Условно реплицирующий аденовирус

Иллюстрации

Показать все

Предложенное изобретение относится к области биотехнологии. Предложен рекомбинантный аденовирус для обнаружения раковых клеток или диагностики рака, содержащий репликативную кассету, маркерную кассету, ген, который кодирует связывающий CD46 фибриллярный белок. Указанная репликативная кассета интегрирована в участок Е1 генома аденовируса и содержит промотор обратной транскриптазы теломеразы человека, ген Е1А, последовательность IRES и ген Е1В в указанном порядке и последовательность-мишень miR-142. Указанная маркерная кассета интегрирована в участок Е3 генома аденовируса и состоит из репортерного гена, промотора, способного регулировать экспрессию гена, и последовательности-мишени miR-142. Предложенный рекомбинантный аденовирус позволяет обнаруживать все раковые клетки, включая CAR-негативные клетки, и при этом не дает ложноположительных результатов в процессе обнаружения раковых клеток для нормальных клеток крови. Предложенный рекомбинантный аденовирус может быть использован в медицине при диагностике рака. 3 з.п. ф-лы, 8 ил., 7 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к новому условно реплицирующему аденовирусу и содержащему его реактиву для обнаружения раковых клеток или диагностики рака.

Уровень техники

Применяемые современные методы диагностики рака в основном включают (i) методы с использованием оборудования большого размера (например, МРТ) и (ii) методы обнаружения маркеров рака и т.п. в крови, более простые и менее обременительные для пациентов, на которые в настоящее время возлагаются надежды. В частности, раковые клетки, циркулирующие в периферической крови раковых больных (т.е. циркулирующие опухолевые клетки (ЦОК)), тесно связаны с клиническими симптомами, поскольку эти клетки повышают риск системных метастазов, а прогноз для пациентов, у которых обнаружены ЦОК, является в значительной степени неблагоприятным. Таким образом, предполагается создание простого и высокочувствительного метода обнаружения ЦОК в качестве прогностического показателя или заменителя маркера для прогнозирования.

Методы, используемые для обнаружения ЦОК, включают обнаружение с помощью сопутствующего раку антигена, такого как ЕpСАМ (молекула адгезии эпителиальных клеток) или цитокератин-8 (например, с помощью системы CellSearch), обнаружение методом полимеразной цепной реакции с обратной транскрипцией (ПЦР с обратной транскрипцией) и т.д. Тем не менее, поскольку эти сопутствующие раку антигены также экспрессируют в нормальных эпителиальных клетках, высока вероятность ложноположительного обнаружения, и в то же время в случае обнаружения методом ПЦР невозможно наблюдать морфологические характеристики раковых клеток. По этим причинам существует потребность в новом методе в том, что касается чувствительности, простоты, точности и стоимости.

С другой стороны, авторами настоящего изобретения уже создан условно реплицирующий аденовирус, специфический для раковых клеток и экспрессирующий GFP (экспрессирующий GFP условно реплицирующий аденовирус: GFP-CRAd) (называемый TelomeScan®, ОВР-401 или Telomelysin-GFP) (патентный документ 1: WO 2006/036004). Кроме того, авторами настоящего изобретения также создан простой метод обнаружения ЦОК с использованием TelomeScan (непатентный документ 1: Kojima Т. и др., J. Clin. Invest., 119; 3172, 2009).

Тем не менее, поскольку TelomeScan содержит фибриллярный белок аденовируса серотипа 5 и инфицирует клетки-мишени посредством рецептора вируса Коксаки и аденовируса (CAR), TelomeScan не может инфицировать клетки, которые не экспрессируют CAR. В частности, известно, что экспрессия CAR уменьшается в высокозлокачественных раковых клетках, которые являются высокоинвазивными, метастатическими и пролиферативными (непатентный документ 2: Okegawa Т., и др., Cancer Res., 61: 6592-6600, 2001); следовательно, TelomeScan может не обнаруживать эти высокозлокачественные раковые клетки. Кроме того, хотя это и менее вероятно, TelomeScan может давать ложноположительные результаты вследствие инфицирования и роста в нормальных клетках крови (например, лейкоцитах), вызывающего экспрессию GFP.

По этим причинам существует потребность в реактиве для обнаружения раковых клеток и реактиве для диагностики рака, каждый из которых обнаруживает все раковые клетки, включая CAR-негативные клетки, и не дает ложноположительных результатов в нормальных клетках крови.

Документы известного уровня техники

Патентные документы

Патентный документ 1: WO 2006/036004

Непатентный документ 1: Kojima Т., и др., J. Clin. Invest., 119: 3172, 2009

Непатентный документ 2: Okegawa Т., и др., Cancer Res., 61: 6592-6600, 2001

Краткое изложение сущности изобретения

Задача, решаемая в изобретении

Настоящее изобретение создано с учетом перечисленных обстоятельств, и в его основу положена задача создания реактива для обнаружения раковых клеток и реактива для диагностики рака, каждый из которых обнаруживает все раковые клетки, включая CAR-негативные клетки, и не дает ложноположительных результатов в нормальных клетках крови, а также задача создания условно реплицирующего рекомбинантного аденовируса, применимого в качестве такого реактива.

Средства решения задачи

В результате обширных и интенсивных усилий, направленных на решение указанной задачи, авторы настоящего изобретения обнаружили, что при замене фибриллярного белка аденовируса серотипа 5 в TelomeScan связывающим CD46 фибриллярным белком другого аденовируса, который активно экспрессирует почти во всех клетках человека, в частности, в раковых клетках можно обнаруживать не только CAR-позитивные клетки, но также CAR-негативные клетки. Кроме того, авторам настоящего изобретения удалось исключить ложноположительные результаты в клетках крови путем встраивания в TelomeScan опосредованной микроРНК генно-регуляторной сети, что привело к созданию настоящего изобретения.

Более точно, в настоящем изобретении предложено следующее.

(1) Полинуклеотид, содержащий промотор обратной транскриптазы теломеразы человека (hTERT), ген E1А, последовательность 1RES и ген E1B в указанном порядке и содержащий последовательность-мишень первой микроРНК.

(2) Полинуклеотид по п. (1), в котором первая микроРНК экспрессирует в нераковых клетках.

(3) Полинуклеотид по п. (1) или (2), в котором первой микроРНК является по меньшей мере одна микроРНК, выбранная из группы, включающей miR-142, miR-15, miR-16, miR-21, miR-126, miR-181, miR-223, miR-296, miR-125, miR-143, miR-145, miR-199 и let-7.

(4) Рекомбинантный аденовирус, содержащий репликативную кассету, в которой содержится полинуклеотид по любому из п.п. (1)-(3), при этом репликативная кассета встроена в область E1 генома аденовируса.

(5) Рекомбинантный аденовирус по п. (4), дополнительно содержащий маркерную кассету, в которой содержится репортерный ген и промотор, способный регулировать экспрессию гена, при этом маркерная кассета встроена в область ЕЗ генома аденовируса.

(6) Рекомбинантный аденовирус по п. (5), в котором маркерная кассета дополнительно содержит последовательность-мишень второй микроРНК.

(7) Рекомбинантный аденовирус по п. (4), в котором в область ЕЗ генома аденовируса дополнительно встроена индуцирующая некроз клеток кассета, содержащая ген, который кодирует связанный с индуцированием некроза клеток белок и промотор, способный регулировать экспрессию гена.

(8) Рекомбинантный аденовирус по п. (7), в котором индуцирующая некроз клеток кассета дополнительно содержит последовательность-мишень второй микроРНК.

(9) Рекомбинантный аденовирус по п. (6) или (8), в котором вторая микроРНК экспрессирует в нераковых клетках.

(10) Рекомбинантный аденовирус по п. (9), в котором второй микроРНК является по меньшей мере одна микроРНК, выбранная из группы, включающей miR-142, miR-15, miR-16, miR-21, miR-126, miR-181, miR-223, miR-296, miR-125, miR-143, miR-145, miR-199 и let-7.

(11) Рекомбинантный аденовирус по п. (5) или (6), в котором репортерным геном является ген, который кодирует белок, испускающий флуоресцентное свечение, или ген, который кодирует ферментативный белок, выделяющий люминофор или хромофор в результате ферментативной реакции.

(12) Рекомбинантный аденовирус по любому из п.п. (5)-(10), в котором промотором является промотор обратной транскриптазы теломеразы человека или промотор цитомегаловируса.

(13) Рекомбинантный аденовирус по любому из п.п. (4)-(12), дополнительно содержащий ген, который кодирует связывающий CD46 фибриллярный белок.

(14) Рекомбинантный аденовирус по п. (13), в котором связывающий CD46 фибриллярный белок содержит по меньшей мере фибриллярную область утолщения в фибриллярном белке аденовируса серотипа 34 или 35.

(15) Реактив для обнаружения раковых клеток, содержащий рекомбинантный аденовирус по любому из п.п. (4)-(14).

(16) Реактив для диагностики рака, содержащий рекомбинантный аденовирус по любому из п.п. (4)-(14).

(17) Реактив по п. (15), в котором раковые клетки выделены из биологического образца, взятого у объекта.

(18) Реактив по п. (17), в котором биологическим образцом является кровь.

(19) Реактив по п. (15) или (18), в котором раковыми клетками являются циркулирующие опухолевые клетки.

(20) Реактив по любому из п.п. (15) и (17)-(19), в котором раковыми клетками являются резистентные к лекарственным средствам раковые клетки.

(21) Реактив по любому из п.п. (15) и (17)-(20), в котором раковыми клетками являются стволовые раковые клетки.

(22) Реактив по любому из п.п. (15) и (17)-(21), в котором раковыми клетками являются раковые клетки, в которых произошел эпителиально-мезенхимальный переход или мезенхимально-эпителиальный переход.

(23) Способ обнаружения раковых клеток, включающий введение раковых клеток в контакт с рекомбинантным аденовирусом по п. (11) и обнаружение флуоресцентного свечения или окрашивания, вызванного раковыми клетками.

(24) Способ по п. (23), в котором раковые клетки выделены из биологического образца, взятого у объекта.

(25) Способ по п. (24), в котором биологическим образцом является кровь.

(26) Способ по п. (25), в котором раковыми клетками являются циркулирующие опухолевые клетки.

Эффект изобретения

Настоящее изобретение обеспечивает простое и высокочувствительное обнаружение CAR-негативных раковых клеток без обнаружения нормальных клеток крови (например, лейкоцитов).

Краткое описание чертежей

На фиг. 1 схематически проиллюстрирован один из примеров структуры рекомбинантного аденовируса согласно настоящему изобретению.

На фиг. 2 показаны результаты измерения активности рекомбинантных аденовирусов методом проточной цитометрии.

На фиг. 3 показаны результаты, полученные для клеток H1299, содержащихся в образцах крови.

На фиг. 4 показаны результаты, полученные для клеток А549, содержащихся в образцах крови.

На фиг. 5 показаны результаты измерения активности рекомбинантного аденовируса согласно настоящему изобретению в раковых клетках различных типов.

На фиг. 6 показаны результаты, полученные для раковых клеток, в которых произошел эпителиально-мезенхимальный переход (ЕМТ).

На фиг. 7 показаны результаты, полученные для стволовых раковых клеток.

На фиг. 8 показаны результаты, полученные для клеток H1299 и Т24, взятых из образцов крови, с использованием красного флуоресцирующего белка.

Описание вариантов осуществления

Далее настоящее изобретение будет описано более подробно. Описанные варианты осуществления имеют целью проиллюстрировать настоящее изобретение, а не ограничить его только этими вариантами осуществления. Настоящее изобретение может быть реализовано в различных формах, не выходящих за пределы его существа. Кроме того, в настоящую заявку в порядке ссылки включено раскрытие и чертежи патентной заявки Японии 2011-181414 (поданной 23 августа 2011 г. ), на основании которой испрашивается приоритет настоящей заявки.

1. Краткое изложение

TelomeScan (т.е. условно реплицирующий аденовирус, содержащий промотор hTERT, ген E1А, последовательность 1RES и ген E1В, встроенные в указанном порядке в лишенную E1 область аденовируса серотипа 5, и содержащий промотор цитомегаловируса (CMV) и GFP, встроенные в указанном порядке в лишенную Е3 область аденовируса серотипа 5), ранее созданный авторами настоящего изобретения, имеет следующие недостатки: (i) TelomeScan может не обнаруживать высокозлокачественные раковые клетки в случае уменьшенной экспрессии CAR; и (ii) TelomeScan может обнаруживать нормальные клетки крови как ложноположительные. В результате обширных и интенсивных усилий, направленных на преодоление указанных недостатков, авторы настоящего изобретения обнаружили, что высокозлокачественные CAR-негативные раковые клетки можно обнаруживать в случае замены фибриллярного белка аденовируса серотипа 5 в TelomeScan связывающим CD46 фибриллярным белком другого аденовируса, который активно экспрессирует почти во всех клетках человека, в частности, в раковых клетках. Кроме того, авторами настоящего изобретения было обнаружено, что путем встраивания последовательности-мишени miR-142-3р, которой является микроРНК, в каждую из репликативных и маркерных кассет TelomeScan можно предотвращать рост вируса и экспрессию маркерного белка в нормальных клетках крови и тем самым исключать получение ложноположительных результатов в нормальных клетках крови.

В частности, в одном из предпочтительных вариантов осуществления настоящего изобретения рекомбинантным аденовирусом согласно настоящему изобретению является рекомбинантный аденовирус, у которого в область E1 генома аденовируса встроена репликативная кассета, содержащая промотор hTERT, ген E1А, последовательность 1RES, ген E1В и последовательность-мишень микроРНК, а в область Е3 генома аденовируса встроена маркерная кассета, содержащая репортерный ген, промотор, способный регулировать экспрессию гена, и последовательность-мишень микроРНК, и который содержит ген, который кодирует связывающий CD46 фибриллярный белок аденовируса (фиг. 1). Этот рекомбинантный аденовирус обладает следующими свойствами.

(i) За счет гена, кодирующего связывающий CD46 фибриллярный белок аденовируса, этот рекомбинантный аденовирус способен инфицировать почти все клетки, включая CAR-негативные клетки.

(ii) За счет промотора hTERT этот рекомбинантный аденовирус является специфическим для экспрессирующих hTERT раковых клеток, а также увеличивает экспрессию репортерного гена в процессе роста, в результате чего образование маркерного белка, хромофора и т.п. может быть увеличено до поддающихся обнаружению уровней.

(iii) За счет последовательности-мишени микроРНК этот рекомбинантный аденовирус способен предотвращать появление ложноположительных результатов, даже когда вирус инфицирует нормальные клетки с активным промотором hTERT, поскольку экспрессия этой микроРНК предотвращает не только рост вируса, но также экспрессию репортерного гена. В частности, за счет последовательности-мишени микроРНК, которая специфически экспрессирует в клетках крови, этот рекомбинантный аденовирус способен предотвращать появление ложноположительных результатов, даже когда вирус инфицирует нормальные клетки крови с активным промотором hTERT, поскольку экспрессия этой микроРНК предотвращает не только рост вируса, но также экспрессию репортерного гена.

Эти сведения были положены в основу создания настоящего изобретения.

2. Рекомбинантный аденовирус

(1) Репликативная кассета

В настоящем изобретении предложен полинуклеотид, содержащий промотор обратной транскриптазы теломеразы человека (hTERT), ген E1А, последовательность 1RES и ген E1B в указанном порядке и содержит последовательность-мишень микроРНК. Кроме того, в настоящем изобретении предложен рекомбинантный аденовирус, содержащий репликативную кассету, в которой содержится упомянутый полинуклеотид, при этом репликативная кассета встроена в область E1 генома аденовируса.

За счет действия упомянутого полинуклеотида (или содержащей его репликативной кассеты) может обеспечиваться специфический рост рекомбинантного аденовируса согласно настоящему изобретению в раковых клетках, а также может предотвращаться его рост в клетках, которые экспрессируют желаемую микроРНК. Например, если последовательностью-мишенью микроРНК, содержащейся в репликативной кассете согласно настоящему изобретению, является последовательность-мишень микроРНК, которая специфически экспрессирует в клетках крови, обеспечивается специфический рост рекомбинантного аденовируса согласно настоящему изобретению в экспрессирующих hTERT раковых клетках и предотвращается его рост в нормальных клетках крови.

Промотор обратной транскриптазы теломеразы человека (hTERT) является промотором обратной транскриптазы, которая является одним из элементов теломеразы человека. Хотя активность теломеразы человека увеличивается за счет сплайсинга мРНК hTERT, посттрансляционной модификации белка hTERT и других событий, предполагается, что наиболее важным молекулярным механизмом является усиленная экспрессия гена hTERT, т.е. повышенная активность промотора hTERT. Подтверждено, что активность теломеразы человека повышена в 85% или более случаев рака у людей, при этом она не проявляет активности в большинстве нормальных клетках. Соответственно, за счет применения промотора hTERT следующий за ним ген может специфически экспрессировать в раковых клетках. В настоящем изобретении промотор hTERT расположен до гена E1А, последовательности 1RES и гена E1В, за счет чего обеспечивается специфический рост вируса в экспрессирующих hTERT раковых клетках.

Подтверждено, что hTERT имеет множество связывающих транскрипционный фактор последовательностей в области 1,4 т.п.н. до ее конца 5', и эта область считается промотором hTERT. В частности, последовательность из 181 п. н. до сайта инициации трансляции является сердцевинной областью, важной для экспрессии ее последующих генов. Хотя в настоящем изобретении может использоваться любая последовательность при условии, что она содержит эту сердцевинную область, предпочтительно в качестве промотора hTERT используется предшествующая последовательность приблизительно из 378 п. н., которая полностью перекрывает эту сердцевинную область. Подтверждено, что эта последовательность приблизительно из 378 п. н. обладает такой же эффективностью с точки зрения экспрессии генов, как и сама сердцевинная область из 181 п. н. Нуклеотидная последовательность промотора hTERT из 455 п. н. представлена в SEQ ID NO: 1.

Помимо последовательности, представленной в SEQ ID NO: 1, нуклеотидная последовательность промотора hTERT содержит последовательности полинуклеотидов, которые поддаются гибридизации в строгих условиях с нуклеотидной последовательностью ДНК, комплементарной нуклеотидной последовательности ДНК, представленной в SEQ ID NO: 1, и содержит активный промотор hTERT. Такие полинуклеотиды могут быть получены из кДНК и библиотеки генов известными методами гибридизации (например, методом гибридизации колоний микроорганизмов, бляшкообразования, саузерн-блоттинга) с использованием полинуклеотида, который состоит из нуклеотидной последовательности, представленной в SEQ ID NO: 1, или ее фрагмента в качестве зонда.

Что касается создания библиотек кДНК, можно сослаться на "Molecular Cloning, А Laboratory Manual 2nd ed" (Cold Spring Harbor Press (1989)). В качестве альтернативы, в этих целях также могут использоваться предлагаемые на рынке к ДНК и библиотеки генов.

Строгие условия упомянутой гибридизации включают, например, условия от 1 × SSC до 2 × SSC, от 0,1% до 0,5% SDS и температуру от 42°С до 68°С, более точно, предварительную гибридизацию при температуре от 60°С до 68°С в течение 30 минут или более и затем от 4 до 6 циклов промывания в 2 × SSC, 0,1% SDS при комнатной температуре в течение 5-15 минут.

Что касается подробных процедур гибридизации, можно сослаться на "Molecular Cloning, A Laboratory Manual 2nd ed" (Cold Spring Harbor Press (1989); в частности, раздел 9.47-9.58) и т.д.

Гены Е1А и Е1В входят в ген E1 аденовирус. Этот ген E1 является одним из ранних генов из числа ранних (Е) и поздних (L) вирусных генов, имеющих отношение к репликации ДНК, и кодирует белок, имеющий отношение к регуляции транскрипции вирусного генома. Белок E1, кодированный геном E1 А аденовируса, активирует транскрипцию определенной группы генов (например, E1В, Е2, Е4), необходимых для образования инфекционного вируса. Белок E1В, кодированный геном E1В аденовируса, помогает позднему гену (L-гену) мРНК накапливаться в цитоплазме инфицированных клеток-хозяев и ингибирует синтез белка в клетках-хозяевах, способствуя тем самым репликации вируса. Нуклеотидные последовательности генов E1А и E1В представлены в SEQ ID NO: 2 и SEQ ID NO: 3, соответственно. Помимо последовательностей, представленных в SEQ ID NO: 2 и SEQ ID NO: 3, нуклеотидные последовательности генов E1А и E1В включают нуклеотидные последовательности, которые поддаются гибридизации в строгих условиях с нуклеотидной последовательностью ДНК, комплементарной нуклеотидной последовательности ДНК, представленной в SEQ ID NO: 2 или SEQ ID NO: 3, и кодируют белок, содержащий активный E1А или E1В. Процедуры и строгие условия гибридизация являются такими же, как описаны выше применительно к промотору hTERT.

Последовательность 1RES (внутреннего сайта посадки рибосомы) является сигналом инициации синтеза белка, специфическим для семейства пикорнавирусов, и предположительно служит сайтом связывания рибосомы, поскольку является комплементарной концу 3' рибосомной РНК 18S. Известно, что эта последовательность опосредует трансляцию мРНК, выделенных из вирусов семейства пикорнавирусов. Эффективность трансляции посредством последовательности IRES является высокой, и синтез белка происходит даже в мРНК независимо от структуры кэпа. Таким образом, в вирусе согласно настоящему изобретению ген E1А и ген E1В, следующий за последовательностью IRES, в обоих случаях независимо транслируются под действием промотора hTERT. При использовании последовательности IRES как в гене E1А, так и в гене E1В независимо происходит опосредованная промотором hTERT регуляция экспрессии, и, следовательно, рост вируса можно более строго ограничить клетками с активной теломеразой в отличие от случая, когда промотором hTERT регулируется какой-либо один из генов: E1А или E1В. Кроме того, последовательность IRES вставленная между генами E1А и генами E1В, может усиливать способность роста вируса в клетках-хозяевах. Нуклеотидная последовательность IRES представлена в SEQ ID NO: 4. Помимо последовательности, представленной в SEQ ID NO: 4, нуклеотидная последовательность IRES включает нуклеотидные последовательности, которые поддаются гибридизации в строгих условиях с нуклеотидной последовательностью ДНК, комплементарной нуклеотидной последовательности ДНК, представленной в SEQ ID NO: 4, и кодируют белок с активным IRES. Процедуры и строгие условия гибридизация являются такими же, как описаны выше применительно к промотору hTERT.

МикроРНК в целом представляют собой короткие однонитевые РНК приблизительно из 15-25 нуклеотидов и, как предполагаются, регулируют трансляцию различных генов при связывании их последовательности-мишени, присутствующей в мРНК. Так, например, когда экспрессирующие микроРНК клетки инфицируются рекомбинантным аденовирусом, содержащим желаемый ген и последовательность-мишень микроРНК, в этих клетках предотвращается экспрессия желаемого гена. Такая последовательность-мишень микроРНК может вставляться в любой сайт при условии, что предотвращается экспрессия желаемого гена, но предпочтительно вставляется в нетранслируемую область желаемого гена, более предпочтительно после желаемого гена.

Последовательность-мишень микроРНК, используемая в настоящем изобретении, включает последовательности-мишени микроРНК, которая экспрессируют в нераковых клетках. Подразумевается, что нераковые клетки означают клетки, не являющиеся клетками злокачественных опухолей, и их примеры включают нормальные клетки, клетки доброкачественных опухолей и т.п. Нормальные клетки включают, например, нормальные клетки крови, нормальные эндотелиальные клетки, нормальные фибробласты, нормальные стволовые клетки и т.п. С другой стороны, циркулирующие опухолевые клетки считаются клетками, порождаемыми злокачественными опухолями, и, следовательно, они относятся к клеткам злокачественных опухолей в соответствии с настоящим изобретением.

Последовательность-мишень микроРНК, используемая в настоящем изобретении, также включает последовательности-мишени микроРНК, которая специфически экспрессирует в клетках крови. В соответствии с настоящим изобретением "клетки крови" могут включать не только нормальные клетки крови, но также раковые клетки крови. В частности, в соответствии с настоящим изобретением "микроРНК, которая специфически экспрессирует в клетках крови", может специфически экспрессировать в нормальных клетках крови или может специфически экспрессировать как в нормальных клетках крови, так и раковых клетках крови. Даже в случае экспрессии как в нормальных, так и раковых клетках крови, микроРНК также может уменьшать число ложноположительных случаев обнаружения нормальных клеток крови во время обнаружения циркулирующих опухолевых клеток и тем самым обеспечивает точное обнаружение циркулирующих опухолевых клеток, которые высвобождаются из твердых опухолей. В соответствии с настоящим изобретением "микроРНК, которая специфически экспрессирует в клетках крови" более предпочтительно представляет собой микроРНК, которая экспрессирует в нормальных клетках крови, но не экспрессирует в раковых клетках крови.

В соответствии с настоящим изобретением клетки крови включают без ограничения лейкоциты (т.е. нейтрофилы, эозинофилы, базофилы, лимфоциты (Т-клетки и В-клетки), моноциты, дендритные клетки), СD34-позитивные клетки, кроветворные клетки, кроветворные стволовые клетки, кроветворные клетки-предшественники, одноядерные клетки периферической крови (РВМС) и т.п. Аналогичным образом, раковые клетки крови включают лейкозные клетки, клетки лимфомы и т.п. В соответствии с настоящим изобретением подразумевается, что "специфическая экспрессия" в определенных клетках означает не только то, что экспрессия ограничена только целевыми клетками, но также то, что уровни экспрессии являются более высокими в целевых клетках, чем в других клетках. Например, подразумевается, что "специфическая экспрессия в клетках крови" означает не только то, что экспрессия ограничена только клетками крови, но также то, что уровни экспрессии являются более высокими в клетках крови, чем в каких-либо других клетках.

МикроРНК, которая специфически экспрессирует в клетках крови включает, например, miR-142, miR-15, miR-16, miR-21, miR-126, miR-181, miR-223, miR-296 и т.п., при этом предпочтительными являются miR-142, miR-15 и miR-16.

Хотя микроРНК является однонитевой РНК, может использоваться последовательность-мишень любой нити двунитевой РНК с преждевременной терминацией синтеза при условии, что может предотвращаться экспрессия желаемого гена. Например, для miR-142 существуют miR-142-3р и miR-142-5p, и в настоящем изобретении может использоваться последовательность-мишень любой микроРНК. В частности, в соответствии с настоящим изобретением "miR-142" включает как miR-142-3р, так и miR-142-5p, при этом miR-142-3p является предпочтительной. Аналогичным образом, в соответствии с настоящим изобретением "miR-15" включает смысловую нить (именуемую "miR-15S") и антисмысловую нить (именуемую "miR-15AS") двунитевой РНК с преждевременной терминацией синтеза. То же самое касается других микроРНК.

Ген miR-142-3р находится в сайте транслокации в лейкозных В-клетках (агрессивных лейкозных В-клетках), и, как известно, экспрессирует в кроветворных тканях (например, костном мозге, селезенке, вилочковой железе), но не экспрессирует в других тканях. Кроме того, поскольку экспрессия miR-142-3р наблюдалась в фетальной печени мышей (фетальной кроветворной ткани), считается, что miR-142-3р участвует в дифференциации системы кроветворения (Chang-Zheng Chen, и др., Science, 2004).

В этом варианте осуществления экспрессия гена избирательно регулируется на двух стадиях, поскольку специфическая экспрессия в раковых клетках происходит под действием промотора hTERT, а экспрессия в клетках крови регулируется под действием микроРНК.

В другом варианте осуществления последовательность-мишень микроРНК, используемая в настоящем изобретении, включает последовательность-мишень микроРНК, экспрессия которой в раковых клетках подавлена. МикроРНК, экспрессия которой в раковых клетках подавлена, включает, например, miR-125, miR-143, miR-145, miR-199, let-7 и т.п. В этом варианте осуществления предусмотрена двойная специфическая экспрессия гена в раковых клетках под действием промотора hTERT и микроРНК.

Хотя молекулы микроРНК были первоначально обнаружены в нематодах, дрожжах и других организмах, в настоящее время они обнаружены в нескольких сотнях микроРНК человека и мышей. Последовательности этих микроРНК известны, а информация о последовательностях и т.п. может быть получена в общедоступных базах данных (например, в базе данных последовательностей miRBase (http://microrna.sanger.ac.uk/sequences/index.shtml, http://www.mirbase.org/)).

Далее представлены последовательности miR-142, микроРНК-15, микроРНК-16, miR-21, miR-126, miR-181, miR-223, miR-296, miR-125, miR-143, miR-145, miR-199 и let-7.

В соответствии с настоящим изобретением отдельное звено последовательности-мишени микроРНК образовано последовательностью, комплементарной всей микроРНК или ее части, и содержит от 7 до 30 нуклеотид, предпочтительно от 19 до 25 нуклеотид, более предпочтительно от 21 до 23 нуклеотид. В соответствии с настоящим изобретением подразумевается, что отдельное звено последовательности-мишени микроРНК означает нуклеотидную последовательность минимальной необходимой длины для того, чтобы служить мишенью определенных микроРНК. Более точно, подразумевается олигонуклеотид по меньшей мере из 7 нуклеотид, выбранных из комплементарных нуклеотидных последовательностей, представленных в SEQ ID NO: 5-26, и в таком олигонуклеотиде может содержаться замена, деления, присоединение или удаление одного или нескольких нуклеотидов в любом положении(-ях).

Последовательность-мишень в целом, встраиваемая в полинуклеотид или рекомбинантный аденовирус согласно настоящему изобретению, может содержать несколько копий отдельного звена последовательности-мишени для обеспечения эффективного взаимодействия между микроРНК и последовательностью-мишенью. Последовательность-мишень в целом, встраиваемая в рекомбинантный аденовирус, может иметь любую длину при условии, что она может быть встроена в вирусный геном. Например, она может содержать от 1 до 10 копий, предпочтительно от 2 до 6 копий, более предпочтительно от 2 до 4 копий отдельного звена последовательности-мишени (John G. Doench, и др., Genes Dev. 2003 17:438-442). Олигонуклеотид применимой длины может вставляться между отдельными звеньями последовательности-мишени, содержащимися в последовательности-мишени в целом. Применимая длина такого олигонуклеотида не ограничена каким-образом при условии, что последовательность-мишень в целом может быть встроена в геном рекомбинантного аденовируса. Например, длина такого олигонуклеотида может составлять от 0 до 8 нуклеотид. Кроме того, при наличии нескольких звеньев последовательности-мишени микроРНК, последовательностями-мишенями в соответствующих звенья могут являться последовательности, относящиеся к одной и той же микроРНК или к различным микроРНК. Помимо этого, при наличии последовательностей-мишеней, относящихся к одной и той же микроРНК, последовательности-мишени в соответствующих звенья могут иметь различную длину и/или содержать различные нуклеотидные последовательности.

Последовательность-мишень микроРНК, содержащаяся в полинуклеотиде согласно настоящему изобретению (или в содержащей его репликативной кассете), также может именоваться "последовательностью-мишенью первой микроРНК" с тем, чтобы полинуклеотид, встроенный в рекомбинантный аденовирус, отличался от других последовательностей мишеней микроРНК, присутствующих в рекомбинантном аденовирусе.

При использовании miR-142-3р в качестве микроРНК примерами ее последовательности-мишени в соответствии с настоящим изобретением могут являться следующие последовательности.

(i) Последовательность, содержащая два звена последовательностей-мишеней miR-142-3р:

5'-gcggcctccataaagtaggaaacactacacagctccataaagtaggaaacactacattataagcggtac

(SEQ ID NO: 27, каждым подчеркиванием обозначено отдельное звено последовательности-мишени miR-142-3p)

(ii) последовательность, содержащая четыре звена последовательности-мишени miR-142-3р:

5'-ggcctccataaagtaggaaacactacacagctccataaagtaggaaacactacattaattccataaagtaggaaacactacaccactccataaagtaggaaacactacagtac

(SEQ ID NO: 28, каждым подчеркиванием обозначено отдельное звено последовательности-мишени miR-142-3р).

В соответствии с настоящим изобретением последовательность-мишень микроРНК находится после структуры промотор hTERT-ген E1А-последовательность IRES-ген E1В, при этом образующийся полинуклеотид, содержащий промотор hTERT, ген E1А, последовательность IRES, ген E1В и последовательность-мишень микроРНК в указанном порядке (который именуется репликативной кассетой) встроен в геном аденовируса, за счет чего предотвращается экспрессия гена E1 и рост вируса в клетках, экспрессирующих микроРНК.

В соответствии с настоящим изобретением последовательность-мишень микроРНК встроена после гена E1В или описанного далее репортерного гена, за счет чего предотвращается экспрессия находящегося до нее гена. Хотя подробности этого механизма не ясны, далее описан один из возможных механизмов. Сначала, микроРНК-RISC (индуцированный РНК комплекс сайленсинга) расщепляет последовательность-мишень на мРНК, чтобы тем самым извлечь полиадениловую кислоту из мРНК. При этом снижается устойчивость мРНК, что вызывает ее распад и, следовательно, предотвращение экспрессии гена. В качестве альтернативы, микроРНК-RISC использует рибонуклеазу полиадениловой кислоты, как в случае нормальной микроРНК, чтобы вызвать распад полиадениловой кислоты, в результате чего снижается устойчивость мРНК и предотвращается экспрессия гена.

Следует отметить, что ранее сообщалось о том, что индуцированное микроРНК ингибирующее действие в отношении экспрессию генов не достигалось в случае экспрессии (трансляции) гена, вставленного после последовательности IRES (Ramesh S. Pillai и др., Science 309, 1573(2005); Geraldine Mathonnet, и др., Science 317, 1764 (2007)). Тем не менее, когда авторы настоящего изобретения подтвердили экспрессию гена рекомбинантного аденовируса согласно настоящему изобретению, содержащего промотор hTERT, ген Е1А, последовательность IRES, ген Е1В и последовательность-мишень микроРНК в указанном порядке, было установлено, что микроРНК в достаточной степени предотвращает экспрессию гена E1В, вставленного после последовательности IRES. Это является новым фактом, установленным в настоящем изобретении.

Гены, которые должны содержаться в репликативной кассете согласно настоящему изобретению, могут быть получены стандартными методами генной инженерии. Например, может использоваться синтез нуклеиновых кислот с помощью синтезатора ДНК, который широко применяется в качестве метода генной инженерии. В качестве альтернативы, также могут использоваться методы ПЦР, в которых выделяют или синтезируют последовательности генов, служащие матрицами, и затем создают специфические для каждого гена праймеры, чтобы амплифицировать последовательность генов посредством системы ПЦР (Current Protocols in Molecular Biology, John Wiley & Sons (1987), раздел 6.1-6.4), или методы амплификации генов с использованием клонирующего вектора. Перечисленные методы могут быть легко применены специалистами в данной области техники в соответствии с Molecular cloning 2nd Edt. Cold Spring Harbor Laboratory Press (1989) и т.д. Для очистки получаемого продукта ПЦР могут применяться известные методы. При необходимости могут использоваться традиционные методы секвенирования, чтобы определять, получен ли, как ожидалось, целевой ген. Например, в этих целях может использоваться секвенирование методом обрыва цепи с использованием дидезоксинуклеотида (Sanger и др. (1977) Proc. Natl. Acad. Sci. USA 74: 5463) или аналогичный метод. В качестве альтернативы, для анализа последовательностей также может использоваться применимый секвенатор ДНК (например, ABI PRISM (Applied Biosystems)).

В соответствии с настоящим изобретением последовательность-мишень микроРНК может быть получена путем конструирования и синтеза таким образом, чтобы каждое отдельное звено последовательности-мишени являлось комплементарным всей нуклеотидной последовательности микроРНК или ее части. Например, последовательность-мишень miR-142-Зр может быть получена путем синтеза ДНК таким образом, чтобы она являлась комплементарной нуклеотидной последовательности miR-142-3р.

Затем соответствующие гены, полученные, как описано выше, лигируют в заданном порядке. Сначала расщепляют каждый из упомянутых генов известными рестриктазами и т.п., вставляют фрагмент расщепленной ДНК каждого гена в известный вектор и лигируют с ним известными способами. В качестве известного вектора может использоваться, например, вектор pIRES. Вектор pIRES содержит последовательность IRES (внутреннего сайта посадки рибосомы) вируса энцефаломиокардита (ECMV) и способен транслировать две открытые рамки считывания (ORF) из одной мРНК. При использовании вектора pIRES путем последовательной вставки требуемых генов в полилинкер может быть получен "полинуклеотид, содержащий промотор hTERT, ген E1А, последовательность IRES и ген Е1B в указанном порядке и содержащий последовательность-мишень микроРНК". Такая последовательность-мишень микроРНК может вставляться в любом месте, но предпочтительно вставляется после струк