Способ утилизации отходов производства, содержащих фторсиликаты
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих фторсиликаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия. Фторсиликаты обрабатывают гидроксидом натрия и/или карбонатом натрия при температуре 80-100°С. Полученные фторид натрия и раствор силиката натрия разделяют фильтрацией. Фторид натрия либо выделяют, либо обрабатывают концентрированной серной кислотой при температуре 130-150°С и выделяют фторид водорода, который поглощают водой с образованием фтороводородной кислоты. Полученный после выделения фторида водорода остаток обрабатывают гидроксидом и/или карбонатом натрия с образованием сульфата натрия. Раствор силиката натрия подвергают обработке углекислым газом и выделяют диоксид кремния. Обеспечивается утилизация отходов производства, образующихся при производстве фосфорных удобрений и переработке алюминиевых руд, с получением из них чистых продуктов. 6 табл., 10 пр.
Реферат
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих силикаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия или их различные смеси. Указанные отходы накапливаются в больших количествах при производстве фосфорных удобрений и переработке алюминиевых руд, их утилизация является сложным и дорогостоящим процессом.
Изобретение относится также к получению из этих отходов фторида водорода и диоксида кремния SiO2 («белой сажи»), а также сульфата натрия Na2SO4 и фторида натрия – продуктов, которые востребованы на рынке химических товаров.
Фторид водорода – основной исходный реагент для получения фторорганических соединений: хладонов, элементного фтора, фторидов металлов, аммония и аминов. Фторид натрия используется для получения криолита, в качестве антисептика и антипирена, а также для замещения хлора на фтор в органическом синтезе. Сульфат натрия используется в стекольной и текстильной промышленности, сельском хозяйстве и медицине. Диоксид кремния – так называемая «белая сажа» используется в строительстве в качестве наполнителя полимерных композиционных материалов.
В промышленности фторид водорода получают из фторида кальция (флюорита) и 100% серной кислоты. Полученный фторид водорода – сырец подвергается очистке и ректификации и имеет состав, представленный в таблице№1.
В связи с сокращением мировых запасов флюорита и увеличением его стоимости в последние десятилетия разрабатываются процессы получения фторида водорода НF из тетрафторида кремния SiF4 – отхода производства фосфорных удобрений.
Изобретением [Пат. США 3218124, оп. 18.11.1965, НКИ США 23-153] предложен способ получения фторида водорода из фторкремниевой кислоты, которая образуется в качестве побочного продукта при производстве суперфосфата. Низкосортный плавиковый шпат (флюорит) кальцинируют (нагревают без доступа воздуха) с концентрированной серной кислотой, а газ абсорбируют водой. Выделяющиеся газообразные фторид водорода и тетрафторид кремния разделяют, отделяя практически сухой фторид водорода, а газообразный тетрафторид кремния растворяют в воде, получая фторкремневую кислоту и диоксид кремния, которые легко разделяются. Диоксид кремния отделяют, высвобождая гексафторкремниевую кислоту.
Известен способ [пат. США 4529576, заявл. 27.12.82; № 453457, оп. 16.07.85, кл. C01B 33/02] получения кремния с использованием в качестве исходного соединения отходов производства фосфатных удобрений, содержащих гексафторкремниевую кислоту (H2SiF6). Раствор гексафторкремниевой кислоты обрабатывают фторидом щелочного металла, например фторидом натрия, осаждают кремнефторид натрия (Na2SiF6) по реакции
H2SiF6+2NaF → Na2SiF6+2HF (1).
Известен способ получения диоксида кремния и фторида водорода [пат. РФ 2078034, МПК6 C01B 33/023, C01B 33/03, оп. 27.04.1997], по которому очищенный тетрафторид кремния контактируют с предварительно очищенным от примесей паром с образованием диоксида кремния по реакции:
SiF4+2H2O → SiO2+4HF (2)
Известен способ получения фторида водорода из гексафторсиликата натрия, заключающийся во взаимодействии гексафторсиликата натрия Na2SiF6 и карбоната натрия Na2CO3 с получением смеси твердых SiO2 и NaF. После отделения SiO2, NaF сушится и обрабатывается серной кислотой с выделением HF:
Na2SiF6 + 2Na2CO3 → 6NaF + SiO2↓ +2CO2↑ (3)
2NaF + H2SO4 → Na2SO4 + 2HF↑ (4)
Недостатком этого способа являются трудности разделения твердых фторида натрия NaF и диоксида кремния SiO2 и загрязнение полученного фторида водорода тетрафторидом кремния.
Задачей, стоящей перед авторами изобретения, является разработка способа утилизации отходов производства, содержащих фторсиликаты, и получение из них чистых продуктов – фторида натрия, фторида водорода (или плавиковой кислоты), сульфата натрия и диоксида кремния.
Сущность изобретения состоит в том, что разработан способ утилизации отходов производства, содержащих фторсиликаты, отличающийся тем, что фторсиликаты обрабатывают гидроксидом натрия или карбонатом натрия при температуре 95-98°С, полученные фторид натрия и раствор силиката натрия разделяются фильтрацией, после чего фторид натрия либо выделяют, либо обрабатывают концентрированной серной кислотой при температуре 130-150°С и выделяют фторид водорода, который, возможно, поглощают водой с получением фтороводородной кислоты, а полученный после выделения фторида водорода остаток обрабатывают гидроксидом или карбонатом натрия с получением сульфата натрия. Из раствора силиката натрия, полученного после фильтрации, получают диоксид кремния, для чего его силикат натрия подвергают обработке углекислотой.
Таким образом, способ включает следующие стадии:
1. а) щелочную обработку.
При этом тетрафторид кремния превращается
SiF4 + 4NaOH → 4NaF + SiO2↓ + 2H2O; (5)
SiF4 + 2Na2CO3 → 4NaF↓ + SiO2↓ +2CO2↑ (6)
б) Гексафторкремниевая кислота
H2SiF6 + 6NaOH → 6NaF↓ + SiO2↓ + 4H2O (7)
H2SiF6 + 3Na2CO3 → 6NaF↓ + SiO2↓ + 3 CO2↑ + H2O (8)
в) Гексафторсиликат натрия
Na2SiF6 + 4NaOH → 6NaF↓ + SiO2↓ + 2H2O (9)
Либо: Na2SiF6 + 2Na2CO3 → 6NaF↓ + SiO2↓ + 2CO2↑ (10),
2. Обработка смеси нерастворимых фторида натрия и диоксида кремния щелочным раствором гидроксида или карбоната натрия, в результате чего диоксид кремния переходит в растворимый силикат натрия, фторид натрия остается в виде твердого осадка.
3. Осадок фторида натрия отделяют фильтрацией, сушат и получают товарный продукт или высушенный фторид натрия подвергают взаимодействию с концентрированной серной кислотой, в результате чего выделяют фторид водорода:
NaF + H2SO4 → NaHSO4 + HF↑ (12)
4. Полученный фторид водорода выделяют либо в виде газа, либо поглощают водой с получением фтороводородной кислоты.
Получают фторид водорода высокой чистоты, его собирают в охлаждаемом приемнике или поглощают дистиллированной водой и получают фтороводородную кислоту также высокой чистоты.
Остающийся раствор силиката натрия, содержащий 1,5-2% фторида натрия («жидкое стекло»), используют, например, в строительстве или, после обработки углекислым газом, превращают в диоксид кремния («белую сажу») и карбонат натрия, который возвращают на первую стадию.
5. Остаток после разложения фторида натрия серной кислотой, представляющий собой кислый сульфат натрия и серную кислоту, возможно, нейтрализуют карбонатом натрия, в результате чего получают еще один полезный продукт - сульфат натрия:
NaHSO4 + Na2CO3 → Na2SO4 + 1/2 CO2 + 1/2 H2O
Пример 1
а) В колбу из стекла «пирекс» емкостью 1 л, снабженную барботером из фторопласта 4, обратным холодильником, мешалкой и термометром, загружают 245 г NaOH, 0,5 л воды, нагревают до 80-85°С и при интенсивном перемешивании по барботеру из фторопласта4 подают SiF4 со скоростью, не допускающей «проскока» SiF4 и разогрева реакционной массы выше 100°С. После подачи 104 г SiF4 смесь перемешивают при температуре 85-95°С в течение 2 часов, после чего охлаждают до 20°С, фильтруют, отделяя NaF. После сушки при 120°С до постоянной массы получено 163 г (выход 97%) фторида натрия, а также 670 г раствора Na2SiO3 (18,2%).
Полученный фторид натрия имеет состав, представленный в таблице 2.
б) В реактор, изготовленный из фторопласта 4, емкостью 0,2 л, снабженный якорной мешалкой, капельной воронкой из фторопласта 4, колонкой – каплеотбойником и прямым холодильником, загружают 42 г полученного фторида натрия и к нему при перемешивании дозируют 100% серную кислоту 100 г (55 мл) марки «ХЧ». После завершения дозировки реактор нагревают до 130°С, при этом начинает выделяться фторид водорода, который поглощают дистиллированной водой (30 мл), охлаждаемой до +10°С. Температуру в реакторе поднимают до 150°С и выдерживают при этой температуре и перемешивании 2,5 часа до завершения процесса. После завершения процесса получено 49 г плавиковой кислоты (48,5 мас.%).
Выход - 95%.
Полученная фтороводородная (плавиковая) кислота имеет состав, представленный в таблице 3.
в) Оставшуюся после отгонки фторида водорода массу, представляющую собой смесь кислого сульфата натрия и серной кислоты, нейтрализуют гидроксидом натрия или углекислым натрием (содой) с получением сульфата натрия.
Пример 2
Из реактора 1, охлажденного до 70-80°С, выгружается остаток после отгонки фторида водорода в реактор 2, изготовленный их фторопласта 4, объемом 500 мл, снабженный якорной мешалкой из фторопласта 4 и дозатором для щелочного раствора. При работающей мешалке в реактор дозируют 207 г 20% раствора едкого натра NaOH квалификации «ХЧ», не допуская разогрева реакционной массы выше 90°С до достижения рН 7-7,5. После подачи раствора щелочи смесь перемешивают в течение 2 часов и упаривают, отгоняя 102 мл воды. После охлаждения до 20°С смесь фильтруют. Полученные кристаллы сушат при 130°С. Получают 72 г Na2SO4, соответствующего квалификации «ХЧ». Маточник используют для последующих стадий нейтрализации.
Пример 3
В условиях примера 2 остаток после отгонки фторида водорода нейтрализуют 20% раствором углекислого натрия квалификации «ХЧ». После подачи 265 г раствора углекислого натрия смесь имеет рН 7,5, смесь охлаждают до +5°С. Выпавшие кристаллы сушат при 130°С. Получают 60 г Na2SO4, соответствующего норме.
Состав полученного сульфата натрия приведен в таблице 4. Маточник используют для последующих стадий нейтрализации.
Пример 4
В условиях опыта 1 в колбу загружают 215 г углекислого натрия Na2CO3 и 0,5 л воды, нагревают до 85°С и при перемешивании дозируют по сифону 104 г SiF4 при 85-95°C. После завершения подачи SiF4 к смеси при перемешивании добавляют раствор технического NaOH (85 г в 200 мл воды). Смесь выдерживают при температуре 85-90°С в течение 2 часов, затем охлаждают до 20°С, фильтруют.
Фторид натрия сушат при 120°С до постоянной массы. Получено 163,0 г фторида натрия (выход 97%).
Фторид натрия перерабатывают во фторид водорода, как описано в примере 1, часть (б), используя техническую серную кислоту концентрацией 95% 105 г. Получают 49 г фтороводородной (плавиковой) кислоты марки «ХЧ» концентрации 48,5 мас.%, выход - 95%.
Пример 5
Опыт проводят так, как описано в примере 2, однако выделяющийся на стадии (б) фторид водорода принимают в ловушку, изготовленную из фторопласта 4. Получено 19,3 г HF (выход 95%).
Пример 6
В реактор объемом 1,2 л, изготовленный из полипропилена, снабженный пропеллерной мешалкой из фторопласта 4 и обратным холодильником из фторопласта 4, загружают 480 г 30% водного раствора H2SiF6. Раствор нагревают до 80°С и к нему дозируют раствор технического NaOH (325 г в 400 мл воды), не допуская разогрева реакционной массы выше 95°С. После окончания дозировки раствора NaOH смесь перемешивают в течение 2,5 часов при температуре 80-90°С, затем охлаждают до 20°С и фильтруют. После сушки получено 242 г фторида натрия (выход 96%).
Фторид натрия перерабатывают во фторид водорода, как описано в примерах 1-3. Состав полученного фторида водорода показан в таблице 5.
Пример 7
В колбу из стекла «пирекс» объемом 1,2 л, снабженную мешалкой и капельной воронкой из фторопласта 4 и обратным холодильником, загружают 325 г NaOH, 400 мл воды, нагревают до 85-90°С и дозируют 480 г 30% раствора H2SiF6, не допуская разогрева выше 98°С. Смесь перемешивают при 85-90°С в течение 2 часов, после чего охлаждают до 20°С и фильтруют. Высушенный фторид натрия (242 г, выход - 96%) перерабатывают во фторид водорода, как описано в примерах 1-3.
Пример 8
В условиях опыта 5 загружают 320 г технического Na2CO3 и 300 мл воды и нагревают при перемешивании до 85°С, затем из капельной воронки, изготовленной из полипропилена, дозируют 480 г 30% раствора H2SiF6, не допуская разогрева реакционной массы выше 98°С. Смесь перемешивают 1 час и затем к ней дозируют раствор NaOH (85 г в 150 мл воды), перемешивают 2 часа, охлаждают до 20°С и отфильтровывают фторид натрия, его сушат, получают 242 г (выход 96%) и перерабатывают во фторид водорода, как описано в опытах 1-3.
Пример 9
В условиях опыта 5 в колбу загружают 188 г Na2SiF6, 215 г Na2CO3, 600 мл воды, смесь перемешивают, нагревают до 75°С и затем в течение 2 часов доводят температуру до 95°С. При этой температуре смесь перемешивают еще 2 часа и добавляют к ней по капельной воронке раствор NaOH (85 г в 150 мл воды), перемешивают 2 часа, после чего охлаждают до 20°С, отфильтровывают фторид натрия, сушат, получают 242 г и перерабатывают фторид натрия во фторид водорода, как описано в опытах 1-3. Раствор Na2SiO3, образующийся при щелочном гидролизе фторсиликатов, обрабатывают углекислым газом. При этом в осадок выпадает SiO2, который отфильтровывают, сушат и получают дополнительный продукт – диоксид кремния «белую сажу». Образовавшийся раствор Na2CO3 используют в гидролизе фторсиликатов:
Na2SiO3 + CO2 → Na2CO3 + SiO2↓
Пример 10
Фильтрат, представляющий собой раствор Na2SiO3, полученный в примере 4 после фильтрации NaF, переносят в вертикальный реактор емкостью 0,8 л, изготовленный из стекла «пирекс», снабженный мешалкой и барботером и охлаждаемый до 0°С. В реактор при интенсивном перемешивании барботируют СО2 со скоростью, не допускающей заметного «проскока» СО2. После подачи 51 г газа (15,9% избыток) смеси дают отстояться, затем фильтруют. Осадок высушивают и получают 57г SiO2 («белой сажи»). Выход 95%. Фильтрат, представляющий собой раствор соды, используют для последующего гидролиза SiF4.
Состав полученного диоксида кремния («белой сажи») приведен в таблице 6.
Таким образом, разработанный способ позволяет утилизировать отходы производства, содержащие фторсиликаты, и получать из них чистые продукты – фторид натрия, фторид водорода (или фтороводородную кислоту), сульфат натрия и диоксид кремния. Получаемые продукты характеризуются высокой чистотой.
Таблица 1 Состав очищенного фторид водорода в промышленности | |||
Наименованиепоказателя | Марка А | Марка Б | Результатыиспытаний |
1. Массовая доля фторида водорода, %, не менее | 99,95 | 99,90 | 99,98 |
2. Массовая доля воды, %, не более | 0,03 | 0,06 | 0,01 |
3. Массовая доля восстановителей в пересчете на сернистый газ, %, не более | 0,007 | 0,015 | 0,001 |
4. Массовая доля серной кислоты, %, не более | 0,005 | 0,020 | 0,002 |
5. Массовая доля кремнефтористоводородной кислоты, %, не более | 0,010 | 0,020 | 0,003 |
Таблица 2Состав фторида натрия | ||
Наименование показателя | Чистый | Результатыиспытания |
1. Массовая доля фторида натрия, %, не менее | 98 | 99,1 |
2. Массовая доля не растворимых в воде веществ, %, не более | 0,05 | 0,05 |
3. Массовая доля кислоты (в пересчете на HF), %, не более | 0,20 | 0,20 |
4.Массовая доля щелочи (в пересчете на Na2CO3),%, не более | 0,20 | 0,20 |
5. Массовая доля сульфатов, % не более | 0,20 | 0,01 |
6. Массовая доля хлоридов, %, не более | 0.003 | 0,002 |
7. Массовая доля железа, % не более | 0,004 | 0,0025 |
8. Массовая доля кремния, % не более | 0,01 | 0,02 |
9. Массовая доля суммы свинца, меди, марганца, %, не более | 0,002 | 0,0005 |
Таблица 3 Состав фтороводородной (плавиковой) кислоты | ||
Наименование показателя | Химическичистый | Результатыиспытаний |
1. Массовая доля кислоты, %, не менее | 45 | 45 |
2. Массовая доля остатка после прокаливания в виде сульфатов, %, не более | 0,0005 | 0,0005 |
3. Массовая доля сульфитов, %, не более | 0,0003 | 0,0003 |
4. Массовая доля сульфатов, %, не более | 0,0002 | 0,0002 |
5. Массовая доля фосфатов, %, не более | 0,0001 | 0,0001 |
6. Массовая доля хлоридов, %, не более | 0,0001 | 0,0001 |
7. Массовая доля железа, %, не более | 0,00005 | 0,00005 |
8. Массовая доля кремния, %, не более | 0,002 | 0,002 |
8. Массовая доля тяжелых металлов, %, не более | 0,00005 | 0,00003 |
9. Массовая доля веществ, восстанавливающих KMnO4, %, не более | 0,0004 | 0,0004 |
Таблица 4Состав полученного сульфата натрия | ||
Наименование показателя | Норма | Результаты испытаний |
1. Внешний вид | Сыпучий порошок белого цвета | Сыпучий порошок белого цвета |
2. Массовая доля сульфата натрия, %, не менее | 98,8 | 98,9 |
3. Массовая доля не растворимых частиц, %, не более | 0,2 | 0,2 |
4. Массовая доля хлоридов, % ,не более | 0,2 | 0,15 |
5. Содержание железа, %, не более | 2⋅10-3 | 1⋅10-3 |
6. Массовая доля воды, %, не более | 0,1 | 0,1 |
7. Показатели активности водородов ионов водного 1%-ного раствора сульфата натрия, %, в пределах | 6,5÷9,0 | 6,5÷9,0 |
8. Белизна (по Хантеру), не менее | 90 | 95 |
Таблица 5 Состав полученного фторида водорода | ||
Наименование показателя | Требования по ГОСТ | Результатыиспытаний |
Массовая доля фторида водорода, %, не менее | 99,90 | 99,98 |
Массовая доля сернистого газа, %, не более | 0,004 | 0,001 |
Массовая доля серной кислоты, %, не более | 0,005 | 0,002 |
Массовая доля кремнефтористоводородной кислоты, %, не более | 0,005 | 0,003 |
Массовая доля остатка после прокаливания в виде сульфатов, %, не более | 0,007 | 0,0027 |
Массовая доля вещества, восстанавливающих, %, не более | 0,005 | 0,0015 |
Массовая доля хлоридов, %, не более | 0,001 | 0,0007 |
Массовая доля фосфатов, %, не более | 0,001 | 0,001 |
Таблица 6Состав полученного диоксида кремния | |||
Внешний вид | Порошок и непрочные комочки белого цвета | ||
БС-50 | БС-100 | Результаты испытаний | |
Массовая доля двуокиси кремния, %, не менее | 76 | 86 | 91 |
Массовая доля влаги, %, не более | 6 | 6,5 | 4,3 |
Потеря в массе при прокаливании, %, | 7,0÷10,0 | 5,0÷7,0 | 4,0÷5,0 |
Массовая доля железа в пересчете на окись железа, % не более | 0,03 | 0,15 | 0,01 |
Массовая доля алюминия, в пересчете на окись алюминия, %, не более | 0,1 | 0,15 | 0,05 |
Массовая доля хлоридов, %, не более | 0,6 | 1,0 | 0,05 |
Массовая доля кальция и магния в пересчете на окись кальция, %, не более | 7,0 | 0,8 | 0,03 |
Способ утилизации отходов производства, содержащих фторсиликаты, отличающийся тем, что фторсиликаты обрабатывают гидроксидом натрия и/или карбонатом натрия при температуре 80-100°С, полученные фторид натрия и раствор силиката натрия разделяют фильтрацией, после чего фторид натрия либо выделяют, либо обрабатывают концентрированной серной кислотой при температуре 130-150°С и выделяют фторид водорода, который поглощают водой с получением фтороводородной кислоты, а полученный после выделения фторида водорода остаток обрабатывают гидроксидом и/или карбонатом натрия, раствор силиката натрия, полученный после фильтрации, подвергают обработке углекислым газом и выделяют диоксид кремния.