Полимерное соединение и его применение в фотовольтаических устройствах

Иллюстрации

Показать все

Изобретение относится к полимерному соединению, к вариантам композиций, предназначенных для изготовления различных органических или гибридных оптоэлектронных изделий, структур и устройств, в том числе органических фотовольтаических устройств и органических светоизлучающих транзисторов, а также к способу получения полимерного соединения и его применению. Полимерное соединение имеет общую формулу (I), где n - целое число от 2 до 2000 и представляет собой количество повторяющихся мономерных звеньев в полимерной цепи, которые могут быть идентичными или различными, R1, R2, R3, R4 представляют собой атом водорода; R5, R6 одинаковы или отличны друг от друга и представляют собой алкильную группу С1-С20; X представляет собой группу

где Y=N-R7, или CR8R9, или SiR8R9, где R7, R8, R9 одинаковы или отличны друг от друга и представляют собой алкильную группу С1-С20, EG-1 и EG-2 - концевые группы полимерного соединения, не зависящие друг от друга и представляющие собой атом водорода, галогена, триалкилстаннил (-Sn(Alkyl)3), остаток борной кислоты (-В(ОН)2), эфир борной кислоты (-B(OAlkyl)2), арильный или гетероарильный фрагмент. Композиция содержит хотя бы одно полимерное соединение формулы (I) и по крайней мере один материал, выбранный из группы, включающей дырочно-транспортный материал, электрон-акцепторный материал, электрон-транспортный материал и светопоглощающий материал. По второму варианту композиция содержит хотя бы одно полимерное соединение формулы (I) и хотя бы одно фуллереновое соединение. Способ получения полимеров формулы (I) заключается в том, что проводят реакцию поликонденсации Стилле или Сузуки для связывания исходных мономеров вместе с образованием сопряженного полимера. Полимеры формулы (I) применяют в изготовлении фотовольтаических преобразующих устройств, предпочтительно, солнечных ячеек, солнечных батарей солнечных модулей и оптических сенсоров. Изобретение позволяет получить полимер с оптимальными электронными свойствами, имеющий ширину запрещенной зоны 1,2-1,7 эВ, который можно использовать при изготовлении фотовольтаических преобразующих устройств с более высокими эффективностями фотоэлектрического преобразования света. 5 н. и 11 з.п. ф-лы, 9 ил., 1 табл., 8 пр.

Реферат

Данное изобретение относится к полимерным соединениям и фотовольтаическим устройствам, использующим эти соединения.

В качестве материалов для органических солнечных батареях исследуются различные полимерные соединения, и полимерное соединение, содержащее в качестве повторяющихся звеньев

и

в мольном соотношении 50:50 известно как соединение Р4 из Европатента ЕР 2327734 А1.

Полимерное соединение

известно как соединение PCDTBX из J. Am. Chem. Soc. 2008, 130, 732.

Однако органическая солнечная батарея, изготовленная с использованием вышеописанного полимерного соединения Р4, обеспечивала недостаточно высокий коэффициент фотоэлектрического преобразования (η), только 0,94%.

Органическая солнечная батарея, изготовленная с использованием вышеописанного полимерного соединения PCDTBX, обеспечивала более высокий, но не удовлетворительный коэффициент фотоэлектрического преобразования (η) 2,4%.

Поглощение света - важная характеристика любого органического соединения, используемого в качестве материала фотоактивного слоя органических солнечных батарей. Оптимальная ширина запрещенной зоны находится в диапазоне от 1,2 до 1,7 эВ, т.е. для достижения лучшей эффективности фотоэлектрического преобразования света в полимерных органических солнечных батареях в качестве материалов р-типа должны использоваться полимерные соединения, ширина запрещенной зоны которых находится в указанном выше диапазоне [Adv. Mater., 2006, 18, 789]. Полимерные соединения Р4 из Европатента ЕР 2327734 А1 и PCDTBX из J. Am. Chem. (Soc. 2008, 130, 732) имеют ширину запрещенной зоны 1.8-1.9 эВ, что превышает оптимальное значение. Это означает, что полимерные соединения Р4 из Европатента ЕР 2327734 А1 и PCDTBX из J. Am. Chem. (Soc. 2008, 130, 732) не поглощают достаточное количество света, что ограничивает эффективность фотоэлектрического преобразования света солнечных батарей на их основе.

Целью настоящего изобретения являлась разработка полимеров с шириной запрещенной зоны 1,2-1,7 эВ для их использования в качестве материалов органических солнечных батарей с более высокими эффективностями фотоэлектрического преобразования света в сравнении с батареями на основе предшествующих полимерных соединений.

Было обнаружено, что в сравнении с полимерными соединениями Р4 из Европатента ЕР 2327734 А1 и PCDTBX из J. Am. Chem. (Soc. 2008, 130, 732), лучшие электронные характеристики органических солнечных батарей, глубоко расположенные уровни HOMO и хорошая операционная стабильность были получены для полимерных соединений, содержащих

- дивалентные фрагменты ТОТОТ с общей формулой А (Т - тиофен, О - бензооксадиазол), характеризующиеся отсутствием каких-либо заместителей в тиофеновых кольцах;

- дополнительные тиофеновые фрагменты с солюбилизирующими алкильными боковыми цепями, присоединенные с обеих сторон фрагмента ТОТОТ общей формулой А, как это изображено на формуле В;

- дивалентные мономерные фрагменты, содержащие алкилзамещенные флуорен, силафлуорен или карбазол.

Примеры в настоящем изобретении показывают, что лучшие электронные свойства могут быть достигнуты только для полимерных соединений, содержащих дополнительные тиофеновые фрагменты, присоединенные к ТОТОТ с общей формулой А, солюбилизирующие алкильные заместители которых присоединены таким образом, как изображает общая формула В (алкильные заместители направлены к бензооксадиазольным фрагментам). Какое-либо альтернативное расположение алкильных фрагментов приводит к ухудшению электронных свойств полимерных соединений.

В формулах А и В

R1, R2, R3 и R4 - одинаковые или взаимно различающиеся и представляют собой атом водорода, атом галогена, алкильную группу, алкоксигруппу, тиоалкильную группу, цианогруппу или нитрогруппу;

R5 и R6 - одинаковые или взаимно различающиеся и представляют собой алкильную группу CmH2m+1 (m=1-20).

В первую очередь данное изобретение предлагает полимерные соединения, имеющие общую формулу (I)

где n - число повторяющихся звеньев;

R1, R2, R3 и R4 - одинаковые или взаимно различающиеся и представляют собой атом водорода, атом галогена, алкильную группу, алкоксигруппу, тиоалкильную группу, цианогруппу или нитрогруппу; R5 и R6 - одинаковые или взаимно различающиеся и представляют собой алкильную группу CmH2m+1 (m=1-20);

X представляет собой фрагмент с общей формулой (II),

где Y=N-R7, или CR8R9, или SiR8R9, R7, R8, R9 - алкильные группы CmH2m+1 (m=1-20);

EG-1 и EG-2 концевые группы полимерного соединения, независимые друг от друга, представляют собой атом водорода, атом галогена, триалкилстаннил (-Sn(алкил)3), остаток борной кислоты (-В(ОН)2), эфир борной кислоты (-В(Оалкил)2), арильную или гетероарильную группу, предпочтительно группы EG-1 и EG-2 представляют собой атом водорода, атом брома или фенильную группу.

С другой стороны данное изобретение предлагает фотовольтаическое устройство, предпочтительно фотовольтаическое устройство для превращения энергии света, состоящее из анода, катода и органического слоя, содержащего по крайней мере одно из вышеописанных полимерных соединений, помещенного между анодом и катодом.

Область изобретения включает в себя все этапы, параметры и пояснения процесса, сформулированные выше и ниже, либо в целом, либо в рамках предпочтительных областей или предпочтительных объединений друг с другом, т.е. также любые комбинации между отдельными областями и областями предпочтения.

В контексте данного изобретения под префиксом «поли» понимается то, что более одного идентичных или разных повторяющихся звеньев присутствует в полимерном соединении в соответствии с настоящим изобретением, в частности в полимерном соединении с общей формулой (I). Полимерные соединения в соответствии с данным изобретением, в частности полимерное соединение с общей формулой (I), содержат общее число n повторяющихся звеньев где n - целое число от 2 до 2000, наиболее предпочтительно 2 до 200. Повторяющиеся звенья полимерных соединений в данном изобретении могут быть одинаковыми или разными в рамках полимерного соединения с общей формулой (I). В настоящем изобретении концевые группы EG-1 и EG-2 предпочтительно не зависят друг от друга и представляют собой атом водорода или фенильную группу.

В свете вышесказанного идеи данного изобретения предусматривают определенные полимерные соединения, которые могут быть использованы как органические полупроводниковые материалы. Также предлагаются связанные с ними устройства и соответствующие методы получения и использования этих соединений. Данные соединения могут проявлять такие свойства как улучшенное оптическое поглощение, хорошие характеристики переноса заряда и химическая стабильность в условиях окружающей среды, пригодность для низкотемпературной обработки, высокая растворимость в обычных растворителях и универсальность обработки (например, с помощью различных процессов растворения). В результате оптоэлектронные устройства, предпочтительно солнечные элементы, включающие в себя один или более из данных соединений в качестве светочувствительного слоя, обладающего хорошими характеристиками в условиях окружающей среды, например, демонстрирующего одну или более узких запрещенных зон, высокий фактор заполнения, высокое напряжение разомкнутой цепи и высокую эффективность преобразования энергии, и предпочтительно все эти критерии. Подобным образом, с использованием описанных здесь органических полупроводниковых материалов могут быть эффективно изготовлены другие устройства на основе органических полупроводников, такие как органические светоизлучающие транзисторы (OLET).

Данное изобретение также предлагает методы получения таких полимерных соединений и полупроводниковых материалов, а также различных композиций, композитов и устройств, включающих раскрытые здесь соединения и полупроводниковые материалы.

Вышеперечисленное, а также другие свойства и преимущества настоящего изобретения станут понятнее из следующих рисунков, описаний, примеров и утверждений.

Следует понимать, что рисунки, описанные ниже, носят исключительно иллюстративный характер. Рисунки не нужно отображать в реальном масштабе, упор делается на демонстрацию принципов идей данного изобретения. Рисунки никоим образом не ограничивают объем идей данного изобретения.

Полимерные соединения данного изобретения могут демонстрировать полупроводниковые характеристики, такие как улучшенное поглощение света/разделение заряда в фотовольтаических устройствах; перенос/рекомбинация зарядов/излучение света в светоизлучающих устройствах; и/или высокая подвижность носителей заряда и/или хорошие характеристики модуляции тока в полевых транзисторах. Кроме того, полимерные соединения настоящего изобретения могут обладать определенными преимуществами в обработке, такими как способность к обработке в растворе и/или высокая стабильность (например, стабильность на воздухе) в условиях окружающей среды. Полимерные соединения данных разработок могут быть использованы для получения полупроводниковых материалов либо р-типа (донорные или дырочно-транспортные), либо n-типа (акцепторные или электронно-транспортные), либо амбиполярных, которые, в свою очередь, могут быть использованы для изготовления различных органических или гибридных оптоэлектронных изделий, структур и устройств, в том числе органических фотовольтаических устройств и органических светоизлучающих транзисторов.

По всему тексту заявки, где описываются составы, как имеющие, включающие или содержащие особые компоненты, или где описываются процессы как имеющие, включающие или содержащие особые стадии процесса, предполагается, что содержание идей данного изобретения также в основном состоит или состоит из перечисленных компонентов и что процессы данных разработок также состоят из перечисленных стадий.

Там, где в заявке сказано, что элемент или компонент включен или выбран из списка перечисленных элементов или компонентов, следует понимать, что элемент или компонент может быть любым из перечисленных элементов или компонентов, или элемент или компонент может быть выбран из группы, состоящей из двух или более перечисленных элементов или компонентов. Кроме того, следует понимать, что элементы и/или свойства композиции, аппарата или метода, описанного здесь, можно сочетать разными способами, не нарушая духа и объема идей данного изобретения, выраженных здесь в явной или неявной форме.

Использование терминов "включать", "включает", "включающий", "иметь", "имеет", или "имеющий" как правило следует понимать как допускающее поправки и отсутствие ограничений, если иное не оговорено особо.

Использование в данной заявке единственного числа включает в себя множественное число (и наоборот), если иное не оговорено особо. Кроме того, там, где понятие «приблизительно» используется перед количественным значением, данные утверждения также включают само конкретное количественное значение. В контексте данного патента понятие «приблизительно» предполагает отклонение на ±10% от номинального значения, если не указано или не косвенно выведено иное.

Следует понимать, что порядок стадий или порядок выполнения определенных действий несущественен при условии, что настоящие утверждения остаются осуществимыми. Кроме того, две или более стадий или действий могут выполняться одновременно.

В контексте данной заявки под «полупроводниковым материалом р-типа» или «донорным» материалом понимается полупроводниковый материал, например, органический полупроводниковый материал, в котором большинство носителей тока или заряда составляют дырки. В некоторых модификациях, когда полупроводник р-типа нанесен на подложку, он может обеспечить подвижность дырок приблизительно свыше 10-5 см2/В⋅с. В случае полевых транзисторов, полупроводник р-типа также может обладать отношением токов включения и выключения свыше ~10.

В контексте данной заявки под «полупроводниковым материалом n-типа» следует понимать полупроводниковый материал, например, органический полупроводниковый материал, в котором большинство носителей тока или заряда составляют электроны. В некоторых модификациях, когда полупроводник n-типа нанесен на подложку, он может обеспечить подвижность электроном свыше ~10-5 см2/В⋅с. В случае полевых транзисторов, полупроводник n-типа также может обладать отношением токов включения и выключения свыше ~10.

В контексте данной заявки под «подвижностью» понимается мера скорости, с которой носитель заряда, например, дырки (или положительно заряженные частицы) в случае полупроводниковых материалов р-типа или электроны (или отрицательно заряженные частицы) в случае полупроводниковых материалов n-типа движутся в материале под влиянием электрического поля. Этот параметр, зависящий от архитектуры устройства, может быть измерен с помощью полевого транзистора или измерениями тока, ограниченного пространственным зарядом или другими методами, такими как измерение переходной характеристики фототока, измерения CELIV (извлечение тока линейно увеличивающимся напряжением).

В контексте данной заявки коэффициент преобразования энергии (РСЕ - КПЭ) солнечной батареи - это количество (в процентах) энергии, преобразованной из поглощенного света в электрическую энергию. КПЭ солнечной батареи можно рассчитать путем деления точки максимума энергии (Emax) на входное светоизлучение (Е, W/м2) в стандартных тестовых условиях (STC) и площадь поверхности солнечной батареи (Ас, м2). Стандартные тестовые условия - это, как правило, температура 25°С и плотность излучения 1000 W/м2 с воздушным масс-спектром 1.5 (AM 1.5).

В данной заявке компонент (такой как тонкопленочный слой) можно считать «фотоактивным», если он содержит одно или несколько соединений, способных поглощать фотоны и генерировать экситоны для создания фототока.

В данной заявке "обрабатываемый в растворе" относится к соединениям, предпочтительно полимерам, материалам или композициям, которые могут быть использованы в различных процессах, идущих в растворе, таких как спинкоутинг, печать, предпочтительно струйная печать, гравюрная печать, офсетная печать и т.п., нанесение покрытия распылением, нанесение покрытия методом электрораспыления, капельное нанесение, нанесение покрытия методом погружения и метод блейд-покрытия.

В данной заявке «полимерное соединение» (или «полимер») - это молекула, включающая большое число повторяющихся звеньев, связанных ковалентными химическими связями. Полимерное соединение можно представить общей формулой

где М - повторяющееся звено или мономер. Полимерное соединение может иметь повторяющееся звено только одного типа, а также различные повторяющиеся звенья двух и более типов. Если полимерное соединение имеет повторяющиеся звенья только одного типа, его можно отнести к гомополимерам. Если полимерное соединение имеет различные повторяющиеся звенья двух и более типов, вместо этого можно использовать термин «сополимер» или «сополимерное соединение». Например, сополимерное соединение может включать повторяющиеся звенья

и

где Ма и Mb - два разных полимерных звена. Если не оговорено иначе, последовательность повторяющихся звеньев в полимере может быть «голова-хвост», «голова-голова» или «хвост-хвост». Кроме того, если не оговорено иначе, сополимер может быть случайным сополимером, чередующимся сополимером или блок-сополимером. Например, общую формулу

можно использовать для обозначения сополимера Ма с Мb, имеющего мольную долю х Ма и мольную долю у Мb в сополимере, в котором повторяющаяся последовательность сомономеров Ма и Мb может быть чередующейся, случайной, региослучайной, региорегулярной или блочной. Кроме состава, полимерное соединение может быть также охарактеризовано степенью полимеризации (n) и молярной массой (например, среднечисленной молекулярной массой (Мn) и/или средневесовой молекулярной массой (Mw) в зависимости от метода (ов) определения).

В данной заявке "гало" или "галоген" обозначает фтор-, хлор-, бром- и иод-.

В данной заявке "оксо" обозначает кислород с двойной связью (например, =O).

В данной заявке термин «алкил» относится к насыщенной углеводородной группе с прямой или разветвленной цепью. Предпочтительными алкильными группами являются метил (Me), этил (Et), пропил (например, н-пропил и изо-пропил), бутил (например, н-бутил, изо-бутил, втор-бутил, трет-бутил), пентильные группы (например, n-пентил, изо-пентил, нео-пентил), гексильные группы и т.п. В различных сочетаниях алкильная группа может включать от 1 до 40 атомов углерода (т.е. алкильная группа С1-40), например, 1-20 атомов углерода (т.е. алкильная группа С1-20). В некоторых сочетаниях алкильная группа может иметь от 1 до 6 атомов углерода, и ее можно отнести к «легкой алкильной группе» (группе низших алканов). Примерами низших алкильных групп являются метальные, этильные, пропильные (например, н-пропил и изо-пропил) и бутильные группы (например, н-бутил, изо-бутил, втор-бутил, трет-бутил). В некоторых случаях алкильные группы могут быть замещенными, как описано в данной заявке. Алкильная группа, как правило, не содержит в качестве заместителей другой алкильной группы, алкенильной или алкинильной группы.

В данной заявке "галогеналкил" относится к алкильной группе, содержащей один и более атомов галогенов. В различных вариантах галогеналкильная группа может иметь от 1 до 40 атомов углерода (т.е. галогеналкильная группа С1-40), например, от 1 до 20 атомов углерода (т.е. галогеналкильная группа С1-20). Предпочтительными галогеналкильными группами являются CF3, C2F5, CHF2, CH2F, CCl3, CHCl2, CH2Cl, C2Cl5 и т.п. Пергалогеналкильные группы, т.е. алкильные группы, в которых все атомы водорода замещены атомами галогена (например, CF3 и C2F5), включены в заявку с определением "галогеналкил". Например, галогеналкильная группа С1-40 может иметь формулу -CsH2s+1-tX0t, где Х0 во всех случаях - это F, Cl, Br или I, "s" - целое число от 1 до 40, "t" - целое число от 1 до 81 при условии, что t меньше или равно 2s+1. Галогеналкильные группы, не являющиеся пергалогеналкильными группами, могут быть замещенными, как описано в данной заявке.

В данной заявке "алкокси" относится к -О-алкильной группе. Предпочтительными алкоксигруппами являются, но не ограничиваются, метокси, этокси, пропокси (например, н-пропокси и изо-пропокси), t-бутокси, пентокси, гексоксигруппы и т.п. Алкил в -О-алкильной группе может быть замещенным, как описано в данной заявке.

В данной заявке "тиоалкил" относится к -S-алкильной группе. Предпочтительными тиоалкильными группами являются, но не ограничиваются, тиометил, тиоэтил, тиопропил (например, р-тиопропил и изо-тиопропил), t-тиобутил, тиопентил, тиогексильные группы и т.п. Алкил в группе -S- алкильной группе может быть замещенным, как описано в данной заявке.

В данной заявке "циклический фрагмент" может включать в себя одно или несколько (например, 1-6) карбоциклических или гетероциклических колец. Циклический фрагмент может быть циклоалкильной группой, гетероциклоалкильной группой, арильной группой или гетероарильной группой (т.е. может иметь только насыщенные связи или иметь одну или несколько ненасыщенных связей независимо от ароматичности), каждая из которых имеет, например, 3-24 атома в кольце и произвольным образом может быть замещенной, как описано в данной заявке. В случаях, когда циклический фрагмент является "моноциклическим фрагментом", этот "моноциклический фрагмент" может иметь 3-14-членное ароматическое или неароматическое карбоциклическое или гетероциклическое кольцо. Моноциклический фрагмент может иметь, например, фенильную группу или 5- или 6-членную гетероарильную группы, каждая из которых может быть произвольным образом замещенной, как описано в данной заявке. В случаях, когда циклический фрагмент является "полициклическим фрагментом", этот "полициклический фрагмент" может иметь два или несколько конденсированных колец (т.е. имеющих общую связь) и/или связанных друг с другом через спиро атом, или один или несколько мостиковых атомов. Полициклический фрагмент может иметь 8-24-членное ароматическое или неароматическое, карбоциклическое или гетероциклическое кольцо, такое как арильная группа C8-24 или 8-24-членная гетероарильная группа, каждая из которых может быть произвольным образом замещенной, как описано в данной заявке.

В данной заявке термин "циклоалкил" относится к неароматической карбоциклической группе, включающей циклическую алкильную, алкенильную и алкинильную группы. В разных вариантах циклоалкильная группа может иметь от 3 до 24 атомов углерода, например от 3 до 20 атомов углерода (например, циклоалкильная группа С3-14). Циклоалкильная группа может быть моноциклической (например, циклогексил) или полициклической (например, содержать конденсированные, мостиковые и/или спиро кольца), где атомы углерода расположены внутри или вне кольца. Циклоалкильная группа, находящаяся в любом подходящем положении кольца, может быть ковалентно связана с определенной химической структурой. Примерами циклоалкильных групп являются циклопропильная, циклобутильная, циклопентильная, циклогексильная, циклогептильная, циклопентенильная, циклогексенильная, циклогексадиенильная, циклогептатриенильная, норбонильная, норпинильная, норкарильная, адамантильная и спиро[4.5]деканильная группы, а также их гомологи, изомеры и т.п. В некоторых случаях циклоалкильные группы могут быть замещенными, как описано в данной заявке.

В данной заявке термин "гетероатом" относится к атому любого элемента кроме углерода и водорода и может быть, например, азотом, кислородом, кремнием, серой, фосфором и селеном.

В данной заявке термин "циклогетероалкил" относится к неароматической циклоалкильной группе, которая содержит по крайней мере один гетероатом в кольце, а именно, О, S, Se, N, Р, Si (например, О, S, N), и произвольным образом содержит одну или несколько двойных или тройных связей. Циклоарильная группа может иметь от 3 до 24 атомов в кольце, например, от 3 до 20 атомов в кольце (например, 3-14-членная циклогетероалкильная группа). Один или несколько атомов N, Р, S или Se (например, N или S) в циклогетероалкильном кольце могут находиться в окисленном состоянии (например, морфолин N-оксид, тиоморфолин S-оксид, тиоморфолин S,S-диоксид). В некоторых случаях атомы азота или фосфора циклогетероалкильных групп могут иметь заместитель, например, атом водорода, алкильную группу или другие заместители, как описано в данной заявке. Циклогетероалкильные группы также могут содержать одну или несколько оксогрупп, такие как оксопиперидил, оксооксазолидил, диоксо-(1Н,3Н)-пиримидил, оксо-2(1Н)-пиридил и т.п. Примерами таких циклогетероалкильных групп являются, среди прочих, морфолинил, тиоморфолинил, пиранил, имидазолидинил, имидазолинил, оксазолидинил, пиразолидинил, пиразолинил, пирролидинил, пирролинил, тетрагидрофуранил, тетрагидротиофенил, пиперидинил, пиперазинил и т.п. В некоторых случая циклогетероалкильные группы могут быть замещенными, как описано в данной заявке.

В данной заявке термин "арил" относится к системе ароматических моноциклических углеводородных колец или системе полициклических колец, в которых имеются два или несколько конденсированных ароматических углеводородных колец (т.е. имеющих общую связь), или по крайней мере одно ароматическое моноциклическое углеводородное кольцо конденсировано с одним или несколькими циклоалкильными и/или циклогетероалкильными кольцами. Арильная группа может иметь от 6 до 24 атомов углерода в системе колец (например, арильная группа С6-20), которая может включать в себя множественные конденсированные кольца. В некоторых вариантах полициклическая арильная группа может иметь от 8 до 24 атомов углерода. Арильная группа, находящаяся в любом подходящем положении кольца, может быть ковалентно связана с определенной химической структурой. Предпочтительными арильными группами, имеющими только ароматическое(ие) карбоциклическое(ие) кольцо(а), являются фенил, 1-нафтильная (бициклическая), 2-нафтильная (бициклическая),антраценильная (трициклическая), фенантренильная (трициклическая), пентаценильная (пентациклическая) и подобные группы. Примерами полициклических кольцевых систем, в которых по крайней мере одно ароматическое карбоциклическое кольцо конденсировано с одним или несколькими циклоалкильными и/или циклогетероалкильными кольцами, являются, среди прочих, бензопроизводные циклопентана (т.е. инданильная группа, являющаяся системой 5,6-бициклических циклоалкильных/ароматических колец), циклогексана (т.е. тетрагидронафтильная группа, являющаяся системой 6,6-бициклических циклоалкильных/ароматических колец), имидазолина (т.е. бензимидазолинильная группа, являющаяся системой 5,6-бициклических циклогетероалкильных/ароматических колец), и пирана (т.е. хроменильная группа, являющаяся системой 6,6-бицикличесих циклогетероарильных/ароматических колец). Другими предпочтительными арильными группами являются бензодиоксанильная, бензодиоколильная, хроманильная, индолинильная группы и т.п. В некоторых вариантах арильные группы могут быть замещенными, как описано в данной заявке. В некоторых вариантах арильная группа иметь один или несколько галогенных заместителей и может быть отнесена а "галогенарильной" группе. Пергалогенарильные группы, т.е. арильные группы, в которых все атомы водорода замещены атомами галогена (например, -C6F5), имеют определение "галогенарильные". В определенных вариантах арильная группа замещается на другую арильную группу и может быть отнесена к биарильной группе. Каждая из арильных групп в биарильной группе может быть замещенной, как раскрывается в данной заявке.

В данной заявке термин "арилалкил" относится к -алкил-арильной группе, в которой арилалкильная группа ковалентно связана с определенной химической структурой через алкильную группу. Арилалкильная группа входит в определение арильной группы -Y-С6-14, в которой Y имеет определение, описанное в данной заявке. Предпочтительной арилалкильной группой является бензильная группа (-СН26Н5). Арилалкильная группа может быть произвольным образом замещенной, т.е. арильная группа и/или алкильная группа могут быть замещенными, как раскрывается в данной заявке.

В данной заявке термин "гетероарил" относится к системе ароматических моноциклических колец, содержащей по крайней мере один гетероатом в кольце, который может быть кислородом (О), азотом (N), серой (S), кремнием (Si) и селеном (Se), или к системе полициклических колец, в которой по крайней мере одно из колец, находящихся в системе, является ароматическим и содержит по крайней мере один кольцевой гетероатом. К полициклическим гетероарильным группам относятся группы, в которых имеются два или несколько конденсированных гетероарильных колец, а также группы, имеющие по крайней мере одно моноциклическое гетероарильное кольцо, конденсированное с одним или несколькими ароматическими карбоциклическими кольцами, неароматическими карбоциклическими кольцами и/или неароматическими циклогетероалкильными кольцами. В целом, гетероарильная группа может иметь, например, от 5 до 24 атомов в кольце и содержать 1-5 кольцевых гетероатомов (т.е. 5-20-членная гетероарильная группа). Эта гетероариальная группа может быть присоединена к определенной химической структуре при любом гетероатоме или атоме углерода, что обеспечивает стабильную структуру. В общем, гетероарильные кольца не содержат связи О-О, S-S или S-O. Тем не менее, один или несколько атомов N или S в гетероарильной группе могут находиться в окисленном состоянии (например, пиридин N-оксид, тиофен S-оксид, тиофен S,S-диоксид). Предпочтительными гетероарильными группами являются 5-или 6-членные моноциклические и 5-6-членные бициклические системы колец, представленные ниже:

где Т=О, S, NH, N-алкил, N-арил, N-(арилалкил) (например, N-бензил), SiH2, SiH(алкил), Si(алкил)2, SiH(арилалкил), Si(арилалкил)2 или Si(алкил)(арилалкил). Более предпочтительными гетероарильными кольцами являются пирролильная, фурильная, тиенильная, пиридильная, пиримидильная, пиридазинильная, пиразинильная, триазолильная, тетразолильная, пиразолильная, имидазолильная, изотиазольная, тиазолильная, тиадиазолильная, изоксазолильная, оксазолильная, оксадиазолильная, индолильная, изоиндолильная, бензофурильная, бензотиенильная, хинолильная, 2-метилхинолильная, изохинолильная, хиноксалильная, хиназолильная, бензотриазолильная, бензимидазолильная, бензотиазолильная, бензизотиазолильная, бензизоксапзолильная, бензоксадиазолильная, бензоксазолильная, циннолинильная, 1Н-индазолильная, 2Н-индазолильная, индолизинильная, изобензофурильная, нафтиридинильная, фталазинильная, птеридинильная, пуринильная, оксазолпиридинильная, тиазолпиридинильная, имидазопиридинильная фуропиридинильная, тиенопиридинильная, пиридопиримидинильная, пиридопиразинильная, пиридопиридазинильная, тиенотиазолильная, тиеноксазолильная, тиеноимидазолильная группы и т.п. Еще более предпочтительными гетероарильными группами являются 4,5,6,7-тетрагидроиндолил, тетрагидрохинолинил, бензотиенопиридинил, бензофуропиридинил и т.п. В некоторых вариантах гетероарильные группы могут быть замещенными, как описано в данной заявке.

В отличие от одновалентных групп, соединения, представленные в данной заявке, могут содержать «двухвалентную группу», определяемую в данной заявке как связывающая группа, способная к образованию ковалентной связи с двумя другими фрагментами. Например, соединения идей данного изобретения могут включать двухвалентную алкильную группу С1-20 (например, метиленовую группу), двухвалентную алкенильную группу С2-20 (например, винилильную группу), двухвалентную алкинильную группу С2-20 (например, этинилильную группу), двухвалентную арильную группу С6-14 (например, фенилильную группу); двухвалентную 3-14-членную циклогетероалкильную группу (например, пирролидилил) и/или двухвалентную 5-14-членную гетероарильную группу (например, тиенилильную группу). Обычно понимается, что химическая группа (например, -Ar-) является двухвалентной, имеющей две связи: перед группой и после группы.

Были определены, охарактеризованы и опубликованы в печати электрон-донорные или электрон-акцепторные свойства нескольких сотен наиболее часто используемых заместителей, представляющих все наиболее распространенные классы заместителей. Наиболее распространенной оценкой электрон-донорных и электрон-акцепторных свойств является оценка значений констант заместителей σ Гаммета. Водород имеет нулевое значение константы заместителей σ Гаммета, тогда как остальные заместители имеют значение константы заместителей σ Гаммета, которое положительно или отрицательно возрастает в прямой зависимости от их электрон-акцепторных или электрон-донорных характеристик. Заместители с отрицательным значением константы заместителей σ Гаммета считаются электрон-донорными, а заместители с положительным значением константы заместителей σ Гаммета считаются электрон-акцепторными. (Lange's Handbook of Chemistry, 12-е издание, McGraw Hill, 1979, таблицы 3-12, стр. 3-134, 3-138, в которых представлены значения константы заместителей σ Гаммета для большого числа часто встречающихся заместителей и ссылки там же).

Необходимо понимать, что в данной заявке термин "электрон-акцепторная группа" может быть использован как синоним термина "электроноакцептор" и "электрон-оттягивающая группа". В частности, "электрон-оттягивающая группа" ("ЭОГ") или "электронакцепторная группа" или "электроноакцептор" относится к функциональной группе, которая оттягивает электроны на себя сильнее, чем атом водорода, если бы он занимал то же положение в молекуле. Предпочтительными электрон-оттягивающими группами являются, но не ограничиваются, галоген или гало (например, F, Cl, Br, I), -NO2, -CN, -NC, -S(R0)2+, -N(R0)3+, -SO3H, -SO2R0, -SO3R0, -SO2NHR0, -SO2N(R0)2, -COOH, -COR0, -COOR0, -CONHR0, -CON(R0)2, С1-40 галогеналкильные группы, арильные группы С6-14 и 5-14-членные обедненные электронами гетероарильные группы; где R0 - алкильная группа С1-20, алкенильная группа С2-20, алкинильная группа С2-20, галогеналкильная группа С1-20, алкоксигруппа С1-20, арильная группа С6-14, циклоалкильная группа С3-14, 3-14-членная циклогетероалкильная группа и 5-14-членная гетероарильная группа, каждая из которых может быть произвольным образом замещенной, как описывается в данной заявке. Например, каждая алкильная группа С1-20, алкенильная группа С2-20, алкинильная группа С2-20, галогеналкильная группа С1-20, алкоксигруппа С1-20, арильная группа С6-14, циклоалкильная группа С3-14, 3-14-членная циклогетероалкильная группа и 5-14-членная гетероарильная группа может быть произвольным образом замещена 1-5 малыми по размеру электрон-оттягивающими группами, такими как F, Cl, Br, -NO2, -CN, -NC, -S(R0)2+, -N(R0)3, -SO3H, -SO2R0, -SO3R0, -SO2NHR0, -SO2N(R0)2, -СООН, -COR0, -COOR0,-CONHR0, -CON(R0)2.

Необходимо понимать, что в данной заявке термин "электрон-отдающая группа" может использоваться как синоним термина "электронодонор". В частности, термин "электро-отдающая группа" или "электронодонор" относится к функциональной группе, которая отдает электроны на соседний атом сильнее, чем атом водорода, если бы он занимал то же положение в молекуле. Предпочтительными электрон-отдающими группами являются -ОН, -OR0, -NH2, -NHR0, -N(R0)2 и 5-14-членные обогащенные электронами гетероарильные группы, в которых R0 - алкильная группа С1-20, алкенильная группа С2-20,алкинильная группа С2-20, арильная группа С6-14 или циклоалкильная группа С3-14.

Различные незамещенные гетероарильные группы могут быть описаны как обогащенные электронами (или π-избыточные) или обедненные электронами (или π-дефицитные). Такая классификация основана на сравнении усредненной электронной плотности на каждом атоме кольца с электронной плотностью на углеродном атоме в бензоле. Предпочтительные обогащенные электронами системы включают 5-членные гетероарильные группы, имеющие один гетероатом, такие как фуран, пиррол и тиофен, и их бензоконденсированные аналоги, такие как бензофуран, бензопиррол и бензотиофен. Предпочтительные обедненные электронами системы включают 6-членные гетероарильные группы, имеющие один или несколько гетероатомов, такие как пиридин, пиразин, пиридазин и пиримидин; а также их бензоконденсированные аналоги такие как хинолин, изохинолин, хиноксалин, циннолин, фталазин, нафтиридин, хиназолин, фенантридин, акридин и пурин. Смешанные гетероароматические кольца могут принадлежать к любому классу в зависимости от типа, чи