Химерная частица hpv

Иллюстрации

Показать все

Группа изобретений относится к биотехнологии и медицине. Предложены химерная вирусоподобная частица (VLP) папилломавируса человека (HPV), способ ее получения и извлечения, способы профилактики или лечения инфекции HPV или рака шейки матк, и индукции иммунного ответа у пациента, включающие введение предложенной HPV VLP, а также применение предложенной HPV VLP в указанных способах и в получении лекарственных средств для осуществления указанных способов. Предложенная химерная HPV VLP имеет диаметр около 30 нм и содержит химерный полипептид HPV 16 L1/L2, который состоит из полипептида HPV 16 L1, в который инсертирован от аминокислотного остатка 414 пептид HPV 16 L2, содержащий от 13 до 26 аминокислот, причем аминокислоты инсертированного пептида HPV 16 L2 заменяют соответствующие аминокислоты полипептида HPV 16 L1. Также предложен способ получения указанной HPV VLP в растении, при котором происходит успешная сборка малых химерных HPV VLP, обладающих диаметром 30 нм. Предложенная группа изобретений может быть использована в медицине для профилактики или лечения инфекции HPV или в противоопухолевой терапии рака шейки матки. 8 н. и 20 з.п. ф-лы, 32 ил., 11 табл., 3 пр.

Реферат

УРОВЕНЬ ТЕХНИКИ

Изобретение относится к химерной вирусоподобной частице (VLP) папилломавируса человека, имеющей диаметр приблизительно 30 нм, и способу лечения и/или профилактике инфекции HPV и/или рака шейки матки введением химерной HPV VLP по изобретению.

Рак шейки матки первично вызывается инфекцией HPV и является третьим наиболее распространенным раком среди женщин во всем мире (Ferlay et al., 2010). В результате, развитие вакцины HPV является приоритетом для профилактического исследования рака. Главным капсидным белком L1 является антиген, предпочитаемый для профилактических вакцин, так как он является иммунодоминантным и самособирается в VLP, которые являются структурно и иммунологически сходными с аутентичными вирионами. Вакцинация с использованием вирусоподобных белков VLP дает высокие титры нейтрализующих антител (NAb) как у животных, так и у людей, и две поливалентные профилактические вакцины на основе HPV L1 VLP были лицензированы и являются высокоэффективными в предотвращении инфекций HPV-16 и 18 вакцинного типа и ассоциированного заболевания (Schiller et at, 2008).

Несмотря на высокую эффективность существующих вакцин на основе L1 VLP HPV, типоспецифичность (Brown et al., 2009; Wheeler et al., 2009), отсутствие терапевтической эффективности (FUTURE H Study Group, 2007; Hildersheim et al, 2007) и высокая стоимость вакцин (Schiller et al., 2008) ограничивали их широкое применение, особенно в развивающихся странах с >80% бременем рака шейки матки (Parkin and Bray, 2006). Таким образом, существует острая необходимость в HPV-вакцинах второго поколения, которые расширяют защиту для включения множественных онкогенных типов HPV и улучшают терапевтическую эффективность, для установления инфекций HPV и раковых поражений.

Профилактические вакцины HPV широкого спектра могут быть разработаны с использованием перекрестной нейтрализации эпитопов L2. Эпитопы L2 могут быть включены в поверхностные области L1 для создания химер L1/L2, несущих пептид L2 на поверхности собранного L1 (WO 03/097673; Kawana et al., 1999, 2003; Slupetzky et al., 2007; Kondo et al., 2007, 2008).

Применение экспрессионных систем растений для широкомасштабного производства чужеродных антигенов было предложено в качестве экономически эффективной альтернативы для получения вакцин (Fischer et al., 2004), с безусловной тенденцией в отношении применения транзиторной экспрессии для экспрессии и оптимизации высокого уровня (Rybicki, 2009). Несколько групп экспрессировали HPV-16 L1 в растениях (Biemelt et al., 2003; WO 2006/119516; Maclean et al., 2007).

Одним ограничением систем растений на практике являются низкие выходы рекомбинантного белка, возможно, являющиеся результатом нестабильности или экспрессии низкого уровня. (Fischer et al., 2004; Obembe et al., 2011). Оценивается, что экспрессируемые растением выходы рекомбинантого белка должны превышать 1% общего растворимого белка (TSP) для рентабельности (Fischer et al., 2004). Это особенно проблематично для экспрессии рекомбинантных белков с использованием ядерно-трансформированных трансгенных растений, так как эти системы часто ассоциированы с низкими выходами рекомбинантного белка (Rybicki, 2009).

HPV-16 L1 экспрессировали трансгенно в ядерно-трансформированных растениях картофеля и табака, но постоянно сообщались низкие уровни экспрессии HPV-16 L1 (<1% TSP), и выявляемые иммунные ответы были относительно слабыми (Biemelt et al., 2003; Varsani et al, 2003b; Varsani et al., 2006a).

Однако оптимизация кодонами человека гена L1 с использованием кодонов человека и нацеливание на хлоропласт значимо улучшали экспрессию HPV-16 L1 как в трансгенных, так и Agrobacterium-опосредованных транзиторных системах экспрессии табака до приблизительно 17% TSP (Maclean et al., 2007).

Одним недавним развитием в произведенных из растений вакцинах HPV была экспрессия первой химеры HPV-16 L1 в растениях. Эта химера L1/E6/E7 состояла из HPV-16 L1, слитого на C-конце с несколькими эпитопами E6 и E7, и она была экспрессирована в трансгенных томатах (Paz De la Rosa et al., 2009). Однако, выходы были низкими (0,05-0,1% TSP) и, следовательно, не были коммерчески рентабельными.

В WO 2011/077371 описан способ получения химерных полипептидов HPV L1 с увеличенными уровнями экспрессии относительно белка HPV L1 в системах экспрессии насекомого, растения или дрожжей. Хотя оптимизированные кодонами человека химеры L1/L2, полученные из HPV L1 и BPV L2 (аминокислоты 1-88) в растениях, образовывали VLP приблизительно 55 нм, другие химеры HPV L1/L2 были способны образовывать только капсомеры с диаметром приблизительно 17 нм.

Хотя капсомеры являются стабильными при комнатной температуре, они способны индуцировать только 20-40-кратно более низкие гуморальные иммунные ответы по сравнению с VLP (Thones er al., 2008). Таким образом, было бы полезным развитие химерного VLP, содержащего L1 и L2, который экспрессируется при коммерчески рентабельных уровнях в системе экспрессии. Такой химерный VLP мог бы легче очищаться и является, по-видимому, более иммуногенным, чем химерный капсомер.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Согласно первому аспекту, изобретение относится к химерной вирусоподобной частице (VLP) папилломавируса человека (HPV), имеющей размер приблизительно 30 нм, причем химерная HPV VLP содержит химерный полипептид HPV 16 L1/L2, кодируемый оптимизированной кодонами человека нуклеотидной последовательностью, причем химерный полипептид HPV 16 L1/L2 дополнительно содержит полипептид HPV L1, который включает пептид HPV L2, между приблизительно 13 - приблизительно 26 аминокислотами, инсертированными от остатка 414 полипептида HPV 16 L1, и где аминокислоты инсертированного пептида HPV L2 заменяют соответствующие аминокислоты полипептида HPV 16 L1.

Например, инсертированный пептид HPV L2 может быть содержащим 13 аминокислот пептидом LVEETSFIDAGAP (SEQ ID NO: 3), кодируемым оптимизированной кодонами человека нуклеотидной последовательностью, представленной в SEQ ID NO: 7, или содержащим 20 аминокислот пептидом QLYKTCKQAGTCPPDIIPKV (SEQ ID NO: 5), кодируемым оптимизированной кодонами человека нуклеотидной последовательностью, представленной в SEQ ID NO: 9, или содержащим 26 аминокислот пептидом GGLGIGTGSGTGGRTGYIPLGTRPPT (SEQ ID NO: 4), кодируемым оптимизированной кодонами человека нуклеотидной последовательностью, представленной в SEQ ID NO: 8.

Предпочтительно, инсертированный пептид HPV L2 является содержащим 13 аминокислот пептидом LVEETSFIDAGAP (SEQ ID NO: 3), кодируемым оптимизированной кодонами человека нуклеотидной последовательностью, представленной в SEQ ID NO: 7.

Белок HPV типа 16 L1 может дополнительно кодироваться нуклеотидной последовательностью, модифицированной таким образом, что он лишен сигнала ядерной локализации.

Предпочтительно, полипептид HPV-16 L1/L2 содержит аминокислотную последовательность, представленную в SEQ ID NO: 22, SEQ ID NO: 23 или SEQ ID NO: 24, или ее вариант, или производное.

Предпочтительно, полипептид HPV-16 L1 представлен в SEQ ID NO: 1, и полипептид HPV-16 L1 кодируется оптимизированной кодонами человека полинуклеотидной последовательностью HPV-16 L1, представленной в SEQ ID NO: 2.

Имеющий диаметр приблизительно 30 нм, химерный HPV VLP может быть экспрессируемым растением химерным HPV VLP, очищенным из системы экспрессии растения. Предпочтительно, экспрессируемый химерный VLP может быть нацелен на хлоропласт растения.

Согласно другому аспекту, изобретение относится к фармацевтической композиции, содержащей имеющий диаметр 30 нм химерный HPV VLP в соответствии с изобретением и фармацевтически приемлемый носитель.

Композиция может также содержать адъювант.

Согласно другому аспекту, изобретение относится к способу получения химерного HPV VLP, имеющего диаметр 30 нм, включающему стадии:

(i) получения химерной оптимизированной кодонами человека нуклеотидной последовательности, кодирующей химерный полипептид HPV 16 L1/L2, причем химерный полипептид HPV 16 L1/L2 содержит полипептид HPV 16 L1, имеющий пептид HPV L2 из приблизительно 13 аминокислот - приблизительно 26 аминокислот, инсертированный от остатка 414 химерного полипептида 16 L1/L2, где аминокислоты инсертированного пептида HPV L2 заменяют соответствующие аминокислоты полипептида HPV 16 L1;

(ii) клонирования химерной оптимизированной кодонами человека нуклеотидной последовательности в экспрессирующий вектор, адаптированный для экспрессии полипептида в растении;

(iii) трансформации или инфильтрации клетки растения экспрессирующим вектором стадии (ii);

(iv) экспрессии химерного полипептида HPV 16 L1/L2 в клетке растения стадии (iii) таким образом, что экспрессируемый химерный полипептид HPV 16 L1/L2 собирается в химерный HPV VLP, имеющий однородную форму и диаметр приблизительно 30 нм; и

(v) извлечения химерного HPV VLP из клетки растения.

Экспрессирующий вектор предпочтительно включает промотор и другие регуляторные последовательности или т.п., которые функционально связаны с кодирующей последовательностью экспрессирующего вектора.

Предпочтительно, экспрессирующий вектор стадии (ii) адаптирован к нацеливанию на хлоропласт клетки растения и на стадии (iv) экспрессированный химерный белок HPV нацелен на хлоропласт растения.

Стадия (iii) может дополнительно включать введение в клетку растения супрессорного белка, адаптированного для ингибирования пост-транскрипционного сайленсинга генов в растении. Предпочтительно супрессорный белок является NS-белком вируса пятнистого увядания (бронзовости) томата или р19 вируса кустистой карликовости томата.

Например, инсертированный пептид HPV 12 может быть пептидом из 13 аминокислот LVEETSFIDAGAP (SEQ ID NO: 3), кодируемым оптимизированной кодонами человека нуклеотидной последовательностью, представленной в SEQ ID NO: 7, или пептидом из 20 аминокислот QLYKTCKQAGTCPPDIIPKV (SEQ ID NO: 5), кодируемым оптимизированной кодонами человека нуклеотидной последовательностью, представленной в SEQ ID NO: 9, или пептидом из 26 аминокислот GGLGIGTGSGTGGRTGYIPLGTRPPT (SEQ ID NO: 4), кодируемым оптимизированной кодонами человека нуклеотидной последовательностью, представленной в SEQ ID NO: 8.

Предпочтительно, инсертированный пептид HPV L2 является пептидом из 13 аминокислот LVEETSFIDAGAP (SEQ ID NO: 3), кодируемым оптимизированной кодонами человека нуклеотидной последовательностью, представленной в SEQ ID NO: 7.

Согласно другому аспекту, изобретение относится к имеющему диаметр приблизительно 30 нм химерному HPV VLP в соответствии с изобретением для применения в способе профилактики и/или лечения инфекции HPV и/или рака шейки матки у пациента.

Более конкретно, химерный HPV VLP может иметь применение в способе индукции иммунного ответа у пациента, такого как ответ нейтрализующего антитела и/или ЦТЛ-ответ. Предпочтительно, химерный HPV VLP находит применение в индукции перекрестно-защитного иммунного ответа на множественные типы HPV у пациента.

Согласно другому аспекту, изобретение относится к применению химерного HPV VLP, имеющего правильную форму, диаметр приблизительно 30 нм, в соответствии с изобретением, в получении лекарственного средства для применения в способе профилактики и/или лечения инфекции HPV и/или рака шейки матки у пациента.

Более конкретно, лекарственное средство может быть использовано в способе индукции иммунного ответа у пациента, такого как ответ нейтрализующего антитела и/или ЦТЛ-ответ. Предпочтительно, лекарственное средство используют в индукции перекрестно-защитного иммунного ответа для множественных типов HPV у пациента.

Согласно другому аспекту, изобретение относится к способу профилактики и/или лечения инфекции и/или рака шейки матки у пациента, включающему стадию введения профилактически или терапевтически эффективного количества химерного HPV VLP соответствии с изобретением, имеющего однородную форму, диаметр приблизительно 30 нм, пациенту.

Более конкретно, способ может включать индукцию иммунного ответа у пациента, такого как ответ нейтрализующего антитела и/или ЦТЛ-ответ. Предпочтительно, способ включает индукцию перекрестно-защитного иммунного ответа для множественных типов HPV у пациента.

Предпочтительно пациентом является человек.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 показывает плазмиды, используемые для создания HPV-химерных конструкций экспрессией в растениях. C) HPV-химерные гены из конструкций pGA4 направленно субклонировали в экспрессирующие векторы растения Agrobacterium; A) pTRAkc-rbcs1-cTP, B) pTRAc и D) pRIC3. На этой фигуре показаны векторные элементы, необходимые для экспрессии в растении. P35SS: промотор CaMV 35S, содержащий дуплицированный транскрипционный энхансер, CHS: 5’-нетранслируемую область халконсинтазы, pA35S: сигнал полиаденилирования CaMV 35S для экспрессии чужеродных генов, ColE1ori: сайт инициации репликации (ориджин) E. coli, RK2ori: ориджин репликации Agrobacterium, bla: ген устойчивости к ампициллину/карбенициллину, и LB/RB: левая и правая границы для интеграции T-DNA. Вектор pTRAc содержит SAR: области присоединения каркаса Rb7 табака, фланкирующие экспрессионную кассету. Кроме того, вектор pTRAkc-rbcs1-cTP содержит npt II: ген устойчивости к канамацину, Pnos/pAnos: промотор/сигнал полиаденирования гена нопалинсинтазы и rbcs1-cTP; последовательность транзитного пептида хлоропласта Solanum tuberosum гена rbcS1 малой субъединицы Rubisco. Вектор pRIC3 содержит LIR: длинную межгенную область BeYDV, SIR: короткую межгенную область и ген Rep/RepA: BeYDV.

Фиг. 2 показывает испытание во времени экспрессии нацеленной на хлороплат химеры L1/L2 в 1-9 дни после инфильтрации (dpi) в N. benthamiana, либо с (+), либо без (-) супрессора сайленсинга NS. Химеры L1/L2 A) L1/L2(108-120), B) L1/L2(56-81), C) L1/L2(17-36) и D) L1/L2 BPV (1-88) в неочищенных экстрактах листьев детектировали вестерн-блот-анализом CamVir1. M = белковый маркер с размером в кДа, указанным слева. NS-отрицательный контроль = pBIN-NS-инфильтрованный неочищенный экстракт растения (5 dpi). Положительные контроли: N. benthamiana (+) = полученный из растения HPV-16 L1. Черные стрелки указывают положение химер L1/L2 (~56 кДа), и серые стрелки указывают на деградированный белок.

Фиг. 3 а) показывает Вестерн-блот химер L1/L2, экспрессированных с использованием 3 экспрессионных векторов растений: pTRAc, pTRAkc-rbcs1-cTP и pRIC3. Химеры коэкспрессировали с NS, экстрагировали при 5 dpi и детектировали с использованием CamVir1. HPV-16 L1 экспрессировали в качестве положительного контроля для pTRAc и pTRAkc-rbcs1-cTP (конструкция pRIC3 не была доступна) и контролем отрицательной экспрессии были NS-инфильтрованные растения. M = белковый маркер с размером белка, указанным в кДа, слева. Черные стрелки указывают положение химер L1/L2 или HPV-16 L1 (~56 кДа); и b) показывает сравнение химер L1/L2, экспрессированных с использованием 3 экспрессирующих векторов растений: pTRAc, pTRAkc-rbcs1-cTP и pRIC3. Стержни (планки) погрешностей показывают стандартное отклонение.

Фиг. 4 показывает сборку химер L1/L2, экспрессированных с использованием 3 различных экспрессирующих векторов растений: pTRAc, pTRAkc-rbcs1-cTP и pRIC3. Белки коэкспрессировали с супрессором сайленсинга NS и экстрагировали при 5 dpi. Химеры, собранные в высокоупорядоченные структуры, такие как капсомеры или VLP (детектируемые с использованием конформационно-специфического H16.V5 MAb), выражены в виде процента общего химерного белка (детектируемого линейно-специфическим H16.J4 MAb). HPV-16 L1 экспрессировали в качестве положительного контроля экспрессии, и отрицательным контролем экспрессии были NS-инфильтрованные растения. Стержни (планки) погрешностей показывают стандартное отклонение.

Фиг. 5 показывает чистоту продуцируемых растением вакцинных антигенов. A) Окрашенный Кумасси гель белков. B) Вестерн-блот-детектирование антигенов HPV. M = белковый маркер с размером в кДА, указанным слева. C = осветленный экстракт растения. P = очищенный антиген. V1 = L1/L2(108-120), V2 = L1/L2(56-81), V3 = L1/L2(17-36), V4 (+) = HPV-16 L1 и V5 (-) = NS-инфильтрованный экстракт растения. Черные стрелки указывают на антигены HPV, и белые стрелки указывают на белок Rubisco растения.

Фиг. 6 показывает общий растворенный белок (TSP) и общий белок HPV в неочищенных и очищенных пробах. TSP определяли с использованием анализа Лоури, и белок HPV детектировали с использованием H16.J4 (линейно-специфического). V1: L1/L2(108-120), V2: L1/L2(56-81), V3: L1/L2(17-36), V4: HPV-16 L1 (положительный контроль), V5: экстракт NS растения (отрицательный контроль). Стержни (планки) погрешностей показывают стандартное отклонение.

Фиг. 7 показывает микрофотографии трансмиссионного электронного микроскопа CamVir1-иммуноуловленных неочищенных и очищенных вакцинных антигенов A) V1: L1/L2(108-120), B) V2: L1/L2(56-81), C) V3: L1/L2(17-36), D) V4: HPV-16 L1 (положительный контроль), E) V5: NS-экстракт растения (отрицательный контроль). Сетки наблюдали на Zeiss 912 Omega Cryo EFTEM. Левый стержень погрешности = 50 нм, правый стержень погрешности = 200 нм. Светло-серые стрелки указывают на HPV-16-капсомеры (~10 нм), белые стрелки обозначают агрегаты капсомеров или малые VLP (~30 нм), и темно-серые стрелки указывают на полноразмерные VLP (~55 нм).

Фиг. 8 показывает микрофотографию трансмисионного электронного микроскопа CamVir1-иммуноуловленного неочищенного вакцинного антигена L1/L2(56-81). Сетки наблюдали на Zeiss 912 Omega Cryo EFTEM. Стержень (планка) погрешности = 100 нм.

Фиг. 9 показывает прямой анализ ELISA мышиных сывороток с использованием продуцируемого клетками насекомого HPV-16 L1 в качестве покрывающего антигена. V1 = L1/L2(108-120), V2 = L1/L2(56-81), V3 = L1/L2(17-36), V4 = HPV L1 (+ вакцинный контроль), V5 = экстракт растения (- вакцинный контроль). A) Титрование мышиных антисывороток для всех вакцин. B) График, показывающий величины, полученные для положительного контроля ELISA MAb H16.V5 и CamVir1. C) Величины оптической плотности перед кровоизвлечением при разведении 1:50. Маркеры представляют среднюю величину трех повторностей проб, и стержни (планки) погрешностей показывают стандартное отклонение.

Фиг. 10 показывает вестерн-блот-детектирование экспрессированного E. coli His-меченного HPV-16 L2 с использованием мышиных сывороток при разведении 1:100. M = белковый маркер с размером белка в кДа. V1 = L1/L2(108-120), V2 = L1 L2(56-81), V3 = L1/L2(17-36), V4 = HPV L1 (+ вакцинный контроль), V5 = экстракт растения (- вакцинный контроль). PB = сыворотки перед кровоизвлечением. FB = конечные извлеченные сыворотки. Для вестерн-блот-контролей: +ve = анти-His мыши (1:2000; Serotec), -ve = без первичного антитела. Черная стрелка указывает на L2 (~80 кДа).

Фиг. 11 показывает анализ нейтрализации HPV-16 PsV. Объединенные сыворотки из мышей, вакцинированных V1-V5, испытывали на их способность нейтрализовать HPV-16 PsV. A) V1 = L1/L2(108-120), B) V2 = L1/L2(56-81), C) V3 = L1/L2(17-36), D) V4 = HPV-16 L1 (+ve вакцинный контроль), E) V5 = NS-инфильтрованный экстракт растения (-ve вакцинный контроль). F) H16.V5 = +ve контроль нейтрализации. Клеточный контроль = -ve инфекция/контроль экспрессии SEAP. PsV-контроль = +ve инфекция/контроль экспрессии SEAP. Пробы анализировали в трех повторностях, и стержни (планки) погрешностей показывают стандартное отклонение.

Фиг. 12 показывает анализ нейтрализации HPV-18 PsV. A) V1 = L1/L2(108-120), B) V2 = L1/L2(56-81), C) V3 = L1/L2(17-36), D) V4 = HPV-16 L1, E) V5 = NS-инфильтрованный экстракт (-ve вакцинный контроль). F) Кроличьи анти-Cervarix сыворотки = +ve вакцинный контроль.

Фиг. 13 показывает анализ нейтрализации HPV-45 PsV. A) V1 = L1/L2(108-120), B) V2 = L1/L2(56-81), C) V3 = L1/L2(17-36), D) V4 = HPV-16 L1, E) V5 = NS-инфильтрованный экстракт растения (-ve вакцинный контроль). F) H45.N5 = +ve контроль нейтрализации.

Фиг. 14 показывает анализ нейтрализации HPV-52 PsV. A) V1 = L1/L2(108-120), B) V2 = L1/L2(56-81), C) V3 = L1/L2(17-36), D) V4 = HPV-16 L1, E) V5 = NS-инфильтрованный экстракт растения (-ve вакцинный контроль). F) H45.N5 = +ve контроль нейтрализации.

Фиг. 15 показывает аминокислотную последовательность (SEQ ID NO:1) HPV-16 L1.

Фиг. 16 показывает оптимизированные кодонами человека нуклеотидные последовательности (SEQ ID NO: 2) HPV-16 L1.

Фиг. 17 показывает аминокислотную последовательность (SEQ ID NO: 3) эпитопа L2 (108-120), который был инсертирован в последовательность HPV L1.

Фиг. 18 показывает аминокислотную последовательность (SEQ ID NO: 4) эпитопа L2 (56-81), который был инсертирован в последовательность HPV L1.

Фиг. 19 показывает аминокислотную последовательность (SEQ ID NO: 5) эпитопа L2 (17-36), который был инсертирован в последовательность HPV L1.

Фиг. 20 показывает аминокислотную последовательность (SEQ ID NO: 6) эпитопа L2 BPV (1-88), который был инсертирован в последовательность HPV L1.

Фиг. 21 показывает оптимизированную кодонами человека нуклеотидную последовательность ДНК (SEQ ID NO: 7) L2 (108-120), которая была инсертирована в последовательность HPV L1.

Фиг. 22 показывает оптимизированную кодонами человека нуклеотидную последовательность ДНК (SEQ ID NO: 8) L2 (56-81), которая была инсертирована в последовательность HPV L1.

Фиг. 23 показывает оптимизированную кодонами человека нуклеотидную последовательность ДНК (SEQ ID NO: 9) L2 (17-36), которая была инсертирована в последовательность HPV L1.

Фиг. 24 показывает оптимизированную кодонами человека нуклеотидную последовательность ДНК (SEQ ID NO: 10) L2 BPV (1-88), которая была инсертирована в последовательность HPV L1.

Фиг. 25 показывает аминокислотную последовательность (SEQ ID NO: 22) химерного полипептида HPV 16 L1/L2(108-120).

Фиг. 26 показывает аминокислотную последовательность (SEQ ID NO: 23) химерного полипептида HPV 16 L1/L2(56-81).

Фиг. 27 показывает аминокислотную последовательность (SEQ ID NO: 24) химерного полипептида HPV 16 L1/L2(17-36).

Фиг. 28 показывает аминокислотную последовательность (SEQ ID NO: 25) химерного полипептида HPV 16 L1/L2 BPV(1-88).

Фиг. 29 показывает оптимизированную кодоном человека нуклеотидную последовательность ДНК (SEQ ID NO: 26), кодирующую химерный полипептид HPV 16 L1/L2(108-120).

Фиг. 30 показывает оптимизированную кодоном человека нуклеотидную последовательность ДНК (SEQ ID NO: 27), кодирующую химерный полипептид HPV 16 L1/L2(56-81).

Фиг. 31 показывает оптимизированную кодонами человека нуклеотидную последовательность ДНК (SEQ ID NO: 28), кодирующую химерный полипептид HPV 16 L1/L2(17-36).

Фиг. 32 показывает оптимизированную кодонами человека нуклеотидную последовательность ДНК (SEQ ID NO: 29), кодирующую химерный полипептид HPV 16 L1/L2 BPV(1-88).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Данное изобретение будет теперь описано более полно после ссылки на сопутствующие фигуры, на которых показаны некоторые, но не все варианты осуществления этого изобретения.

Изобретение, описанное здесь, не должно ограничиваться конкретными описанными вариантами и модификациями, и предполагается, что другие варианты осуществления должны быть включены в объем этого изобретения. Хотя здесь используются конкретные термины, они используются только в общем и описательном смысле, а не для целей ограничения.

Используемые здесь термины имеют значение, признанное в данной области, если нет других указаний.

Данное изобретение обеспечивает химерную вирусоподобную частицу (VLP) папилломавируса человека (HPV), имеющую правильную форму и диаметр приблизительно 30 нм, и способ лечения и/или профилактики инфекции HPV и/или рака шейки матки введением химерной HPV VLP по изобретению. В частности, имеющая правильную форму и диаметр приблизительно 30 нм химерная HPV VLP содержит белок типа HPV 16 L1, в который был инсертирован пептид HPV L2, между приблизительно 13 аминокислотами и приблизительно 26 аминокислотами, кодируемый оптимизированной кодонами человека нуклеотидной последовательностью при аминокислотном остатке 414, заменяющий посредством этого соответствующие аминокислоты HPV L1.

Главный капсидный белок L1 спонтанно самособирается в вирусоподобные частицы (VLP), которые образуют основу существующих профилактических HPV-вакцин (Schiller et al., 2008). Рекомбинантные VLP были экспрессированы в нескольких разных системах хозяев, включающих млекопитающее, насекомое, дрожжи, бактерии и растения.

С-концевая спираль 4 (h4) HPV-16 L1 играет роль в сборке VLP и расположена между остатками 414-426 (Varsani et al., 2003a). Удаление этих мотивов приводит к образованию капсомера и предотвращает дальнейшую самосборку в VLP (Bishop et al., 2007). Кроме того, имеются дисульфидные связи между высококонсервативными остатками цистеина 175 и 428, и мутации этих цистеинов приводят к образованию капсомеров, а не VLP (Li et al., 1998; McCarthy et al., 1998; Sapp et al., 1998; Fiigge et al., 2001; Varsani et al., 2006b). Однако, в этом исследовании было показано, что инсертирование пептида HPV L2 между приблизительно 13 аминокислотами и приблизительно 26 аминокислотами, кодируемыми оптимизированной кодонами человека нуклеотидной последовательностью, при инсертировании при аминокислотном остатке 414, с заменой посредством этого соответствующих аминокислот HPV L1, было способно к успешной сборке в малые, имеющие правильные формы химерные VLP с диаметром приблизительно 30 нм.

Коммерческие вакцины HPV (экспрессируемые в настоящее время в клетках дрожжей и насекомых) являются дорогостоящими (Schiller et al., 2008), отчасти вследствие дорогостоящих протоколов продуцирования и очистки. Кроме того, сложные способы очистки и дорогостоящая предварительная обработка могут влиять на стабильность и извлечение собранного белка L1, и денатурированный белок L1 не индуцирует нейтрализующие антитела. В результате, получение вакцинных антигенов с использованием более дешевых систем экспрессии и простых способов продуцирования и очистки остаются высоко приоритетными в любой системе получения коммерческих белков.

Это изобретение будет описано посредством следующих примеров, которые не должны рассматриваться как ограничение каким бы то ни было способом этого изобретения.

ПРИМЕРЫ

ПРИМЕР 1: ТРАНЗИТОРНАЯ ЭКСПРЕССИЯ РАСТЕНИЕМ ХИМЕР L1

СПОСОБЫ И МАТЕРИАЛЫ

Экспрессирующие векторы растений

Три бинарных экспрессирующих вектора растения Agrobacterium использовали для оптимизации экспрессии химеры HPV: pTRAc и pTRAkc-rbcs1-cTP (обеспеченные профессором Райнером Фишером (Fraunhofer Institute for Molecular Biology and Applied Ecology, Germany) и вектор pRIC3 геминивируса желтой карликовости фасоли (BeYDV) (созданный Richard Halley-Stott). Два из них являются нерепликативными векторами, которые нацелены на экспрессируемый белок либо цитоплазмы (pTRAc), либо хлоропласта (pTRAkc-rbcs1-cTP) (Maclean et al., 2007), а третий является самореплицирующимся нацеливающим на цитоплазму вектором (pRIC3). Вектор pRIC3 является вектором третьей генерации pRIC (Regnard et al., 2010), который был уменьшен в размере и показал сходную амплификацию экспрессии трансгена in planta.

Векторы содержат ряд элементов, необходимых для экспрессии белка в растениях (Фиг. 1). Вектор pTRAkc-rbcs1-cTP (Фиг.1A) является производным pTRAc (Фиг. 1B), и содержит последовательность транзитного пептида хлоропласта гена rbcS1 картофеля. pRIC3 (Фиг. 1D) содержит ассоциированные с репликацией BeYDV белки, необходимые для саморепликации. (Regnard et al., 2010).

Синтез химер L1

Четыре химеры HPV-16 L1/L2, используемые в этом исследовании, описаны в Таблице 1. Эти химеры состоят из последовательности гена изолята South African HPV-16 L1 (SALI: номер доступа в GenBank AY177679) с эпитопом L2, расположенным в спирали h4 при аминокислоте 414 (обозначенной как "F-положение"). Эти химерные гены были сконструированы доктором Inga Hitzeroth (Plant Vaccine Group, UCT), оптимизированы кодонами человека и синтезированы in silico GENEART AG (Regensburg, Germany) с использованием высокопроизводительной сборки. Синтезированные последовательности эпитопа L2 заменяли последовательность L1 в F-положении и не были просто инсертированы в белок L1.

Таблица 1Суммирование химерных конструкций HPV-16 L1
Конструкция Инсертированный эпитоп L1-положение эпитопа Замена последовательностей (ак)
L1/L2(108-120) HPV-16 L2 ак 108-120 F-позиция ак 414-426 13
L1/L2(56-81) HPV-16 L2 ак 56-81 ак 414-439 26
L1/L2(17-36) HPV-16 L2 ак 17-36 ак 414-433 20
L1/L2 BPV(1-88) BPV-1 L2 ак 1-88 ак 414-505 88

Субклонирование химерных генов L1

Последовательности химеры HPV-16 L1/L2 вырезали из векторов pGA4 с использованием 3ʹ-сайта рестриктазы XhoI и любых из сайтов рестриктаз 5ʹ BspHI, MluI или HindIII, которые фланкируют химерные гены (Фиг. 1C), Гены HPV направленно субклонировали в экспрессирующие векторы растений с использованием AfIIII и XhoI для pTRAc (Фиг.1B), MluI и XhoI для pTRAkc-rbcs1-cTP (Фиг. 1A) и HindIII и XhoI для pRIC3 (Фиг. 1D). DH5-α химически компетентные клетки E.coli (E.cloni™, Lucigen) трансформировали химерными плазмидными конструкциями, и рекомбинанты отбирали, используя устойчивость к ампициллину (100 мкг/мл). Химерные конструкции pTRAc HPV-16 L1/L2 L1/L2(108-120), L1/L2(56-81) и L1/L2(17-36) были обеспечены Mark Whitehead (Plant Vaccine Group, UCT). Используемые в этом изобретении плазмидные конструкции суммированы в таблице 2.

Таблица 2Экспрессионные конструкции Agrobacterium, используемые в этом исследовании
Экспрессирующий вектор растения Тестированные химеры Репликация плазмиды Субклеточная локализация Источник
PTRAc L1/L2 Нерепликативные Цитоплазма M. Whitehead
pTRAkc-rbcs1-cTP L1/L2 Нерепликативные Хлоропласт Это исследование
pRIC3 L1/L2 Саморепликативные Цитоплазма Это исследование

Идентификация рекомбинантных химер L1

Рекомбинантные клоны химеры L1 подвергали скринингу посредством ПЦР колоний с использованием pTRAc вектор-специфических праймеров и химера-специфических праймеров, связывающихся с различными эпитопами L2 (Таблица 3). ПЦР выполняли с использованием набора для ДНК-полимеразы GoTaq Flexi (Promega) согласно инструкциям изготовителя с использованием 1 мкМ каждого праймера в конечной концентрации MgCl2 3 мМ.

Таблица 3Праймеры, используемые в ПЦР и секвенировании химер HPV
Мишень праймера Детектируемая химера Название праймера Последовательность праймера Продукт ПЦР (т.п.н.)
pTRAc Все химеры pTRAc Fwd 5ʹ-CATTTCATTTGGAGAGGACACG-3ʹ (SEQ ID NO:11) ~1,7
вектор pTRAc Rvs 5ʹ-GAACTACTCACACATTATTCTGG-3ʹ (SEQ ID NO:12)
L1/L2 Все химеры ModNew Fwd 5ʹ-CGACGACCTGTACATCAAGG-3ʹ (SEQ ID NO:13) -
химеры L1/L2(108-120) VEET Rvs 5ʹ-GATGAAGCTGGTCTCCTCC-3ʹ (SEQ ID NO:14) 0,41
L1/L2(56-81) SAF2 Rvs 5ʹ-GGATGTAGCCGGTCCTGC-3ʹ (SEQ ID NO:15) 0,44
L1/L2(17-36) QLYK Rvs 5ʹ-ACCTTGGGGATGATGTCAGG-3ʹ (SEQ ID NO:16) 0,44
L1/L2 BPV(1-88) SALIBPV Rvs 5ʹ-TATCTAGGGCTTCCTCCAGC-3ʹ (SEQ ID NO:17) 0,56

ПЦР колоний, использующая вектор-специфические праймеры

Эти pTRAc вектор-специфические праймеры (сконструированные Mark Whitehead) связывают расположенный выше и расположенный ниже сайт множественного клонирования (MCS) для детектирования инсерций генов. Профиль ПЦР состоял из начальной стадии денатурации при 95°C в течение 3 мин, с последующими 25 циклами при 95°C в течение 30 сек, 59°C в течение 30 секунд и 72°C в течение 3 минут, и конечной стадией элонгации при 72°C в течение 3 минут. ПЦР-продукты разделяли на 0,8% TBE-агарозном геле и детектировали с использованием бромида этидия.

ПЦР колоний с использованием эпитоп-специфических праймеров

HPV L2 эпитоп-специфические праймеры (сконструированные Marieta Burger) использовали для подтверждения правильной химерной вставки в рекомбинантных pTRAkc-rbcs1-cTP и pRIC3 клонах. Профиль ПЦР состоял из начальной стадии денатурации при 95°C в течение 2 минут, с последующими 25 циклами при 95°C в течение 30 секунд, 55°C (химеры L1/L2) в течение 20 секунд и 72°C в течение 30 секунд, и конечной стадии элонгации при 72°C в течение 3 мин. Продукты ПЦР разделяли на 1,2% TBE-агарозном геле и детектировали с использованием бромида этидия.

Расщепление рестрикционными ферментами

Рекомбинанты подтверждали расщеплением рестрикционными ферментами с использованием сайтов RE, которые фланкируют химерную вставку гена 1,5 т.п.н. (FcoRI/Xhol для pTRAkc-rbcs1-cTP-клонов или HindIII/XhoI для pRIC3-клонов). Рекомбинантную ДНК (~500 мкг) расщепляли в течение 1-2 часов при 37°C, с использованием 1 Е фермента на реакцию в соответствии с инструкциями изготовителя (Roche/Fermentas). Расщепленную ДНК разделяли на 0,8% TBE-агарозном геле и окрашивали бромидом этидия.

Секвенирование химер L1

Генную вставку химеры HPV в рекомбинантах pTRAkc-rbcs1-cTP секвенировали с использованием pTRAc-вектор-специфических праймеров. Последовательности сопоставляли с химерными последовательностями HPV с использованием программы множественного выравнивания DNAMAN.

Трансформация Agrobacterium

Клетки GV3101::pMP90RK Agrobacterium tumefaciens делали электрокомпетентными с использованием способа, описанного Shen and Forde (1989). Трансформацию Agrobacterium выполняли, как описано Maclean et al. (2007), и рекомбинантные клоны подвергали скринингу при помощи отбора с антибиотиками (50 мкг/мл карбенициллина, 50 мкг/мл рифампицина и 30 мкг/мл канамицина). Успешную трансформацию подтверждали с помощью ПЦР колоний и расщеплением рестриктазами (как описано выше).

Агроинфильтрация N. benthamiana

Культуры рекомбинантных химер A. tumefaciens, а также культуры A. tumefaciens LBA4404, содержащие плазмиду pBIN-NS, кодирующую супрессор NS-сайленсинга вируса пятнистого увядания (бронзовости) томата (TSWV) (Takeda et al., 2002), получали для инфильтрации, как описано Maclean et al. (2007). Клетки Agrobacterium разводили в инфильтрационной среде (10 мМ MgCl2, 10 мМ MES, 3% сахароза и 150 мкМ ацетосирингон в воде, pH 5,6) с получением конечной OD600 0,25 для отдельных химерных штаммов Agrobacterium и объединенной OD600 0,5 для конструкций, ко-инфильтрованных A. tumefaciens LBA4404 (pBIN-NS). Эти штаммы инкубировали при 22°C в течение 2 часов для обеспечения экспрессии генов vir перед инфильтрацией.

Шестинедельные листья N. benthamiana агроинфильтрировали инъекцией бактериальной суспензии в абаксиальные (расположенные на нижней поверхности листа) воздушные пространства из вентральной стороны листа (Maclean et al., 2007). Эти растения выращивали в условиях 16 часов света, 8 часов темноты при 22°C в течение требуемого периода времени. Испытания экспрессии химер во времени проводили 1-9 дней после инфильтрации (dpi), и химеры коэкспрессировали либо с супрессором сайленсинга NS, либо без супрессора сайленсинга NS. Для каждой химеры использовали отдельные растения, и отдельные листья на одном и том же растении инфильтрировали каждой из химерных конструкций pTRAc, pTRAkc-rbcs1-cTP или pRIC3 для сравнительной экспрессии векторов.

Экстракция белка из растений

Диски листьев, вырезанные крышкой от пробирки Эппендорфа, собирали из агроинфильтированных листьев (~10 мг на диск, 3 диска на конструкцию) и измельчали в жидком азоте. Материал листьев ресуспендировали в 250 мкл на диск в буфере для экстракции с высокой концентрацией соли 1,5 М NaCl PBS (HS-PBS), содержащем ингибитор протеаз (не содержащий ЭДТА полный ингибитор протеаз; Roche). Неочищенный экстракт растений осветляли дважды центрифуги