Устройство и способ для декодирования кодированного аудиосигнала с использованием фильтра разделения вокруг частоты перехода

Иллюстрации

Показать все

Изобретение относится к средствам для декодирования кодированного аудиосигнала. Технический результат заключается в обеспечении возможности кодирования аудиосигналов в широком диапазоне скоростей передачи битов. Устройство для декодирования кодированного аудиосигнала, содержащего кодированный базовый сигнал, содержит: базовый декодер для декодирования кодированного базового сигнала, чтобы получать декодированный базовый сигнал; модуль формирования фрагментов для формирования одного или более спектральных фрагментов, имеющих частоты, не включенные в декодированный базовый сигнал, с использованием спектральной части декодированного базового сигнала; и фильтр разделения для спектральной фильтрации для разделения декодированного базового сигнала и первого частотного фрагмента, имеющего частоты, идущие от частоты заполнения интервалов отсутствия сигнала до верхней граничной частоты, либо для спектральной фильтрации для разделения первого частотного фрагмента и второго частотного фрагмента. 3 н. и 12 з.п. ф-лы, 35 ил.

Реферат

Подробное описание изобретения

Настоящее изобретение относится к кодированию/декодированию аудио и, в частности, к кодированию аудио с использованием интеллектуального заполнения интервалов (IGF).

Кодирование аудио представляет собой область сжатия сигналов, которая связана с использованием избыточности и нерелевантности в аудиосигналах с использованием психоакустических сведений. На сегодняшний день аудиокодекам типично требуется приблизительно 60 Кбит/с/канал для перцепционно прозрачного кодирования практически любого типа аудиосигнала. Более новые кодеки нацелены на уменьшение скорости передачи битов при кодировании посредством использования спектральных подобий в сигнале с использованием таких технологий, как расширение полосы пропускания (BWE). BWE-схема использует набор параметров для низкой скорости передачи битов, чтобы представлять высокочастотные (HF) компоненты аудиосигнала. HF-спектр заполнен спектральным содержимым из низкочастотных (LF) областей, и спектральная форма, наклон и временная непрерывность регулируются для того, чтобы поддерживать тембр и цвет исходного сигнала. Такие BWE-способы позволяют аудиокодекам сохранять хорошее качество даже на низких скоростях передачи битов приблизительно в 24 Кбит/с/канал.

Изобретаемая система кодирования аудио эффективно кодирует произвольные аудиосигналы в широком диапазоне скоростей передачи битов. При том, что для высоких скоростей передачи битов изобретаемая система стремится к прозрачности, для низких скоростей передачи битов минимизируется перцепционное раздражение. Следовательно, основная доля доступной скорости передачи битов используется для того, чтобы кодировать на основе формы сигналов только перцепционно наиболее релевантную структуру сигнала в кодере, и результирующие интервалы отсутствия сигнала в спектре заполняются в декодере контентом сигнала, который примерно аппроксимирует исходный спектр. Очень ограниченный битовый бюджет расходуется для того, чтобы управлять так называемым интеллектуальным заполнением интервалов отсутствия сигнала (IGF) в спектре на основе параметров посредством выделенной вспомогательной информации, передаваемой из кодера в декодер.

Хранение или передача аудиосигналов зачастую подчиняются строгим ограничениям скорости передачи битов. В прошлом, кодеры принудительно существенно уменьшали полосу пропускания передаваемого аудиосигнала, когда была доступна только очень низкая скорость передачи битов.

Современные аудиокодеки в наше время могут кодировать широкополосные сигналы посредством использования способов расширения полосы пропускания (BWE)[1]. Эти алгоритмы основываются на параметрическом представлении высокочастотного содержимого (HF), который формируется из кодированной на основе формы сигналов низкочастотной части (LF) декодированного сигнала, посредством транспозиции в спектральную HF-область ("наложения") и применения постобработки на основе параметров. В BWE-схемах, восстановление спектральной HF-области выше данной так называемой частоты разделения зачастую основано на спектральном наложении. Типично, HF-область состоит из нескольких смежных наложений, и каждое из этих наложений получается из полосовых (BP) областей LF-спектра ниже данной частоты разделения. Системы предшествующего уровня техники эффективно выполняют наложение в представлении на основе гребенки фильтров, например, гребенки квадратурных зеркальных фильтров (QMF), посредством копирования набора смежных подполосных коэффициентов из исходной в целевую область.

Еще одна технология, разработанная в современных аудиокодеках, которая повышает эффективность сжатия и за счет этого обеспечивает расширенную полосу пропускания аудиосигнала на низких скоростях передачи битов, представляет собой синтетическую замену на основе параметров подходящих частей спектров звука. Например, шумоподобные части сигнала исходного аудиосигнала могут быть заменены без существенных потерь субъективного качества посредством искусственного шума, сформированного в декодере, и масштабированы посредством параметров вспомогательной информации. Один пример представляет собой инструментальное средство для перцепционного замещения шума (PNS), содержащееся в усовершенствованном кодировании аудио (AAC) на основе MPEG-4 [5].

Дополнительная мера, которая также обеспечивает расширенную полосу пропускания аудиосигнала на низких скоростях передачи битов, представляет собой технологию заполнения шумом, содержащуюся в стандартизированном кодировании речи и аудио (USAC) на основе MPEG-D [7]. Интервалы отсутствия сигнала в спектре (нули), которые логически выводятся посредством мертвой зоны квантователя вследствие слишком приблизительного квантования, затем заполняются искусственным шумом в декодере и масштабируются посредством постобработки на основе параметров.

Другая система предшествующего уровня техники называется "точной спектральной заменой (ASR)" [2-4]. В дополнение к кодеку на основе формы сигналов, ASR использует выделенную стадию синтеза сигналов, которая восстанавливает перцепционно важные синусоидальные части сигнала в декодере. Кроме того, система, описанная в [5], основывается на синусоидальном моделировании в HF-области кодера на основе формы сигналов, чтобы обеспечивать расширенную полосу пропускания аудиосигнала, имеющую неплохое перцепционное качество на низких скоростях передачи битов. Все эти способы заключают в себе преобразование данных во второй области, отличное от модифицированного дискретного косинусного преобразования (MDCT), а также довольно комплексные стадии анализа/синтеза для сохранения синусоидальных HF-компонентов.

Фиг. 13a иллюстрирует принципиальную схему аудиокодера для технологии расширения полосы пропускания, например, используемой при высокоэффективном усовершенствованном кодировании аудио (HE-AAC). Аудиосигнал в линии 1300 вводится в систему фильтров, состоящую из нижних частот 1302 и верхних частот 1304. Сигнал, выводимый посредством фильтра 1304 верхних частот, вводится в модуль 1306 извлечения/кодирования параметров. Модуль 1306 извлечения/кодирования параметров выполнен с возможностью вычисления и кодирования параметров, таких как, например, параметр спектральной огибающей, параметр добавления шума, параметр пропущенных гармоник или параметр обратной фильтрации. Эти извлеченные параметры вводятся в мультиплексор 1308 потоков битов. Выходной сигнал нижних частот вводится в процессор, типично содержащий функциональность модуля 1310 понижающей дискретизации и базового кодера 1312. Нижние частоты 1302 ограничивают полосу пропускания, которая должна кодироваться, значительно меньшей полосой пропускания, чем возникающая исходном входном аудиосигнале на линии 1300. Это предоставляет значительное усиление при кодировании вследствие того факта, что полные функциональности, осуществляемые в базовом кодере, должны работать только для сигнала с уменьшенной полосой пропускания. Когда, например, полоса пропускания аудиосигнала на линии 1300 составляет 20 кГц, и когда фильтр 1302 нижних частот примерно имеет полосу пропускания в 4 кГц, чтобы удовлетворять теореме дискретизации, теоретически достаточно того, что сигнал после модуля понижающей дискретизации имеет частоту дискретизации в 8 кГц, что является существенным уменьшением по сравнению с частотой дискретизации, требуемой для аудиосигнала 1300, которая должна составлять, по меньшей мере, 40 кГц.

Фиг. 13b иллюстрирует принципиальную схему соответствующего декодера расширения полосы пропускания. Декодер содержит мультиплексор 1320 потоков битов. Демультиплексор 1320 потоков битов извлекает входной сигнал для базового декодера 1322 и входной сигнал для декодера 1324 параметров. Выходной сигнал базового декодера имеет, в вышеприведенном примере, частоту дискретизации в 8 кГц, и следовательно, полосу пропускания в 4 кГц, тогда как для восстановления полной полосы пропускания выходной сигнал модуля 1330 восстановления высоких частот должен иметь 20 кГц, что требует частоты дискретизации, по меньшей мере, в 40 кГц. Для обеспечения возможности этого, требуется процессор декодера, имеющий функциональность модуля 1325 повышающей дискретизации и гребенки 1326 фильтров. Модуль 1330 восстановления высоких частот затем принимает частотно проанализированный низкочастотный сигнал, выводимый посредством гребенки 1326 фильтров, и восстанавливает частотный диапазон, заданный посредством фильтра 1304 верхних частот по фиг. 13a, с использованием параметрического представления полосы высоких частот. Модуль 1330 восстановления высоких частот имеет несколько функциональностей, таких как повторное формирование диапазона верхних частот с использованием исходного диапазона в диапазоне низких частот, регулирование спектральной огибающей, функциональность добавления шума и функциональность для того, чтобы вводить пропущенные гармоники в диапазоне верхних частот, и если применяется и вычисляется в кодере по фиг. 13a, операция обратной фильтрации, чтобы учитывать тот факт, что диапазон верхних частот типично не является настолько тональным, как диапазон нижних частот. В HE-AAC, пропущенные гармоники повторно синтезируются на стороне декодера и размещаются точно в середине полосы частот восстановления. Следовательно, все линии пропущенных гармоник, которые определяются в определенной полосе частот восстановления, не размещены в значениях частоты, в которых они располагаются в исходном сигнале. Вместо этого, эти линии пропущенных гармоник размещены в частотах в центре определенной полосы частот. Таким образом, когда линия пропущенных гармоник в исходном сигнале размещена очень близко к границе полосы частот восстановления в исходном сигнале, ошибка в частоте, введенная посредством размещения этой линии пропущенных гармоник в восстановленном сигнале в центре полосы частот, находится близко к 50% отдельной полосы частот восстановления, для которой сформированы и переданы параметры.

Кроме того, даже если типичные аудио базовые кодеры работают в спектральной области, базовый декодер, тем не менее, формирует сигнал временной области, который затем снова преобразуется в спектральную область посредством функциональности гребенки 1326 фильтров. Это вводит дополнительные задержки при обработке, может вводить артефакты вследствие тандемной обработки преобразования сначала из спектральной области в частотную область и снова преобразования типично в другую частотную область, и, конечно, это также требует значительной сложности вычислений и в силу этого электроэнергии, что представляет собой проблему, в частности, когда технология расширения полосы пропускания применяется в мобильных устройствах, к примеру, в мобильных телефонах, планшетных или переносных компьютерах и т.д.

Современные аудиокодеки выполняют кодирование аудио с низкой скоростью передачи битов с использованием BWE в качестве неотъемлемой части схемы кодирования. Тем не менее, BWE-технологии ограничены тем, что они заменяют только высокочастотный (HF) спектр. Более того, они не обеспечивают возможность кодирования на основе формы сигналов перцепционно важного содержимого выше данной частоты разделения. Следовательно, современные аудиокодеки теряют HF-детали или тембр, когда реализуется BWE, поскольку точное совмещение тональных гармоник сигнала не учитывается в большинстве систем.

Другой недостаток BWE-систем современного уровня техники заключается в необходимости преобразования аудиосигнала в новую область для реализации BWE (например, преобразования из MDCT-в QMF-область). Это приводит к усложнению синхронизации, дополнительной вычислительной сложности и повышенным требованиям к запоминающему устройству.

Хранение или передача аудиосигналов зачастую подчиняются строгим ограничениям скорости передачи битов. В прошлом, кодеры принудительно существенно уменьшали полосу пропускания передаваемого аудиосигнала, когда доступна только очень низкая скорость передачи битов. Современные аудиокодеки в наше время могут кодировать широкополосные сигналы посредством использования способов расширения полосы пропускания (BWE) [1-2]. Эти алгоритмы основываются на параметрическом представлении высокочастотного контента (HF), который формируется из кодированной на основе формы сигналов низкочастотной части (LF) декодированного сигнала, посредством транспозиции в спектральную HF-область ("наложения") и применения постобработки на основе параметров.

В BWE-схемах, восстановление спектральной HF-области выше данной так называемой частоты разделения зачастую основано на спектральном наложении. Другие схемы, которые являются функциональными для того, чтобы заполнять интервалы отсутствия сигнала в спектре, например, интеллектуальное заполнение интервалов отсутствия сигнала (IGF), используют соседние так называемые спектральные фрагменты, чтобы повторно формировать части HF-спектров аудиосигнала. Типично, HF-область состоит из нескольких смежных наложений или фрагментов, и каждое из этих наложений или фрагментов получается из полосовых (BP) областей LF-спектра ниже данной частоты разделения. Системы предшествующего уровня техники эффективно выполняют наложение или мозаичное размещение в представлении на основе гребенки фильтров посредством копирования набора смежных подполосных коэффициентов из исходной в целевую область. Тем не менее, для некоторого контента сигнала, сборка восстановленного сигнала из полосы LF-частот и смежных наложений в полосе HF-частот может приводить к биению, диссонансу и акустической нечеткости.

Следовательно, в [19], принцип фильтрации защитной полосы частот от диссонанса представлен в контексте BWE-системы на основе гребенки фильтров. Предлагается эффективно применять режекторный фильтр с полосой пропускания приблизительно в 1 барк при частоте разделения между LF и повторно BWE-сформированной HF, чтобы исключать вероятность диссонанса и заменять спектральный контент нулями или шумом.

Тем не менее, предлагаемое решение в [19] имеет некоторые недостатки. Во-первых, строгая замена спектрального контента посредством нулей или посредством шума также может нарушать перцепционное качество сигнала. Кроме того, предложенная обработка не является сигнально-адаптивной и, следовательно, может отрицательно влиять на перцепционное качество в некоторых случаях. Например, если сигнал содержит переходные части, это может приводить к опережающим и запаздывающим эхо.

Во-вторых, диссонансы также могут возникать при переходах между последовательными HF-наложениями. Предлагаемое решение в [19] является функциональным только для того, чтобы исправлять диссонансы, которые возникают на частоте разделения между LF и повторно BWE-сформированным HF.

Наконец, в отличие от систем на основе гребенки фильтров, к примеру, как предложено в [19], BWE-системы также могут быть реализованы в реализациях на основе преобразования, таких как, например, модифицированное дискретное косинусное преобразование (MDCT). Преобразования, такие как MDCT, очень подвержены так называемым артефактам щелкания [20] или звона, которые возникают, если полосовые области спектральных коэффициентов копируются, или спектральные коэффициенты задаются равными нулю, к примеру, как предложено в [19].

В частности, патент (США) 8412365 раскрывает использование, при трансляции или сворачивании на основе гребенки фильтров, так называемых защитных полос частот, которые вставляются и состоят из одного или более подполосных каналов, заданных равными нулю. Определенное число каналов гребенки фильтров используется в качестве защитных полос частот, и полоса пропускания защитной полосы частот должна составлять 0,5 барков. Эти защитные полосы частот от диссонанса частично восстанавливаются с использованием случайных сигналов белого шума, т.е. в подполосы частот подается белый шум вместо равенства нулю. Защитные полосы частот вставляются независимо от текущего сигнала и обрабатываются.

Системы расширения полосы пропускания являются особенно проблематичными, когда они реализованы в реализациях на основе преобразования, такого как, например, модифицированное дискретное косинусное преобразование (MDCT). Преобразования, такие как MDCT и другие преобразования, также очень подвержены так называемым артефактам щелкания, как пояснено в [3], и звона, которые возникают, если полосовые области спектральных коэффициентов копируются, или спектральные коэффициенты задаются равными нулю, как предложено в [2].

Цель настоящего изобретения заключается в том, чтобы предоставлять улучшенные устройство и способ для декодирования кодированного аудиосигнала.

Это цель достигается посредством устройства для декодирования кодированного аудиосигнала по п. 1, способа декодирования кодированного аудиосигнала по п. 15 или компьютерной программы по п. 16.

В соответствии с настоящим изобретением, устройство для декодирования кодированного аудиосигнала содержит базовый декодер, модуль формирования фрагментов для формирования одного или более спектральных фрагментов, имеющих частоты, не включенные в декодированный базовый сигнал, с использованием спектральной части декодированного базового сигнала и фильтр разделения для спектральной фильтрации для разделения декодированного базового сигнала и первого частотного фрагмента, имеющего частоты, идущие от частоты заполнения интервалов отсутствия сигнала до конечной частоты первого фрагмента, или для спектральной фильтрации для разделения фрагмента и дополнительного частотного фрагмента, причем дополнительный частотный фрагмент имеет нижнюю граничную частоту, смежную по частоте с верхней граничной частотой частотного фрагмента.

Предпочтительно, эта процедура имеет намерение применяться в расширении полосы пропускания на основе преобразования, такого как MDCT. Тем не менее, настоящее изобретение, в общем, является применимым, в частности, в сценарии расширения полосы пропускания, основывающемся на гребенке квадратурных зеркальных фильтров (QMF), в частности, если система критически дискретизирована, например, когда предусмотрено действительнозначное QMF-представление в качестве временно-частотного преобразования или в качестве частотно-временного преобразования.

Настоящее изобретение является особенно полезным для переходных сигналов, поскольку для таких переходных сигналов, звон является слышимым и раздражающим артефактом. Артефакты звона фильтра вызываются посредством так называемой характеристики "кирпичной стены" фильтра в полосе частот перехода, т.е. крутого перехода от полосы пропускания к полосе задерживания на частоте отсечки. Такие фильтры могут быть эффективно реализованы посредством задания одного коэффициента или групп коэффициентов равными нулю в частотной области частотно-временного преобразования. Следовательно, настоящее изобретение основывается на фильтре разделения на каждой частоте перехода между наложениями/ фрагментами или между полосой базовых частот и первым наложением/ фрагментом, чтобы уменьшать этот артефакт звона. Фильтр разделения предпочтительно реализуется посредством спектрального взвешивания в области преобразования с использованием подходящих функций усиления.

Предпочтительно, фильтр разделения является сигнально-адаптивным и состоит из двух фильтров, фильтра постепенного затухания, который применяется к нижней спектральной области, и фильтра постепенного нарастания, который применяется к верхней спектральной области. Фильтры могут быть симметричными или асимметричными в зависимости от конкретной реализации.

В дополнительном варианте осуществления, частотный фрагмент или частотное наложение не только подвергается фильтрации для разделения, но модуль формирования фрагментов предпочтительно выполняет, перед выполнением фильтрации для разделения, адаптацию наложений, содержащую задание частотных границ в локальных спектральных минимумах и удаление или ослабление тональных частей, остающихся в переходных диапазонах вокруг частот перехода.

В этом варианте осуществления, анализ сигналов на стороне декодера с использованием анализатора выполняется для анализа декодированного базового сигнала до или после выполнения операции повторного формирования частоты, чтобы предоставлять результат анализа. Затем этот результат анализа используется посредством модуля повторного формирования частоты для повторного формирования спектральных частей, не включенных в декодированный базовый сигнал.

Таким образом, в отличие от фиксированной настройки декодера, при которой наложение или частотное мозаичное размещение выполняется фиксированным способом, т.е. при которой определенный исходный диапазон принимается из базового сигнала, и определенные фиксированные частотные границы применяются для того, чтобы задавать либо частоту между исходным диапазоном и диапазоном восстановления, либо частотную границу между двумя смежными частотными наложениями или фрагментами в диапазоне восстановления, выполняется зависимое от сигнала наложение или мозаичное размещение, при котором, например, базовый сигнал может анализироваться, чтобы находить локальные минимумы в базовом сигнале, и после этого базовый диапазон выбирается таким образом, что частотные границы базового диапазона совпадают с локальными минимумами в спектре базового сигнала.

Альтернативно или дополнительно, анализ сигналов может выполняться для предварительного повторно сформированного сигнала либо предварительного частотно наложенного или мозаичного сигнала, при этом после процедуры предварительного повторного формирования частоты, граница между базовым диапазоном и диапазоном восстановления анализируется для того, чтобы обнаруживать создающие артефакты части сигнала, такие как проблематичность тональных частей в том, что они находятся достаточно близко друг к другу для того, чтобы формировать артефакт биений при восстановлении. Альтернативно или дополнительно, границы также могут анализироваться таким образом, что обнаруживается отсечение наполовину тональной части, и это отсечение тональной части также должно создавать артефакт при восстановлении как есть. Во избежание этих процедур частотная граница диапазона восстановления и/или исходного диапазона и/или между двумя отдельными частотными фрагментами или наложениями в диапазоне восстановления может модифицироваться посредством манипулятора сигналов, чтобы снова выполнять восстановление с новыми заданными границами.

Дополнительно или альтернативно, повторное формирование частоты представляет собой повторное формирование на основе результата анализа в том, что частотные границы оставляются как есть, и выполняется исключение либо, по меньшей мере, ослабление проблематичных тональных частей около частотных границ между исходным диапазоном и диапазоном восстановления либо между двумя отдельными частотными фрагментами или наложениями в диапазоне восстановления. Такие тональные части могут быть близкими тонами, что приводит к артефакту биений, либо могут быть отсеченными тональными частями.

В частности, когда используется преобразование без сохранения энергии, такое как MDCT, один тон не преобразуется непосредственно в одну спектральную линию. Вместо этого, один тон преобразуется в группу спектральных линий с определенными амплитудами в зависимости от фазы тона. Когда операция наложения отсекает эту тональную часть, то это приводит к артефакту после восстановления, даже если применяется идеальное восстановление, как в модуле MDCT-восстановления. Это обусловлено тем фактом, что модуль MDCT-восстановления требует полного тонального шаблона для тона, чтобы в итоге корректно восстанавливать этот тон. Вследствие того факта, что отсечение осуществлено раньше, оно более невозможно, и в силу этого создается изменяющийся во времени артефакт щелкания. На основе анализа в соответствии с настоящим изобретением, модуль повторного формирования частоты исключает эту ситуацию посредством ослабления полной тональной части, создающей артефакт, либо, как пояснено выше, посредством изменения соответствующих граничных частот или посредством применения обоих показателей, или посредством даже восстановления отсеченной части на основе определенных предварительных сведений относительно таких тональных шаблонов.

Изобретаемый подход в основном имеет намерение применяться в BWE на основе преобразования, такого как MDCT. Тем не менее, идеи изобретения, в общем, являются применимыми, например, аналогично в системе на основе гребенки квадратурных зеркальных фильтров (QMF), в частности, если система критически дискретизирована, например, как действительнозначное QMF-представление.

Далее поясняются предпочтительные варианты осуществления относительно прилагаемых чертежей, на которых:

Фиг. 1a иллюстрирует устройство для кодирования аудиосигнала;

Фиг. 1b иллюстрирует декодер для декодирования кодированного аудиосигнала, совпадающий с кодером по фиг. 1a;

Фиг. 2a иллюстрирует предпочтительную реализацию декодера;

Фиг. 2b иллюстрирует предпочтительную реализацию кодера;

Фиг. 3a иллюстрирует схематичное представление спектра, сформированного посредством декодера в спектральной области по фиг. 1b;

Фиг. 3b иллюстрирует таблицу, указывающую взаимосвязь между коэффициентами масштабирования для полос частот коэффициентов масштабирования и энергиями для полос частот восстановления и информацией заполнения шумом для полосы частот заполнения шумом;

Фиг. 4a иллюстрирует функциональность кодера в спектральной области для применения выбора спектральных частей к первому и второму наборам спектральных частей;

Фиг. 4b иллюстрирует реализацию функциональности по фиг. 4a;

Фиг. 5a иллюстрирует функциональность MDCT-кодера;

Фиг. 5b иллюстрирует функциональность декодера с MDCT-технологией;

Фиг. 5c иллюстрирует реализацию модуля повторного формирования частоты;

Фиг. 6a является устройством для декодирования кодированного аудиосигнала в соответствии с одной реализацией;

Фиг. 6b является дополнительным вариантом осуществления устройства для декодирования кодированного аудиосигнала;

Фиг. 7a иллюстрирует предпочтительную реализацию модуля повторного формирования частоты по фиг. 6a или 6b;

Фиг. 7b иллюстрирует дополнительную реализацию взаимодействия между анализатором и модулем повторного формирования частоты;

Фиг. 8 иллюстрирует реализацию модуля повторного формирования частоты;

Фиг. 8b иллюстрирует дополнительный вариант осуществления изобретения;

Фиг. 9a иллюстрирует декодер с технологией повторного формирования частоты с использованием значений энергии для частотного диапазона повторного формирования;

Фиг. 9b иллюстрирует более подробную реализацию модуля повторного формирования частоты по фиг. 9a;

Фиг. 9c иллюстрирует схематический вид, иллюстрирующий функциональность по фиг. 9b;

Фиг. 9d иллюстрирует дополнительную реализацию декодера по фиг. 9a;

Фиг. 10a иллюстрирует блок-схему кодера, совпадающего с декодером по фиг. 9a;

Фиг. 10b иллюстрирует блок-схему для иллюстрации дополнительной функциональности модуля вычисления параметров по фиг. 10a;

Фиг. 10c иллюстрирует блок-схему, иллюстрирующую дополнительную функциональность параметрического модуля вычисления по фиг. 10a;

Фиг. 10d иллюстрирует блок-схему, иллюстрирующую дополнительную функциональность параметрического модуля вычисления по фиг. 10a;

Фиг. 11a иллюстрирует спектр звона фильтра, окружающего переходную часть;

Фиг. 11b иллюстрирует спектрограмму переходной части после применения расширения полосы пропускания;

Фиг. 11c иллюстрирует спектрограмму переходной части после применения расширения полосы пропускания с уменьшением звона фильтра;

Фиг. 12a иллюстрирует блок-схему устройства для декодирования кодированного аудиосигнала;

Фиг. 12b иллюстрирует спектры абсолютной величины (стилизованные) тонального сигнала, перезапись без адаптации наложений/ фрагментов, перезапись с измененными частотными границами и дополнительным исключением создающих артефакты тональных частей;

Фиг. 12c иллюстрирует примерную функцию плавного перехода;

Фиг. 13a иллюстрирует кодер предшествующего уровня техники с расширением полосы пропускания; и

Фиг. 13b иллюстрирует декодер предшествующего уровня техники с расширением полосы пропускания.

Фиг. 14a иллюстрирует дополнительное устройство для декодирования кодированного аудиосигнала с использованием фильтра разделения;

Фиг. 14b иллюстрирует более подробную иллюстрацию примерного фильтра разделения;

Фиг. 6a иллюстрирует устройство для декодирования кодированного аудиосигнала, содержащего кодированный базовый сигнал и параметрические данные. Устройство содержит базовый декодер 600 для декодирования кодированного базового сигнала, чтобы получать декодированный базовый сигнал, анализатор 602 для анализа декодированного базового сигнала до или после выполнения операции повторного формирования частоты. Анализатор 602 выполнен с возможностью предоставления результата 603 анализа. Модуль 604 повторного формирования частоты выполнен с возможностью повторного формирования спектральных частей, не включенных в декодированный базовый сигнал, с использованием спектральной части декодированного базового сигнала, данных 605 огибающей для пропущенных спектральных частей и результата 603 анализа. Таким образом, в отличие от более ранних реализаций, повторное формирование частоты не выполняется на стороне декодера независимо от сигнала, а выполняется зависимо от сигнала. Это имеет такое преимущество, что когда проблемы не существуют, повторное формирование частоты выполняется как есть, но когда проблематичные части сигнала существуют, то это обнаруживается посредством результата 603 анализа, и модуль 604 повторного формирования частоты затем выполняет адаптированный способ повторного формирования частоты, которое, например, может представлять собой изменение начальной частотной границы между базовой областью и полосой частот восстановления либо изменение частотной границы между двумя отдельными фрагментами/наложениями в полосе частот восстановления. В отличие от реализации защитных полос частот, это имеет такое преимущество, что конкретные процедуры выполняются только при необходимости, а не, как в реализации защитной полосы частот, все время без зависимости от сигнала.

Предпочтительно, базовый декодер 600 реализуется как каскад 612 энтропийного (например, декодер Хаффмана или арифметический декодер) декодирования и деквантования, как проиллюстрировано на фиг. 6b. Базовый декодер 600 затем выводит спектр базового сигнала, и спектр анализируется посредством спектрального анализатора 614, который является фактически аналогичным анализатору 602 на фиг. 6a, реализованному как спектральный анализатор, а не как произвольный анализатор, который может, как проиллюстрировано на фиг. 6a, также анализировать сигнал временной области. В варианте осуществления по фиг. 6b, спектральный анализатор выполнен с возможностью анализа спектрального сигнала таким образом, что определяются локальные минимумы в исходной полосе частот и/или в целевой полосе частот, т.е. в частотных наложениях или частотных фрагментах. Затем модуль 604 повторного формирования частоты выполняет, как проиллюстрировано на 616, повторное формирование частоты, причем границы наложений размещены в минимумах в исходной полосе частот и/или целевой полосе частот.

Далее поясняется фиг. 7a для того, чтобы описывать предпочтительную реализацию модуля 604 повторного формирования частоты по фиг. 6a. Модуль 702 повторного формирования предварительных сигналов принимает, в качестве ввода, исходные данные из исходной полосы частот и, дополнительно, информацию предварительного наложения, такую как предварительные граничные частоты. Затем формируется предварительный повторно сформированный сигнал 703, который обнаруживается посредством блока 704 обнаружения для обнаружения тональных компонентов в предварительном восстановленном сигнале 703. Альтернативно или дополнительно, исходные данные 705 также могут быть проанализированы посредством блока обнаружения, соответствующего анализатору 602 по фиг. 6a. В таком случае этап повторного формирования предварительных сигналов не требуется. Когда возникает четко определенное преобразование из исходных данных в данные для восстановления, то минимумы или тональные части могут обнаруживаться даже посредством рассмотрения только исходных данных, имеются или нет тональные части близко к верхней границе базового диапазона либо на частотной границе между двумя отдельно сформированными частотными фрагментами, как поясняется ниже относительно фиг. 12b.

В случае если проблематичные тональные компоненты обнаружены около частотных границ, модуль 706 регулирования частоты перехода выполняет регулирование частоты перехода, к примеру, частоты перехода или частоты разделения, или начальной частоты заполнения интервалов отсутствия сигнала между полосой базовых частот и полосой частот восстановления либо между отдельными частотными частями, сформированными посредством идентичных исходных данных в полосе частот восстановления. Выходной сигнал блока 706 перенаправляется в модуль 708 удаления тональных компонентов на границах. Модуль удаления выполнен с возможностью удаления оставшихся тональных компонентов, которые еще присутствуют после регулирования частоты перехода посредством блока 706. Результат модуля 708 удаления затем перенаправляется в фильтр 710 разделения, чтобы разрешать проблему звона фильтра, и результат фильтра 710 разделения затем вводится в блок 712 формирования спектральной огибающей, который выполняет формирование спектральной огибающей в полосе частот восстановления.

Как пояснено в контексте фиг. 7a, обнаружение тональных компонентов в блоке 704 может быть выполнено как для исходных данных 705, так и для предварительного восстановленного сигнала 703. Этот вариант осуществления проиллюстрирован на фиг. 7b, на котором предварительный повторно сформированный сигнал создается, как показано в блоке 718. Сигнал, соответствующий сигналу 703 по фиг. 7a, затем перенаправляется в блок 720 обнаружения, который обнаруживает создающие артефакты компоненты. Хотя блок 720 обнаружения может быть выполнен с возможностью представлять собой блок обнаружения для обнаружения тональных компонентов на частотных границах, как проиллюстрировано на 704 на фиг. 7a, блок обнаружения также может реализовываться, чтобы обнаруживать другие создающие артефакты компоненты. Такие спектральные компоненты могут представлять собой даже компоненты, отличные от тональных компонентов, и обнаружение того, создан или нет артефакт, может выполняться посредством попытки различных повторных формирований и сравнения различных результатов повторного формирования, чтобы узнать, какой из них предоставляет создающие артефакты компоненты.

Блок 720 обнаружения теперь управляет манипулятором 722 для манипулирования сигналом, т.е. предварительным повторно сформированным сигналом. Это манипулирование может выполняться посредством фактической обработки предварительного повторно сформированного сигнала посредством линии 723 либо посредством выполнения заново повторного формирования, но теперь, например, с измененными частотами перехода, как проиллюстрировано посредством линии 724.

Одна реализация процедуры манипулирования состоит в том, что частота перехода регулируется, как проиллюстрировано на 706 на фиг. 7a. Дополнительная реализация проиллюстрирована на фиг. 8a, которая может выполняться вместо блока 706 или вместе с блоком 706 по фиг. 7a. Блок 802 обнаружения предоставляется для обнаружения начальных и конечных частот проблематичной тональной части. Затем модуль 804 интерполяции выполнен с возможностью интерполяции и, предпочтительно, комплексной интерполяции между началом и концом тональной части в спектральном диапазоне. Затем, как проиллюстрировано на фиг. 8a посредством блока 806, тональная часть замен