиогномику пациента, в частности толщину пациента, как свидетельствует информация о глубине в данных трехмерного изображения. Другими словами, настройку кВ пик. корректируют для того, чтобы варьировать непосредственно в зависимости от толщины пациента.
Согласно одному из вариантов осуществления данные трехмерного изображения получают посредством экспонирования датчика неионизирующим излучением. Это позволяет снижать дозу пациента. Рентгеновский предварительный снимок не требуется для того, чтобы выравнивать устройство визуализации, и, в частности, для того, чтобы регулировать коллиматор устройства визуализации.
Согласно одному из вариантов осуществления датчик является частью камеры дальности. Примерами является оборудование Microsoft Kinect или ASUS Xtion Pro Live.
Согласно одному из вариантов осуществления датчик использует предварительно определяемую структурированную картину освещения, проецируемую на пациента или объект для того, чтобы получать данные трехмерного изображения. Согласно одному из вариантов осуществления структурированная картина освещения представляет собой пятнистую структуру. Согласно одному из вариантов осуществления, используют инфракрасный свет, но также предусмотрено использование света в видимом спектре. Предложенное устройство имеет возможность улучшать клинический поток операций, поскольку не требуется взаимодействие с пользователем для фактического коллимирования или выравнивания устройства визуализации (например, трубки и детектора). Настройки устройства визуализации адаптируют к размеру и/или толщине пациента, что в свою очередь обозначает уменьшенное число этапов потока операций для медицинского персонала в постоянно загруженном клиническом окружении. Даже персонал с поверхностным радиологическим образованием, в принципе, может работать на устройствах рентгеновской визуализации безопасно и эффективно.
Пациент выигрывает в том отношении, что число повторных снимков может быть уменьшено благодаря тому, что избегают ошибочного коллимирования, тем самым отвечая задаче ALARA («As Low As Reasonably Achievable»). Радиологи могут наслаждаться более высоким качеством изображения из-за меньшего рассеивания излучения благодаря исключительным настройкам коллимирования и выравнивания устройства визуализации.
Определения
«Данные трехмерного изображения» получают посредством датчика, чувствительного к неионизирующему излучению или звуку. Данные трехмерного изображения представляют собой массив пикселей, каждый пиксель имеет положение в указанном массиве и значение. Положение каждого пикселя соответствует положению точки на поверхности объекта, а значение непосредственно связано с или может быть выражено в единицах расстояния между датчиком камеры и точной поверхностью указанного объекта. Значения пикселей варьируют с расстоянием датчик-объект. Также предусмотрено представление в виде облака точек набора данных трехмерного изображения.
«Настройка устройства визуализации» включает «данные геометрии/выравнивания устройства визуализации» и «данные настройки коллиматора».
«Данные геометрии/выравнивания устройства визуализации» представляют собой набор положений в угловых или прямоугольных координатах, которые описывают пространственную конфигурацию устройства рентгеновской визуализации в какое-либо заданное время. Геометрия устройства визуализации зависит от конкретного используемого оборудования для визуализации, но в целом содержит корректируемые по высоте стол пациента (если имеет место), положение детектора и рентгеновской трубки в пространстве. Любая заданная геометрия устройства визуализации определяет относительное положение между пациентом, детектором, рентгеновским источником и коллиматором и положением датчика.
«Данные настройки коллиматора» определяют с помощью размера и геометрической формы апертуры, через которую рентгеновский пучок может проходить через коллиматор. Апертуру в свою очередь определяют с помощью относительных пространственных положений множества створок или шторок коллиматора.
«Визуализируемое пространство», или «промежуточное пространство устройства визуализации», или «домен устройства визуализации» представляет собой часть пространства (в целом, часть помещения для исследования), где объект, подлежащий визуализации, должен находиться во время получения изображения. Другими словами, имеет место по меньшей мере одна настройка геометрии устройства визуализации с тем, чтобы первичный рентгеновский пучок был способен облучать указанный объект, когда он находится в указанном промежуточном пространстве. Изображение нельзя получать, если объект находится за пределами промежуточного пространства устройства визуализации.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Далее примеры вариантов осуществления изобретения описаны
со ссылкой на следующие чертежи, на которых:
на фиг. 1 представлен вид сбоку компоновки устройства рентгеновской визуализации;
на фиг. 2 представлены данные трехмерного изображения, полученного у пациента посредством датчика, используемого в компоновке в соответствии с фиг. 1;
на фиг. 3 представлена блок-схема способа управления.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
На фиг. 1 представлена компоновка устройства визуализации согласно одному из вариантов осуществления. Устройство 100 рентгеновской визуализации располагают в помещении для исследования. Помещение для исследования схематически обозначено с помощью пола FL, потолка CL и одной из стен WL. Устройство 100 визуализации способно функционировать для того, чтобы получать рентгеновские проекционные изображения в корректируемых направлениях проецирования от пациента PAT. Общим функционированием устройства 100 рентгеновской визуализации управляет оператор с компьютерной консоли CON. Консоль CON соединена с экраном или монитором (не показано), на котором получаемые рентгеновские изображения или настройки устройства визуализации можно смотреть или просматривать. Оператор, такой как медицинский техник-лаборант, может управлять через указанную консоль CON циклом получения изображения посредством выполнения отдельных рентгеновских экспонирований, например, посредством приведения в действие джойстика или педали или другого подходящего средства ввода, соединенного с консолью CON. Согласно другому варианту осуществления устройство 100 визуализации представляет собой раму С-типа, а пациент PAT фактически лежит на смотровом столе, а не стоит.
Устройство 100 рентгеновской визуализации содержит перемещаемый сборочный узел 110 детектора и перемещаемый сборочный узел 120 рентгеновская трубка-коллиматор (далее в настоящем документе обозначаемый как «сборочный узел СХ»).
Сборочные узлы можно перемещать с тем, чтобы рентгеновский пучок, генерируемый посредством рентгеновской трубки XR, можно было направлять и адаптировать к геометрической форме конкретной части организма ROI («области, представляющей интерес») организма пациента PAT, которая подлежит исследованию. Например, легкие пациента могут подлежать исследованию на «рентгенограмме грудной клетки», так что в этом случае область ROI, представляющая интерес, представляет собой грудную клетку пациента. Адаптацию пучка p границам области, представляющей интерес, достигают с помощью коллиматора COL после перемещения в желаемое положение относительно пациента PAT посредством приведение в действие перемещаемого сборочного узла СХ 120. До взаимодействия с коллиматором рентгеновский пучок p, исходящий из рентгеновской трубки XR, представляет собой расходящийся пучок, так что в отсутствие коллиматора COL размеры сечения пучка p по достижении пациента PAT будут значительно больше, чем площадь желаемой ROI. Это неудовлетворительно, поскольку может потребоваться излишнее увеличение дозы пациента и возникнет дополнительное комптоновское рассеяние. Задача коллиматора COL или «ограничителя пучка» состоит в том, чтобы ограничивать размеры сечения пучка с тем, чтобы размер и геометрическая форма сечения пучка p совпадали с областью ROI, представляющей интерес. В одном из вариантов осуществления коллиматор содержит две пары створок 126 (только одна пара показана в виде сбоку на фиг. 1) или листов («шторок»), сформированных из свинца, или вольфрама, или другого материала с высокой способностью поглощать излучение. Одну пару располагают перпендикулярно другой, а к створкам можно обращаться индивидуально и перемещать их с помощью шагового двигателя МС коллиматора с тем, чтобы ограничивать больше или меньше пучок в любом или двух из двух измерений в зависимости от их относительного положения. Таким образом, сечению пучка можно придавать такую форму, чтобы он совпадал с ожидаемой двухмерной границей области ROI, представляющей интерес. Эта компоновка коллиматора позволяет придавать пучку форму квадрата или прямоугольника различных размеров. В другом варианте осуществления используют многолепестковый коллиматор, который содержит вместо четырех створок больше число перемещаемых двигателем пластин или полосок с противоположным взаимным расположением. Многолепестковый коллиматор позволяет формировать более детализированные или криволинейные формы. Настройка коллиматора COL равняется тому, чтобы определять, как располагать створки с тем, чтобы сделать сечение получаемого пучка как можно более близко совпадающим с периметром ROI. В варианте осуществления с коллиматором с четырьмя створками совпадение указанной прямоугольной геометрической формы с ROI достигают посредством определения положений створок для указанных створок 126. Когда на створки подают энергию для того, чтобы принимать определенные положения, они вместе определяют апертуру, с использованием которой можно реализовать наименьшее или обоснованно малое прямоугольное сечение пучка, которое все еще включает всю желаемую ROI.
Теперь, обращаясь к другим компонентам перемещаемого сборочного узла СХ 120, указанный сборочный узел 120 содержит подвижную подвесную платформу 122, телескопическую руку 124 и корпус 125. В указанном корпусе 125 расположены рентгеновская трубка XR и коллиматор COL. Подвесная платформа 122 является подвижной и перемещаемой вдоль двух групп треков 124, 123, расположенных перпендикулярно друг другу, чтобы таким образом давать возможность двухмерного движения подвесной платформы 122 вдоль осей x, y. Трек X 122 делает возможным движение подвесной платформы 122 вдоль оси x, тогда как трек y 123 (изображенный на фиг. 1 идущим вертикально в плоскость листа) делает возможным движение вдоль оси у. Телескопическую руку 124 прикрепляют к подвесной платформе 122 и она выходит из нее в направлении вниз. На ее нижнем конце телескопическая рука 124 заканчивается точкой 127 поворота, к которой прикрепляют корпус 125. Другими словами, сборочный узел СХ обладает множеством степеней свободы с тем, чтобы располагать его в широком диапазоне желаемых положений относительно пациента PAT. Имеет место исполнительный механизм, такой как шаговый двигатель MXR, который осуществляет движение подвесной платформы 122 вдоль треков. На практике может иметь место больше чем один двигатель, которые расположены по одному для каждого трека, или один двигатель, где движением по x, y управляет подходящий приводной механизм. Телескопическая рука 124 устроена для того, чтобы сделать возможным движение корпуса 125 вверх и вниз вдоль оси z и вращение αС вокруг нее же. Движение вверх/вниз телескопической руки 124 и вращение вокруг оси z осуществляют посредством двигателя MXR или другого двигателя. Шаговый двигатель(и) MXR имеет возможность изменять «тангаж» С вокруг точки 127 поворота и изменять «рыскание» PC рентгеновской трубки XR и коллиматора COL вокруг оси z и относительно пациента PAT. В одном из вариантов осуществления тангаж трубки XR и коллиматора COL не зависят от двигателя MXR.
Теперь, обращаясь к сборочному узлу 110 детектора, он содержит настенный штатив 117, прикрепленный к полу FL и стене WL. Согласно другому варианту осуществления указанный настенный штатив является достаточно жестким, так что он устроен в качестве свободно стоящей структуры в помещении без крепления к стене WL. В других вариантах осуществления сборочный узел детектора прикрепляют к потолку CL (вместо пола или стены) и он свисает с него.
Детектор D подходит для того, чтобы принимать и регистрировать рентгеновские лучи p, исходящие из рентгеновской трубки XR. Детектор D фиксируют на установленной на стене платформе 115, которая подвижна в направлении Z по трекам, встроенным в настенный штатив 117. Здесь расположен шаговый двигатель MD, который осуществляет указанное движение вдоль оси z сборочного узла детектора, тот же или другой двигатель позволяет изменять тангаж αD. Детектор D содержит ячейки детектора, каждая из которых воспринимает падающий рентгеновский пучок. В одном из вариантов осуществления шаговый двигатель MD располагают также для того, чтобы менять тангаж детектора D вокруг оси x и/или платформа также подвижна на отдельных треках вдоль оси x.
В общих чертах, во время цикла получения изображения коллимированный рентгеновский пучок p исходит из рентгеновской трубки XR, проходит через пациента PAT в указанной области ROI, подвергается ослаблению посредством взаимодействия с веществом в ней и затем таким образом ослабленный пучок p сталкивается с поверхностью детектора D в множестве ячеек детектора. Каждая ячейка, с которой сталкивается указанный пучок, реагирует, выдавая соответствующий электрический сигнал. После этого совокупность указанных сигналов переводят с помощью системы получения данных («DAS» - не показана) в соответствующее цифровое значение, репрезентативное для указанного ослабления. Плотность органического материала, составляющего ROI, которая представляет собой грудную клетку и легочную ткань в случае рентгенограммы легких, определяет уровень ослабления. Материал высокой плотности (такой как кости) вызывает более сильное ослабление, чем менее плотные материалы (такие как легочная ткань). Таким образом, зарегистрированные цифровые значения для каждого рентгеновского луча p затем объединяют в массив цифровых значений, формирующих рентгеновское проекционное изображение для заданного времени получения и направления проецирования.
Теперь для того чтобы получать рентгеновское изображение устройство 100 визуализации нужно сначала выровнять относительно указанной области ROI, представляющей интерес. Параметры выравнивания устройства визуализации включают настройку указанных выше настроек коллиматора и выравнивание двух сборочных узлов относительно друг друга и относительно пациента PAT посредством управления различными исполнительными механизмами с тем, чтобы перемещать створки коллиматора и два сборочных узла в определенное положение с тем, чтобы коллиматор COL мог коллимировать пучок по ROI, как описано выше. Совокупность указанных выше параметров положения обозначают как параметры или данные геометрии или выравнивания устройства визуализации.
Обнаружено, что процедура настройки и корректировки параметров геометрии устройства визуализации («выравнивания») занимает приблизительно одну треть времени сеанса визуализации.
В настоящем документе предложена система управления, которая содержит камеру RC дальности и контроллер 130 для того, чтобы облегчать и ускорять процедуры выравнивания геометрии устройства визуализации и настройки коллиматора. Камера RC дальности показана расположенной на корпусе 125. Камеру дальности соединяют с контроллером 130. Компоновка камеры RC дальности и контроллера 130 позволяет автоматически или по меньшей мере полуавтоматически выравнивать устройство 100 визуализации, когда обнаружено присутствие пациента в «промежуточном пространстве» между детектором D и сборочным узлом СХ.
Согласно одному из вариантов осуществления настройка функционирования устройства визуализации является автоматической в том отношении, что обнаружение присутствия пациента также выполняют с помощью системы камеры RC и контроллера 130. В этом варианте осуществления устройство визуализации находится в режиме готовности и возобновляет функционирование, как только пациент PAT вступает в промежуточное пространство. В этом варианте осуществления камера RC находится в режиме постоянного восприятия и воспринимает указанное промежуточное пространство, и когда камера RC обнаруживает появление организма пациента, начинается настройка устройства визуализации. При полуавтоматическом функционировании пациента просят войти (и оставаться) в промежуточное пространство. Когда он в промежуточном пространстве, оператор приводит в действие кнопку операции «включить» или подает с помощью другого средства ввода (чувствительный к прикосновениям экран, щелчок кнопкой мыши, работа педалью и т.д.) сигнал «включить» и начинает настройку коллиматора и/или выравнивания устройства визуализации.
Вообще говоря, чтобы осуществлять настройку устройства визуализации, камера RC дальности выполнена с возможностью получать данные трехмерного изображения пациента PAT посредством экспонирования его неионизирующим излучением. Данные трехмерного изображения несут трехмерную форму пациента или по меньшей мере части пациента. Другими словами, данные трехмерного изображения «повторяют» или описывают внешнюю поверхность или периметр пациента PAT в трехмерном пространстве. Указанные полученные данные трехмерного изображения после этого подают на контроллер 130. Затем контроллер 130 обрабатывает указанные данные трехмерного изображения пациента таким образом, который описан более подробно ниже, чтобы выводить данные положения, которые определяют окно W коллимирования, очерчивающее желаемую область ROI, представляющую интерес, такую как легкие пациента PAT для рентгенограммы грудной клетки. Указанные данные положения затем переводят в данные желаемого выравнивания устройства визуализации, которые соответствуют данным положения окна коллимирования. Другими словами, когда устройство визуализации выравнивают в соответствии с переведенным в данные выравнивания, испускаемый рентгеновский пучок точно коллимируют (в пределах допустимой погрешности) по указанному вычисленному окну коллимирования.
Когда вычисляют данные положения окна W коллиматора, контроллер 130 выводит управляющие сигналы для устройства визуализации, которые соответствуют вычисленным или данным желаемого выравнивания для того, чтобы регулировать соответствующим образом текущее выравнивание устройства визуализации. Затем указанные управляющие сигналы интерпретируют посредством подходящего программного обеспечения драйвера и создают управляющие сигналы для аппаратного обеспечения, чтобы управлять различными шаговыми двигателями с тем, чтобы устройство визуализации принимало желаемую геометрию, то есть различные перемещаемые части «перемещались» в определенное положение. Указанные управляющие сигналы или посылают на рабочую станцию CON, где запущено программное обеспечение драйвера, или порт OUT вывода контроллера 130 соответствующим образом конфигурируют для сопряжения непосредственно с различными исполнительными механизмами для того, чтобы управлять ими, чтобы реализовать эталонные или данные желаемого выравнивания устройства визуализации.
Функционирование контроллера 130 и камеры RC далее объяснено более подробно.
Функционирование
Контроллер 130 содержит порт IN ввода, порт OUT вывода, анализатор 3DA трехмерных изображений и блок CU управления.
Со ссылкой на фиг. 2 представлен пример рендеринга (2,5-мерной карты расстояний) набора трехмерных изображений пациента, как захвачено с помощью камеры RC дальности. Значения серого у пикселей варьируют непосредственно в зависимости от расстояния от поверхности пациента до датчика S камеры RC. Геометрическую форму пациента легко различать по выступающей грудной клетке, показанной более темной по причине ее близости к датчику S по сравнению с дистальной частью бедра.
Согласно одному из вариантов осуществления камера RC дальности содержит проектор, который проецирует конус структурированного света на пациента PAT. Указанный структурированный свет, например, можно формировать в виде пятнистой структуры, как описано в US 2009/0096783. Отражение указанного света от поверхности пациента возвращается к камере, затем его регистрирует датчик S, аналогичным образом содержащийся в камере. «Искажение» в отраженной пятнистой структуре регистрируют посредством сравнения с тем, как пятнистая структура должна выглядеть, если пациент там отсутствует. Зарегистрированные искажения затем переводят в значение расстояния для каждого пикселя. Также можно принимать во внимание, что датчик и проектор могут не обязательно находиться в одном и том же корпусе камеры, как изложено ранее. Согласно одному из вариантов осуществления проектор и датчик S можно располагать в виде различных компонентов. Однако следует понимать, что камера RC дальности также может работать в соответствии с различными принципами, например, время прохождения, стереотриангуляция, триангуляция световой плоскости, интерферометрия и кодированная апертура.
В одном из вариантов осуществления камера RC, или ее датчик S, и/или проектор можно сами наклонять посредством функционирования подходящего двигателя (не показано), тем самым добавляя дополнительную степень свободы при корректировке параметров выравнивания/координат устройства визуализации.
Набор данных трехмерных изображений 3DI принимают через порт IN ввода контроллера 130. Данные трехмерного изображения 3DI, полученные таким образом, затем направляют в трехмерный анализатор 3DA. В силу операции слежения операционной системы центральной консоли CON относительное положение между датчиком S камеры RC и рентгеновской трубкой XR известно во все моменты времени и, таким образом, известно расстояние «от источника до приемника изображения» (SID). Расстояние от датчика до поверхности пациента, как закодировано посредством набора трехмерных данных, можно легко переводить в соответствующее расстояние от каждой точки на поверхности пациента до рентгеновской трубки XR. Другими словами, трехмерный анализатор может вычислять расстояние от источника до объекта (SOD). Согласно одному из вариантов осуществления анализатор 3DA трехмерных изображений функционирует для того, чтобы вычислять данные положения окна W коллиматора. Для того чтобы вычислять координаты окна коллиматора, анатомические ориентиры обнаруживают на основе получаемого набора данных трехмерных изображений.
На фиг. 2 представлен пример окна коллиматора вокруг ROI для рентгенограммы грудной клетки. Окно коллиматора представляет собой прямоугольник, ограничивающий область грудной клетки пациента.
Различные подходы предусмотрены для того, чтобы обнаруживать анатомические ориентиры, чтобы таким образом реализовать пациент-адаптивное рентгеновское коллимирование:
Согласно одному из вариантов осуществления используют «почти» безмодельный подход. Он основан на априорном знании или определенных предположениях о том, где расположена область, представляющая интерес. Например, ожидают, что часть грудной клетки пациента находится перед детектором с известным расстоянием от источника до детектора SID, что помогает идентифицировать, исключительно на основе информации о геометрической форме в принимаемых трехмерных данных, релевантные ориентиры организма, такие как плечи и левый и правый бока туловища, с помощью глубины изображения. Например, трехмерный анализатор итеративно строка за строкой проходит значения глубины в данных трехмерного изображения, поставляемые с помощью камеры RC, и когда регистрируют значительное изменение, предполагают, что обнаружены бока туловища.
Согласно одному из вариантов осуществления используют аппроксимационную параметрическую модель тела для поверхности тела, такую как модель SCAPE. См., например, D. Anguelov et al. (2005), «SCAPE: shape completion and animation of people», ACM Trans. Graph., 24(3), 408-416. Такая модель обеспечивает точное и масштабируемое представление о геометрической форме и позе организма человека. Ее можно использовать для сопоставления поверхности с силуэтами, получаемыми из полученных данных трехмерного изображения. Это ведет к точному описанию организма пациента, которое можно использовать для того, чтобы определять местоположение анатомической области, представляющей интерес.
Согл