Сегментированные, полукристаллические рассасывающиеся сополимеры лактида и эпсилон-капролактона

Иллюстрации

Показать все

Настоящее изобретение относится к полукристаллическим блок-сополимерам лактида и эпсилон-капролактона для медицинского применения. Описан биорассасывающийся полукристаллический сегментированный блок-сополимер, содержащий продукт реакции: (a) аморфного форполимера, образованного посредством полимеризации мономера лактида и мономера эпсилон-капролактона в присутствии инициатора, причем молярное отношение лактида к эпсилон-капролактону в форполимере составляет от 45:55 до 30:70; и (b) мономера лактида, причем указанный биорассасывающийся полукристаллический сегментированный блок-сополимер содержит повторяющиеся звенья из полимеризованного лактида и полимеризованного эпсилон-капролактона, где молярное отношение полимеризованного лактида к полимеризованному эпсилон-капролактону составляет от 60:40 до 75:25. Также описана биорассасывающаяся хирургическая шовная нить, содержащая указанный выше сополимер. Описано биорассасывающееся медицинское имплантируемое устройство, содержащее указанный выше сополимер. Технический результат – получение полимера для изготовления долгосрочных рассасывающихся хирургических шовных нитей и медицинских устройств. 3 н. и 16 з.п. ф-лы, 2 ил., 3 табл., 7 пр.

Реферат

Область, к которой относится изобретение

Настоящее изобретение относится к новым полукристаллическим блок-сополимерам лактида и эпсилон-капролактона для медицинского применения с долгосрочным рассасыванием, в частности, для хирургических шовных нитей и сетчатых протезов. Одним применением сополимеров настоящего изобретения является изготовление монофиламентных хирургических шовных нитей.

Предпосылки создания изобретения

Синтетические рассасывающиеся сложные полиэфиры хорошо известны в данной области техники. В открытых изданиях и патентной литературе, в частности, описаны полимеры и сополимеры, полученные из гликолида, L(-)-лактида, D(+)-лактида, мезо-лактида, эпсилон-капролактона, п-диоксанона и триметиленкарбоната.

Очень важным аспектом любого биорассасывающегося медицинского устройства является длительность периода, в течение которого его механические свойства сохраняются in vivo. Например, в некоторых областях хирургического применения важно, чтобы устройство сохраняло прочность в течение значительного периода времени, чтобы предоставить организму необходимое для заживления время, выполняя требуемую функцию. Такие ситуации медленного заживления включают, например, больных диабетом пациентов или участки тела с плохим или ослабленным кровоснабжением. Рассасывающиеся долгосрочные шовные нити известны, и их выполняли из обычных полимеров, преимущественно из лактида. Примеры включают плетеную шовную нить, изготовленную из сополимера лактида и гликолида с высоким содержанием лактида. Специалистам в данной области будет ясно, что существуют монофиламентные и мультифиламентные биорассасывающиеся шовные нити, и что существуют краткосрочные и долгосрочные биорассасывающиеся шовные нити. Долгосрочное функционирование можно описать как сохранение определенной доли механической целостности in vivo по истечении от 10 до 12 недель после вживления.

Чего не существует в настоящее время, так это биорассасывающегося полимера, из которого можно выполнить шовную нить, обладающую монофиламентным строением, которая является достаточно мягкой, чтобы обеспечить превосходные характеристики для работы хирурга, но сохраняет свои свойства после вживления для долгосрочного функционирования. Поэтому остается проблема обеспечения такого полимера. Также существует потребность в рассасывающейся хирургической шовной нити, выполненной из такого полимера. Рассасывающиеся шовные нити по существу имеют две основные формы: мультифиламентные плетеные нити и монофиламентные волокна. Для того чтобы использовать полимер в качестве монофиламентного волокна, он должен по существу обладать температурой стеклования, Tg, ниже комнатной температуры. Низкая Tg помогает обеспечить низкий модуль Юнга, который в свою очередь обуславливает мягкость и эластичность волокон. Материал с высокой Tg скорее образует проволокоподобные волокна, что приводит к относительной сложности работы с монофиламентными шовными нитями; в данной области подобные шовные нити обычно называют или описывают как неэффективные. Если полимер обладает высокой Tg и из него нужно изготовить шовную нить, это обязательно должна быть структура, основанная на мультифиламентных нитях; хорошим примером этого является плетеная структура. Известно, что монофиламентные шовные нити могут иметь преимущества перед мультифиламентными шовными нитями. Преимущества монофиламентных шовных нитей включают меньшую площадь поверхности с меньшим трением о ткани при введении и, вероятно, меньшей тканевой реакцией. Другие преимущества включают отсутствие всасывания в пустоты между волокнами, в которых могут перемещаться и находиться бактерии, потенциально образуя биопленки. Существует мнение, что инфицированные жидкости могут легко перемещаться вдоль мультифиламентной структуры через пустоты благодаря действию капиллярного всасывания; в монофиламентных нитях этого, конечно, произойти не может. Помимо этого, монофиламентные волокна по существу легче изготовить, поскольку стадии плетения, обычно связанные с мультифиламентными нитями, отсутствуют.

Следует понимать, что эти полимеры также могут быть полезны для создания сеток, таких как хирургическая сетка. Помимо возможностей применения в долгосрочных шовных нитях и сетках, существуют возможности для применения таких полимеров в устройствах, которые должны быть выполнены из деформируемой смолы, по возможности изготавливаемых известными и общепринятыми способами, включая, например, литье под давлением.

Кристаллические блок-сополимеры эпсилон-капролактона и п-диоксанона описаны в патенте США 5047048. Сополимеры содержат приблизительно от 5 до приблизительно 40 массовых процентов эпсилон-капролактона, и их профиль рассасывания аналогичен поли-п-диоксанону. Рассасывающиеся хирургические нити, выполненные из этих сополимеров, обладают прочностью при растяжении, аналогичной поли-п-диоксанону, но лучшей эластичностью, чем поли-п-диоксанон, и более низким модулем упругости Юнга. Описанные сополимеры являются статистическими сополимерами.

Предполагается, что волокна, выполненные из сополимеров эпсилон-капролактона и п-диоксанона с высоким содержанием п-диоксанона согласно описанию из `048, будут сохранять свои механические свойства после вживления аналогично гомополимеру п-диоксанона. Предполагается, что хирургические шовные нити, выполненные из этих сополимеров, по существу не сохранят никакой механической прочности после приблизительно 8-10 недель in vivo. Поэтому сохраняется потребность в материале, который мог бы сохранять механические свойства значительно дольше, чем сополимеры из патента `048, и который бы обладал достаточно низким модулем Юнга, чтобы позволить изготовление мягких монофиламентных волокон, которые можно использовать в качестве шовной нити или компонентов сетки.

В патенте США 5314989, озаглавленном “Рассасывающаяся композиция“, описан блок-сополимер для применения в изготовлении биорассасывающихся изделий, таких как монофиламентные хирургические шовные нити. Этот сополимер получают путем сополимеризации одного или более образующих твердую фазу мономеров и 1,4-диоксан-2-она, и затем полимеризации одного или более образующих твердую фазу мономеров с содержащим диоксанон сополимером. (Со)полимер из патента '989 не позволяет получить монофиламентные волокна, обладающие долгосрочной прочностью, т.е. прочностью по истечении от 8 до 10 недель после вживления.

Аналогично, в патенте США 5522841, озаглавленном “Рассасывающиеся блок-сополимеры и изготовленные из них хирургические изделия“, описаны рассасывающиеся хирургические изделия, образованные из блок-сополимера, в котором один из блоков состоит из образующих твердую фазу мономеров, и другой блок состоит из статистических сополимеров образующих мягкую фазу мономеров. Мягкая фаза заявленных сополимеров из патента `841 требует включения сегментов полиалкиленоксида.

В патенте США 5705181, озаглавленном “Способ получения рассасывающихся полимерных смесей из полилактидов, поликапролактона и полидиоксанона“, описаны рассасывающиеся двухкомпонентные и трехкомпонентные смеси гомополимеров и сополимеров полилактида, полигликолида, поли-эпсилон-капролактона и поли-п-диоксанона. Эти материалы являются смесями и не являются сополимерами.

В патенте США 5133739 описаны блок-сополимеры, полученные из гликолида и имеющие твердую фазу. В заявке на патент США № 2009/0264040A1 описаны полученные аэродинамическим распылением из расплава нетканые материалы, изготовленные из сополимеров капролактона и гликолида. Хотя оба эти описания относятся к рассасывающимся материалам, содержащим полимеризованный капролактон, эти материалы рассасываются достаточно быстро и, следовательно, их нельзя использовать для долгосрочных имплантатов.

В патенте США 5797962 описаны сополимеры лактида и эпсилон-капролактона, но они являются статистическими по своему характеру. Для заданного состава (полимеризованных) мономеров статистические сополимеры в данном классе материалов (сложные полиэфиры на базе лактонов с раскрытым циклом) проявляют сниженные уровни кристалличности, ограничивающие их способность сохранять пространственную стабильность при воздействии температур, превышающих их температуры стеклования, по сравнению с соответствующими блок-сополимерами.

В патенте США 6342065 описаны сополимеры лактида и эпсилон-капролактона с содержанием лактида 86% или выше. Одним из главных недостатков такого высокого содержания лактида является очень высокий модуль Юнга (из-за высокого значения Tg), что часто является неподходящим для определенного медицинского применения, включающего монофиламентное применение.

В статье, озаглавленной Synthesis, characterization and melt spinning of a block copolymer of L-lactide and epsilon-caprolactone for potential use as an absorbable monofilament surgical suture, авторы Y. Baimark, R. Molloy, N. Molloy, J. Siripitayananon, W. Punyodom и M. Sriyai [источник: Journal of Materials Science: Materials In Medicine 16 (2005) 699-707], описан сополимер с общим конечным составом 79/21 лактида и эпсилон-капролактона с составом форполимера 52/48 лактида и эпсилон-капролактона (молярные проценты в обоих случаях). Помимо этого, композиция форполимера является полукристаллической, что отрицательно влияет на возможности использования волокон. Вследствие таких характеристик предполагается, что данный материал будет достаточно жестким и поэтому неподходящим для применения в качестве монофиламентной хирургической шовной нити.

В данной области техники существует потребность в новых долгосрочных биорассасывающихся шовных нитях, которые обладают хорошими рабочими характеристиками и хорошо сохраняют прочность in vivo. Дополнительно в данной области техники существует потребность в новых биорассасывающихся полимерных композициях для производства таких шовных нитей и других биорассасывающихся медицинских устройств.

Сущность изобретения

Раскрыты новые полукристаллические блок-сополимеры лактида и эпсилон-капролактона для применения в долгосрочных рассасывающихся медицинских изделиях. Полукристаллические рассасывающиеся сегментированные сополимеры содержат повторяющиеся звенья из полимеризованного лактида и полимеризованного эпсилон-капролактона. Молярное отношение полимеризованного лактида к полимеризованному эпсилон-капролактону составляет приблизительно от 60:40 до приблизительно 75:25, и сополимеры обладают Tg при первом плавлении по результатам измерения с использованием дифференциальной сканирующей калориметрии со скоростью сканирования 10°C в минуту, не превышающей 0°C, и уровнем кристалличности приблизительно от 25 процентов до приблизительно 50 процентов по результатам измерения с использованием широкоугольной дифракции рентгеновских лучей. Сополимеры также обладают характеристической вязкостью по меньшей мере приблизительно 0,5 дл/г по результатам измерения в растворе гексафторизопропанола (ГФИП) с концентрацией 0,1 г/дл при 25°C.

Другой аспект настоящего изобретения представляет собой биорассасывающийся сополимер со структурой A-B-A. Концевые сегменты A этого сополимера состоят из блоков полимеризованного лактида, и срединный сегмент B состоит из блок-сополимера сополимеризованных лактида и эпсилон-капролактона. Срединный сегмент B составляет приблизительно от 25 массовых процентов до приблизительно 60 массовых процентов сополимера.

Дополнительный аспект настоящего изобретения представляет собой биорассасывающийся полукристаллический сегментированный сополимер, содержащий продукт реакции (a) форполимера, образованного из полимеризующегося мономера лактида и мономера эпсилон-капролактона в присутствии инициатора и предпочтительно подходящего количества катализатора, причем молярное отношение лактида к эпсилон-капролактону в форполимере находится в диапазоне приблизительно от 45:55 до приблизительно 30:70; и (b) мономера лактида.

Другой аспект настоящего изобретения представляет собой долгосрочную биорассасывающуюся шовную нить, изготовленную из одного из вышеописанных сополимеров.

Другой аспект настоящего изобретения представляет собой биорассасывающееся медицинское устройство, изготовленное из одного из вышеописанных сополимеров.

Другой аспект настоящего изобретения представляет собой способ изготовления медицинского устройства из указанных новых сополимеров.

Дополнительный аспект настоящего изобретения представляет собой медицинское устройство, изготовленное литьем под давлением из одного из вышеописанных сополимеров, причем это устройство является деформируемым.

Другой аспект настоящего изобретения представляет собой способ выполнения хирургической процедуры, в ходе которой медицинское устройство, выполненное из новых сополимеров настоящего изобретения, вживляется в ткани пациента.

Данные и другие аспекты и преимущества настоящего изобретения станут более понятными после изучения следующего описания и прилагаемых фигур.

Краткое описание фигур

Фиг. 1 представляет собой график кинетики изотермической кристаллизации, измеренной с использованием дифференциальной сканирующей калориметрии, конечных сополимеров, обладающих признаками изобретения, из примеров 1 и 3A.

Фиг. 2 представляет собой гистограмму результатов распределения по порядку расположения для обладающих признаками изобретения конечных сополимеров из примеров 1, 2A, 2B, 3A и 3B, по результатам измерений с использованием 13C ЯМР.

Подробное описание изобретения

Для ясности определен ряд терминов. Статистический (сополиэфирный) сополимер определен как сополиэфир, обладающий распределением по порядку расположения мономерных фрагментов вдоль цепи, которое по меньшей мере настолько же случайно, как сополимер того же общего состава, состоящий из лактоновых мономеров или гидроксикислот, в котором все мономеры добавляются в реактор полимеризации в один прием, и определяется константами сополимеризации во время полимеризации.

Статистические сополимеры представляют собой сополимеры, в которых порядок мономерных остатков определяется статистическими закономерностями. Если вероятность нахождения мономерного остатка определенного типа в конкретной точке цепи равняется молярной доле этого мономерного остатка в цепи, то полимер можно назвать “истинно статистическим сополимером“. В статистическом сополимере порядок расположения мономерных звеньев подчиняется распределению Бернулли.

Истинно статистические сополимеры встречаются редко из-за сложности механизмов констант сополимеризации мономеров. Хотя мономеры можно добавлять в периодический реактор в один прием, может присутствовать небольшая предрасположенность к присоединению к растущей цепи одного мономера относительно другого мономера. Это будет обсуждаться далее в настоящем описании.

Чтобы получить статистический сополимер в процессе периодической полимеризации, мономеры по существу добавляют в реактор периодического действия в один прием. В непрерывном процессе полимеризации мономеры добавляют в реактор непрерывного действия в по существу постоянном соотношении.

С другой стороны, сегментированный (сополиэфирный) сополимер обладает неслучайным распределением по порядку расположения, отличающимся от ожидаемого на основании рассмотрения констант сополимеризации и являющимся менее случайным, чем у статистического сополимера.

Когда длина участка определенного мономера в последовательности становится достаточно большой, полимер приближается к блочной структуре. “Блок-сополимер“ может быть мультиблочным по своему характеру: тетраблочным, триблочным или двухблочным, в зависимости от числа различных химических блоков.

Блок-сополимер, который является “двухблочным сополимером“, может иметь структуру, содержащую два различных химических блока, и тогда его обозначают как блок-сополимер типа A-B. Если триблочный сополимер имеет одну последовательность мономеров, A, на концах и вторую, B, во внутренней части, его можно обозначить как блок-сополимер типа A-B-A.

Способ получения неслучайного распределения по порядку расположения при полимеризации с раскрытием цикла заключается в добавлении различных исходных мономеров в реактор поэтапно. Можно добавить некоторое количество мономера B в реактор с монофункциональным инициатором полимеризации. Образуется полимер, состоящий только из мономеров B. Затем в реактор добавляют второй мономер, A; образованный таким образом сополимер может представлять собой блок-сополимер типа A-B. С другой стороны, если в начале полимеризации использовать дифункциональный инициатор полимеризации, образованный таким образом сополимер может представлять собой блок-сополимер типа A-B-A.

Чтобы упростить характеризацию “блочности“ распределения по порядку расположения сополимера, Харвуд (источник: Harwood, H. J.; Ritchey, W. M. Polymer Lett. 1964, 2, 601) предложил концепцию “числа повторов“. Для сополимера, состоящего из полимеризованных повторяющихся звеньев “A“ и полимеризованных повторяющихся звеньев “B“, соответствующие числа повторов отражают среднюю длину цепи последовательности индивидуальных “мономеров“. При продвижении вдоль цепи каждый раз при встрече звена A активировался счетчик. Каждый раз при встрече еще одного звена A счетчик увеличивали на единицу; при встрече звена B счетчик останавливали. После прохождения всей цепи и завершения работы над остальной смолой можно определить среднее значение числа повторов Харвуда для звена “A“. То же самое можно сделать для “B“. Статистический анализ показал, что для теоретически статистического сополимера с молярным составом A/B число повторов Харвуда для каждого из компонентов можно рассчитать на основании следующих уравнений:

(1),

где HRNA и HRNB представляют числа повторов Харвуда для повторяющихся звеньев A и B соответственно, и [A] и [B] представляют молярные доли повторяющихся звеньев A и B соответственно.

Таким образом, ожидается, что для статистического сополимера 20/80 A/B, состоящего из звеньев A и B, числа повторов Харвуда будут составлять 1,25 и 5,0 для A и B соответственно. Перейдем к рассмотрению нестатистических сополимеров. Можно получить сополимер такого же состава 20/80 с числом повторов Харвуда для компонента A, значительно превышающим значение 1,25 для статистического сополимера, например, 1,5 или 3. Это является явным признаком предрасположенности звеньев “A“ группироваться друг с другом - блочного распределения по порядку расположения.

При сополимеризации мономеры могут иметь не совсем случайный порядок расположения из-за явления, при котором существует сильная предрасположенность мономера 1 добавляться к растущей цепи, которая заканчивается “повторяющимся звеном мономера 1“, или сильная предрасположенность мономера 1 добавляться к растущей цепи, которая заканчивается “повторяющимся звеном мономера 2“. Для описания этого явления была разработана концепция констант сополимеризации, r1 и r2. Более конкретно, распределение мономеров в сополимере описывается уравнением Майо-Льюиса, в химии полимеров также называемое уравнением сополимеризации. Рассматривая смесь мономеров из двух компонентов M1 и M2 и четыре различных реакции, которые могут происходить на реакционном конце цепи, который оканчивается любым из мономеров (M*), со своими константами скорости реакции k:

(2)
(3)
(4)
(5)

Константы сополимеризации определяются как:

(6)
(7)

где k11, k12, k21 и k22 обозначают константы скорости реакций, показанных в уравнениях 2-5 соответственно.

Статистический случайный сополимер по существу образуется, когда значения r1 и r2, оба равны единице. Экспериментально определенная константа сополимеризации, соответствующая присоединению мономера эпсилон-капролактона к цепи, которая оканчивается лактидильным фрагментом (т.е. последовательности полимеризованного L(-)-лактида) равна 44, тогда как константа сополимеризации для присоединения мономера L(-)-лактида к цепи, которая оканчивается капроильным фрагментом (т.е. последовательности полимеризованного эпсилон-капролактона) равна 0,28. Поскольку в данном случае константы сополимеризации сильно различаются, это приводит к получению сополимеров с несколько неслучайным распределением по порядку расположения звеньев, даже когда оба мономера добавляются в реактор вместе в начале полимеризации.

Предполагая, что последовательность истинно случайна по своему характеру, для заданного сополимера можно ожидать определенные числа повторов Харвуда, связанные с каждым из полимеризованных мономеров. Существует также экспериментально определенное среднее значение длины цепи последовательности для каждого из компонентов. В настоящем описании определен “показатель неупорядоченности“ для каждого из полимеризованных мономеров; он обозначен как RFx, где x указывает на рассматриваемый конкретный мономер. Значение RFx для мономера x определяется как отношение экспериментально определенной средней длины последовательности и соответствующего числа повторов Харвуда.

Например, в статистическом сополимере 20/80 A/B, состоящем из описанных выше звеньев A и B, если бы он был действительно статистически случайным, ожидаемые числа повторов Харвуда составляли бы 1,25 и 5,0 для A и B соответственно. Если экспериментально было обнаружено, что значения средней длины последовательности цепи для компонентов A и B составляли 1,88 и 8,50 соответственно, можно рассчитать, что значение RFA составляет 1,5 (=1,88/1,25), и значение RFB составляет 1,7 (=8,5/5,0). И в этом случае “показатель неупорядоченности“ рассчитывается из отношения экспериментально определенной средней длины последовательности цепи и соответствующего теоретического числа повторов Харвуда, рассчитанного в предположении статистически случайного распределения по порядку расположения.

Примером статистического (сополиэфирного) сополимера, состоящего из лактоновых мономеров, будет смешивание 70 молей лактида и 30 молей эпсилон-капролактона в реакторе и полимеризация этой комбинации без введения какого-либо дополнительного мономера на последующей стадии. Следует отметить, что статистический (сополиэфирный) сополимер, состоящий из лактида и эпсилон-капролактона в диапазоне составов от 60/40 до 75/25, будет обладать крайне низкими уровнями кристалличности, т.е. будет практически аморфным. Такие сополимеры лактида и эпсилон-капролактона, обладающие низкими уровнями кристалличности, будут неподходящими для применения в прочных волокнах из-за отсутствия пространственной стабильности ввиду того, что для достижения высокой прочности требуется высокая ориентация. Следует также заметить, что случайные (сополиэфирные) сополимеры даже средней молекулярной массы, состоящие из лактида и эпсилон-капролактона в диапазоне составов от 60/40 до 75/25, будут обладать температурами стеклования выше комнатной и приводить в результате к жестким изделиям.

Примером нестатистического (сополиэфирного) сополимера, состоящего из лактоновых мономеров или гидроксикислот, будет сополимер, в котором мономеры добавляются в реактор последовательно. На первой стадии полимеризации можно добавить 70 молей лактида и 30 молей эпсилон-капролактона в реактор и полимеризовать эту смесь; после последующего образования “форполимера“ добавляют дополнительную порцию одного из мономеров или третий мономер. Распределение по порядку расположения мономеров вдоль различных цепей таким образом целенаправленно контролируют.

Термины рассасывающийся, биорассасывающийся, биоразлагаемый в настоящем описании используются как эквивалентные.

Конечный сополимер настоящего изобретения является полукристаллическим, в то время как форполимер является аморфным. С составами форполимера в диапазоне от 45/55 до 30/70 и конечными составами от 60/40 до 75/25, в молярных долях, L-лактида и эпсилон-капролактона неожиданно было обнаружено, что сополимеры настоящего изобретения являются полукристаллическими по характеру и обладают температурой стеклования значительно ниже комнатной температуры. Одним возможным применением для таких полимеров является производство новых прочных мягких волокон.

Полилактид является полукристаллическим сложным полиэфиром с высокой температурой стеклования (Tg=65°C). Этот материал обладает высоким модулем упругости и поэтому является достаточно жестким, что делает его по существу неподходящим для монофиламентных хирургических шовных нитей. Помимо этого, он рассасывается недостаточно быстро для множества ключевых областей хирургического применения, т.е. он сохраняется слишком долго in vivo. Однако было обнаружено, что определенные сополимеры лактида и эпсилон-капролактона являются, неожиданно и непредвиденно, особенно удобными для применения, требующего одновременно как мягкости, так и более длительного срока потери механических свойств.

Например, 72/28 мол./мол. сополимер лактида и эпсилон-капролактона [72/28 Лак/Кап] был получен полимеризацией с последовательным добавлением, начатой с загрузки на первой стадии лактида и эпсилон-капролактона (45/55 Лак/Кап в молярных процентах) и продолженной с последующим добавлением только лактида на второй стадии. Общая начальная загрузка составила 75/25 мол./мол. лактида/эпсилон-капролактона. Из-за неполного превращения мономеров в полимер и различия в реакционной способности достаточно часто конечный состав (со)полимера отличается от состава исходного сырья. Конечный состав сополимера, как оказалось, составил 72/28 мол./мол. лактида/эпсилон-капролактона. Более подробно описание этой сополимеризации см. в примере 2A.

Настоящее изобретение направлено на сополимеры лактида и эпсилон-капролактона. Более конкретно, на данный класс сополимеров с высоким содержанием лактида, полученных таким образом, чтобы они имели блочное распределение по порядку расположения, не являющееся случайным. В таких сополимерах лактида и эпсилон-капролактона, в которых большая часть материала состоит из лактида, следует оптимизировать морфологию смолы для возможности ее использования для долгосрочного применения. Было обнаружено, что составы должны иметь высокое содержание лактида, например, иметь содержание полимеризованного лактида 50 процентов или выше.

Неожиданным образом были обнаружены новые биорассасывающиеся полимеры, имеющие относительно узкий диапазон составов и неслучайное распределение по порядку расположения, которые, при изготовлении из них монофиламентного волокна, дают шовные нити, которые являются достаточно мягкими, чтобы иметь хорошие рабочие характеристики, однако обладают достаточно существенной механической целостностью in vivo по истечении от 10 до 12 недель после вживления. Сегментированные, то есть обладающие неслучайным распределением по порядку расположения по сравнению с ожидаемым на основании рассмотрения констант сополимеризации, сополимеры лактида и эпсилон-капролактона, содержащие полимеризованный лактид, имеющий молярное содержание от 60 до 75 процентов, и полимеризованный эпсилон-капролактон с молярным содержанием от 25 до 40 процентов, можно использовать для реализации на практике настоящего изобретения. Данный класс сополимеров, семейство сополимеров лактида и эпсилон-капролактона с высоким содержанием лактида, предпочтительно содержит приблизительно от 25 до приблизительно 35 молярных процентов полимеризованного эпсилон-капролактона.

В частности, сополимеры лактида и эпсилон-капролактона с высоким содержанием полимеризованного лактида, имеющие содержание входящего в состав лактида менее чем приблизительно 60 молярных процентов, являются неподходящими для сополимеров настоящего изобретения из-за проблем с кристаллизацией. С другой стороны, было обнаружено, что сополимеры лактида и эпсилон-капролактона с высоким содержанием полимеризованного лактида, имеющие содержание входящего в состав лактида более чем приблизительно 75 молярных процентов, являются неподходящими из-за слишком высокого модуля упругости и слишком длительного времени рассасывания.

Пространственная стабильность волокна, используемого для производства хирургических шовных нитей, очень важна для того, чтобы предотвратить усадку, как в стерильной упаковке до использования, так и в тканях пациента после хирургической операции. Пространственная стабильность материала с низкой Tg достигается путем кристаллизации сформированного изделия. В явлении кристаллизации сополимеров большое значение имеет ряд факторов. Эти факторы включают общий химический состав и распределение по порядку расположения.

Хотя общий уровень кристалличности (и Tg материала) имеют значение для обеспечения пространственной стабильности, важно понимать, что скорость достижения кристалличности является критическим фактором для обработки. При обработке материала с более низкой Tg, если его скорость кристаллизации очень низка, будет крайне сложно соблюдать допуск по размерам, поскольку легко возникают усадка и деформация. Быстрая кристаллизация, таким образом, является преимуществом. Было обнаружено, что для рассматриваемых систем для того, чтобы увеличить скорость кристаллизации сополимера заданного общего химического состава, блочная структура предпочтительнее случайного распределения по порядку расположения. Однако, неожиданно и непредсказуемо, авторы изобретения смогли достичь этого с двумя мономерами лактона, например, лактидом и эпсилон-капролактоном, невзирая на экспериментальные сложности и препятствия, связанные с переэтерификацией и другими факторами.

В соответствии с настоящим изобретением композиционная последовательность полукристаллического сополимера, обладающего признаками изобретения, может быть схематически изображена следующим образом:

LLLLLLLLLLLLLL-CLCLCCLCLCLCCCLCLCCLC-LLLLLLLLLLLLLL

Блок полимеризованного лактида-Сополимер сополимеризованных лактида и эпсилон-капролактона-Блок полимеризованного лактида

с полукристаллическими полилактидными блоками, составляющими приблизительно от 45 до 70 массовых процентов сополимера, и со срединным блоком, образованным из по существу аморфного случайного форполимера на основе сополимеризованных лактида и эпсилон-капролактона. В приведенной выше формуле L представляет собой лактид, и C представляет собой эпсилон-капролактон.

Новые сополимеры настоящего изобретения получены путем первоначальной полимеризации мономеров лактида и эпсилон-капролактона при температурах приблизительно от 170°C до приблизительно 240°C. Температуры в диапазоне приблизительно от 185°C до приблизительно 195°C являются особенно преимущественными. Хотя для инициации можно использовать монофункциональный спирт, такой как додеканол, было обнаружено, что для этой роли хорошо подходит диол, такой как диэтиленгликоль. Комбинации монофункционального и бифункционального или мультифункционального традиционных инициаторов можно также использовать в качестве способа дополнительно повлиять на некоторые важные характеристики, например, на морфологическое развитие, в том числе на скорости кристаллизации и конечные уровни кристалличности. Продолжительность реакции может изменяться в зависимости от количества катализатора. Подходящие катализаторы включают традиционные катализаторы, такие как октоат олова. Используются достаточно эффективные количества катализатора. Можно использовать катализатор в отношении общего количества мономеров к катализатору, составляющем приблизительно от 10000/1 до приблизительно 300000/1, предпочтительный уровень составляет приблизительно от 25000/1 до приблизительно 100000/1. После завершения данной первой стадии полимеризации (например, в течение 4-6 часов) температуру поднимают выше 200°C (обычно от 205 до 210°C). После повышения температуры, например, до 205°C, в реактор можно добавить оставшуюся часть мономера лактида; в целях удобства можно предварительно расплавить мономер и добавлять его в расплавленном виде. После добавления второй порции мономера лактида температуру приводят в диапазон приблизительно от 190°C до приблизительно 200°C, чтобы завершить процесс сополимеризации (например, в течение 1-2 часов).

Специалисту в данной области будет ясно, что для получения сополимеров настоящего изобретения можно использовать различные альтернативные подходы и параметры полимеризации. Например, хотя это не является предпочтительным, можно проводить все или часть полимеризаций без присутствия катализатора.

Следует понимать, что дополнительная загрузка мономера, добавляемого к форполимеру, не обязательно должна состоять из чистого лактида. Вместо добавления чистого мономера лактида к форполимеру можно использовать до десяти молярных процентов другого мономера, чтобы изменить состав мономерной смеси, добавляемой к форполимеру. Например, мономерная смесь, добавляемая к форполимеру, может содержать небольшие количества эпсилон-капролактона; мономерная смесь может содержать, например, 90/10 лактида/эпсилон-капролактона. Добавление эпсилон-капролактона в “концевые блоки“ снизит температуру плавления, скорость кристаллизации и общую кристалличность конечного сополимера. Добавление более десяти молярных процентов понижает свойства настолько, что делает сополимер непригодным для большинства областей применения. Композиционная последовательность данного варианта полукристаллического сополимера, обладающего признаками изобретения, может быть схематически изображена следующим образом:

LLCLLLLLLLLCLL-CLCLCCLCLCLCCCLCLCCLC-LLLLLLLCLLLLLL

В некоторых вариантах осуществления можно рекомендовать добавление небольших количеств гликолида в мономерную смесь, добавляемую к форполимеру. Например, мономерная смесь, добавляемая к форполимеру, может содержать до приблизительно десяти молярных процентов гликолида; мономерная смесь может содержать, например, 90/10 лактида/гликолида. Добавление гликолида в “концевые блоки“ понизит температуру плавления, скорость кристаллизации и общую кристалличность конечного сополимера, а также увеличит скорость рассасывания сополимера. И в этом случае добавление более десяти молярных процентов понижает свойства настолько, что делает сополимер непригодным для большинства областей применения. Композиционная последовательность данного варианта полукристаллического сополимера, обладающего признаками изобретения, может быть схематически изображена следующим образом:

LLLLLGLLLLLLLL-CLCLCCLCLCLCCCLCLCCLC-LLLLGLLLLLGLLL

В приведенной выше формуле L представляет собой лактид, C представляет собой эпсилон-капролактон, а G представляет собой гликолид.

Следует также понимать, что небольшая модификация состава мономерной смеси для получения форполимера первой стадии может использоваться для обеспечения определенных желаемых характеристик, все в пределах объема настоящего изобретения. Таким образом, другие лактоны, такие как п-диоксанон, триметиленкарбонат или гликолид, могут быть добавлены к смеси лактида и эпсилон-капролактона на первой стадии.