Беспроводная индукционная передача электроэнергии

Иллюстрации

Показать все

Использование: в области электротехники. Технический результат - обеспечение конфигурируемой фазы ожидания приемника электроэнергии поддержанием заряда батареи или обеспечением быстрой инициализации фазы передачи электроэнергии. Система индукционной передачи электроэнергии выполнена с возможностью передавать электроэнергию от передатчика (101) электроэнергии к приемнику (103) электроэнергии через беспроводной сигнал мощности. Система поддерживает связь от передатчика (101) электроэнергии к приемнику (105) электроэнергии на основе нагрузочной модуляции сигнала мощности. Приемник (105) электроэнергии передает (507) первое сообщение передатчику (101) электроэнергии, которое содержит требование к сигналу мощности режима ожидания для сигнала мощности во время фазы ожидания. Передатчик (101) электроэнергии принимает (507) сообщение, и когда система входит в фазу ожидания, передатчик (101) электроэнергии обеспечивает сигнал мощности в соответствии с требованием к сигналу мощности режима ожидания во время фазы ожидания. 6 н. и 23 з.п. ф-лы, 5 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к индукционной передаче электроэнергии и, в частности, но не исключительно, к системе индукционной передачи электроэнергии, совместимой с подходом беспроводной передачи электроэнергии стандарта Qi.

УРОВЕНЬ ТЕХНИКИ

В прошлом десятилетии резко возросло количество разнообразных применяемых портативных устройств и устройств мобильной связи. Например, использование мобильных телефонов, планшетов, медиапроигрывателей и т.д. стало повсеместным. Такие устройства обычно обеспечиваются электроэнергией посредством внутренних батарей, и типичный сценарий использования часто требует перезарядки батарей или прямого проводного обеспечения устройства электроэнергией от внешнего источника питания.

Большинство современных систем требует проводного соединения и/или явного электрического контакта для обеспечения электроэнергией от внешнего источника питания. Однако это обычно бывает непрактичным и требует, чтобы пользователь физически вставил соединительные контакты или иным образом установил физический электрический контакт. Это также обычно бывает неудобным для пользователя из-за длины проводов. Как правило, требования мощности также значительно отличаются, и в настоящее время большинство устройств снабжено их собственным специализированным источником питания, что приводит к тому, что типичный пользователь имеет большое количество разных источников питания, каждый из которых является специализированным для конкретного устройства. Хотя использование внутренних батарей может предотвратить необходимость проводного соединения с источником питания во время использования, это обеспечивает только частичное решение, поскольку батареям будет нужна перезарядка (или замена, которая является дорогой). Использование батарей также может существенно увеличить вес и потенциально стоимость и размер устройств.

Чтобы обеспечить значительно улучшенное пользовательское восприятие, было предложено использовать беспроводной источник питания, в котором электроэнергия индукционным образом переносится от катушки передатчика в устройстве передатчика электроэнергии к катушке приемника в отдельных устройствах.

Передача электроэнергии через магнитную индукцию является известной концепцией, главным образом примененной в трансформаторах, имеющих жесткую связь между первичной катушкой передатчика и вторичной катушкой приемника. Посредством разделения первичной катушки передатчика и вторичной катушки приемника между двумя устройствами беспроводная передача электроэнергии между ними становится возможной на основе принципа слабосвязанного трансформатора.

Такая конфигурация дает возможность беспроводной передачи электроэнергии устройству без необходимости каких-либо проводов или установления физических электрических соединений. Действительно, это может позволить просто разместить устройство рядом или сверху катушки передатчика для его перезарядки или обеспечения электроэнергией внешним образом. Например, устройства передатчика электроэнергии могут быть снабжены горизонтальной поверхностью, на которую можно просто поместить устройство для обеспечения электроэнергией.

Кроме того, такие конфигурации для беспроводной передачи электроэнергии могут быть предпочтительно разработаны таким образом, что устройство передатчика электроэнергии может использоваться с целым рядом устройств приемника электроэнергии. В частности, стандарт беспроводной передачи электроэнергии, известный как стандарт Qi, был определен и в настоящее время разрабатывается далее. Этот стандарт позволяет использовать устройства передатчика электроэнергии, которые соответствуют стандарту Qi, с устройствами приемника электроэнергии, которые также соответствуют стандарту Qi, без необходимости, чтобы они были от одного и того же изготовителя или были специализированы друг для друга. Стандарт Qi дополнительно включает в себя некоторую функциональность для обеспечения возможности адаптировать работу к конкретному устройству приемника электроэнергии (например, в зависимости от заданного потребления энергии).

Стандарт Qi разработан Консорциумом по беспроводной передаче электроэнергии (Wireless Power Consortium), и больше информации можно найти, например, на их веб-сайте:

http://www.wirelesspowerconsortiurn.com/index.html, где, в частности, могут быть найдены документы определенных стандартов.

Стандарт Qi беспроводной передачи электроэнергии описывает, что передатчик электроэнергии должен быть в состоянии обеспечить гарантируемую мощность приемнику электроэнергии. Заданный необходимый уровень мощности зависит от конфигурации приемника электроэнергии. Чтобы определить гарантируемую мощность, определено множество тестовых приемников электроэнергии и условия нагрузки, которые описывают гарантируемый уровень мощности для каждого из условий.

Стандарт Qi первоначально определил беспроводную передачу электроэнергии для устройств низкой мощности, имеющих потребление мощности менее 5 Вт. Системы, которые находятся в пределах объема этого стандарта, используют индукционную связь между двумя плоскими катушками для переноса мощности от передатчика электроэнергии к приемнику электроэнергии. Расстояние между двумя катушками обычно составляет 5 мм. Возможно расширить этот диапазон по меньшей мере до 40 мм.

Однако продолжается работа по увеличению доступной мощности, и, в частности, стандарт расширяется до устройств средней мощности, имеющих потребление мощности более 5 Вт.

Стандарт Qi определяет множество технических требований, параметров и рабочих процедур, которым должно соответствовать совместимое устройство.

СВЯЗЬ

Стандарт Qi поддерживает связь от приемника электроэнергии к передатчику электроэнергии, тем самым обеспечивая возможность приемнику электроэнергии предоставлять информацию, которая может позволить передатчику электроэнергии адаптироваться к конкретному приемнику электроэнергии. В текущем стандарте была определена однонаправленная линия связи от приемника электроэнергии к передатчику электроэнергии, и подход основан на философии приемника электроэнергии как управляющего элемента. Для подготовки и управления передачей электроэнергии между передатчиком электроэнергии и приемником электроэнергии приемник электроэнергии, в частности, передает информацию передатчику электроэнергии.

Однонаправленная связь достигается посредством выполнения приемником электроэнергии нагрузочной модуляции, при которой нагрузка, прикладываемая ко вторичной катушке приемника посредством приемника электроэнергии, изменяется для обеспечения модуляции сигнала мощности. Получающиеся в результате изменения электрических характеристик (например, изменения потребления тока) могут быть обнаружены и декодированы (демодулированы) передатчиком электроэнергии.

Таким образом, на физическом уровне канал передачи от приемника электроэнергии к передатчику электроэнергии использует сигнал мощности в качестве носителя данных. Приемник электроэнергии модулирует нагрузку, и это обнаруживается посредством изменения амплитуды и/или фазы тока или напряжения катушки передатчика. Данные форматируются в байты и пакеты.

Больше информации можно найти в главе 6 части 1 описания стандарта Qi беспроводной передачи электроэнергии (версия 1.0).

Хотя стандарт Qi использует однонаправленную линию связи, было предложено ввести связь от передатчика электроэнергии к приемнику электроэнергии. Однако такой двунаправленный канал не прост для реализации и подвержен большому количеству трудностей и проблем. Например, получающаяся в результате система по-прежнему должна быть обратно совместимой, и, например, передатчики и приемники электроэнергии, которые не способны к двунаправленной связи, должны по-прежнему поддерживаться. Кроме того, технические ограничения с точки зрения, например, вариантов модуляции, изменений мощности, вариантов передачи и т.д. являются очень строгими, поскольку они должны согласовываться с существующими параметрами. Также важно, чтобы стоимость и сложность поддерживались на низком уровне, и, например, желательно, чтобы требования к дополнительным аппаратным средствам были минимизированы, чтобы обнаружение было простым и надежным и т.д. Также важно, чтобы связь от передатчика электроэнергии к приемнику электроэнергии не влияла, не ухудшала и не создавала помех для связи от приемника электроэнергии к передатчику электроэнергии. Кроме того, крайне важное требование состоит в том, чтобы линия связи не ухудшала до неприемлемого уровня способность системы к передаче электроэнергии.

В соответствии с этим много проблем и трудностей связано с улучшением системы передачи электроэнергии, такой как стандарт Qi, чтобы она включала в себя двунаправленную связь.

СИСТЕМНОЕ УПРАВЛЕНИЕ

Чтобы управлять системой беспроводной передачи электроэнергии, стандарт Qi определяет несколько фаз или режимов, в которых система может находиться в разное время работы. Больше подробностей можно найти в главе 5 части 1 описания стандарта Qi беспроводной передачи электроэнергии (версия 1.0).

Система может находиться в следующих фазах:

Фаза выбора

Эта фаза является типичной фазой, когда система не используется, т.е. когда нет никакого соединения между передатчиком электроэнергии и приемником электроэнергии (т.е. никакой приемник электроэнергии не помещен близко к передатчику электроэнергии).

В фазе выбора передатчик электроэнергии может находиться в режиме ожидания, но будет чувствителен к обнаружению возможного присутствия объекта. Аналогичным образом приемник будет ожидать присутствия сигнала мощности.

ФАЗА ТЕСТИРОВАНИЯ

Если передатчик обнаруживает возможное присутствие объекта, например, вследствие изменения емкости, система переходит в фазу тестирования, в которой передатчик электроэнергии (по меньшей мере периодически) обеспечивает сигнал мощности. Этот сигнал мощности обнаруживается приемником электроэнергии, который переходит к отправке начального пакета передатчику электроэнергии. В частности, если приемник электроэнергии присутствует в интерфейсе передатчика электроэнергии, приемник электроэнергии передает начальный пакет интенсивности сигнала передатчику электроэнергии. Пакет интенсивности сигнала обеспечивает показатель степени соединения между катушкой передатчика электроэнергии и катушкой приемника электроэнергии. Пакет интенсивности сигнала обнаруживается передатчиком электроэнергии.

ФАЗА ИДЕНТИФИКАЦИИ И КОНФИГУРАЦИИ

Передатчик электроэнергии и приемник электроэнергии затем переходят к фазе идентификации и конфигурации, в которой приемник электроэнергии передает по меньшей мере идентификатор и требуемую мощность. Информация передается в нескольких пакетах данных посредством нагрузочной модуляции. Передатчик электроэнергии поддерживает постоянный сигнал мощности во время фазы идентификации и конфигурации, чтобы позволить обнаружить нагрузочную модуляцию. В частности, с этой целью передатчик электроэнергии обеспечивает сигнал мощности с постоянной амплитудой, частотой и фазой (кроме изменений, вызванных нагрузочной модуляцией).

При подготовке фактической передачи электроэнергии приемник электроэнергии может применить принятый сигнал для обеспечения питанием его электроники, но он поддерживает свою выходную нагрузку разъединенной. Приемник электроэнергии передает пакеты передатчику электроэнергии. Эти пакеты включают в себя обязательные сообщения, такие как пакет идентификации и конфигурации, или могут включать в себя некоторые определенные необязательные сообщения, такие как пакет расширенной идентификации или пакет задержки мощности.

Передатчик электроэнергии продолжает формировать сигнал мощности в соответствии с информацией, принятой от приемника электроэнергии.

ФАЗА ПЕРЕДАЧИ ЭЛЕКТРОЭНЕРГИИ

Затем система переходит в фазу передачи электроэнергии, в которой передатчик электроэнергии обеспечивает необходимый сигнал мощности, и приемник электроэнергии соединяет выходную нагрузку для подачи на нее принятой электроэнергии.

Во время этой фазы приемник электроэнергии отслеживает условия выходной нагрузки, и, в частности, он измеряет погрешность управления между фактическим значением и желаемым значением некоторой рабочей точки. Он передает эти погрешности управления в сообщениях погрешности управления передатчику электроэнергии с минимальной частотой, например, каждые 250 мс. Это обеспечивает показатель относительно продолжающегося присутствия приемника электроэнергии передатчику электроэнергии. Кроме того, сообщения погрешности управления используются для реализации управление питанием с обратной связью, когда передатчик электроэнергии адаптирует сигнал мощности для минимизации заявленной погрешности. В частности, если фактическое значение рабочей точки равняется желаемому значению, приемник электроэнергии передает погрешность управления со значением, равным нулю, и это не приводит ни к какому изменению сигнала мощности. В случае, если приемник электроэнергии передает погрешность управления, отличающуюся от нуля, передатчик электроэнергии соответствующим образом отрегулирует сигнал мощности.

Система дает возможность эффективной настройки и работы по передаче электроэнергии. Однако существуют сценарии, в которых система передачи электроэнергии не работает оптимально.

Например, в существующей системе передатчик электроэнергии входит фазу тестирования из фазы выбора, когда обнаружено, что внесен новый приемник электроэнергии. Однако если устройство приемника электроэнергии, например, постоянно размещено на передатчике электроэнергии, нет никакого инициирующего события, и приемник электроэнергии может остаться в фазе выбора и быть не в состоянии повторно войти в фазу передачи электроэнергии. Это может быть проблемой для устройств, которым нужно повторное обеспечение электроэнергией с интервалами. Например, устройство c батарейным питанием может быть постоянно размещено на передатчике электроэнергии. После начальной зарядки батареи, когда устройство c батарейным питанием сначала размещено на передатчике электроэнергии, система войдет в фазу выбора. Устройство может использоваться, пока оно находится на передатчике электроэнергии, и батарея может разрядиться. На некоторой стадии может потребоваться, чтобы батарея была перезаряжена. Однако, поскольку система находится в фазе выбора, она не сможет выполнить такую перезарядку.

Чтобы избежать таких сценариев, было предложено, чтобы передатчик электроэнергии достаточно редко входил в фазу тестирования, в которой он проверяет с помощью тестирования приемника электроэнергии, должна ли быть повторно инициирована новая фаза передачи электроэнергии. Однако, как предполагается, это будет выполняться в интервале нескольких минут, что является слишком медленным для многих приложений. Сокращение времени между тестированиями увеличит потребление мощности и для передатчика электроэнергии, и для приемника электроэнергии. Таким образом, сокращение временного интервала между тестированиями до значения, которое является подходящим для самого критического устройства/приложения, привело бы к большим накладным расходам и увеличенному потреблению ресурсов, которое абсолютно не нужно для подавляющего большинства устройств.

Чтобы обратиться к этой проблеме, было предложено, чтобы система могла выходить из фазы выбора и инициировать новую операцию настройки передачи электроэнергии в ответ на прием активного запроса от приемника электроэнергии. Однако это требует, чтобы приемник электроэнергии мог передать активное сообщение (то есть, он не может использовать нагрузочную модуляцию, поскольку нет сигнала мощности, обеспечиваемого передатчиком). Такое активное инициирование приемником электроэнергии может быть выгодным, но требует, чтобы приемник электроэнергии имел достаточную сохраненную энергию для формирования сообщения. Однако это требует перезарядки устройств, и, таким образом, устройства не могут постоянно оставаться в фазе выбора.

В частности, было предложено, чтобы приемник электроэнергии мог пробуждать передатчик электроэнергии, применяя активный сигнал. Приемник электроэнергии использует источник энергии (например, батарею), доступный в приемнике электроэнергии, чтобы сформировать сигнал пробуждения. Однако не все устройства содержат подходящий источник энергии. Кроме того, если присутствует аккумулятор энергии, такой как батарея или конденсатор, он может разрядиться, например, после интенсивного использования приложения или после значительного промежутка времени, в течение которого ток утечки или ток в режиме ожидания истратили доступную сохраненную энергию. Таким образом, потребуется перезарядка.

В более общем случае, тогда как традиционный подход может обеспечить очень подходящие методики для обеспечения электроэнергией или зарядки нового вносимого приемника электроэнергии, он проявляет относительную негибкость и не обслуживает все сценарии, в которых приемник электроэнергии может пожелать извлечь мощность из передатчика электроэнергии. В частности, он лишь позволяет приемникам электроэнергии либо быть обеспеченными электроэнергией передатчиком электроэнергии в качестве части стандартной фазы передачи электроэнергии, либо не быть обеспеченными электроэнергией. Однако многие устройства имеют разные требования в разное время, и, кроме того, эти требования могут значительно различаться между устройствами.

Следовательно, будет полезна улучшенная система передачи электроэнергии и, в частности, система, дающая возможность повышенной гибкости, обратной совместимости, упрощенной реализация, улучшенной адаптации к изменяющимся требованиям мощности и/или улучшенной производительности.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В соответствии с этим изобретение стремится предпочтительно смягчить, облегчить или устранить один или более упомянутых выше недостатков отдельно или в любой комбинации.

В соответствии с аспектом изобретения обеспечен способ работы системы индукционной передачи электроэнергии, содержащей передатчик электроэнергии, генерирующий беспроводной сигнал мощности для приемника электроэнергии, когда находится в фазе передачи электроэнергии, система индукционной передачи электроэнергии поддерживает связь от приемника электроэнергии к передатчику электроэнергии на основе нагрузочной модуляции сигнала мощности, способ содержит этапы, на которых: приемник электроэнергии передает первое сообщение передатчику электроэнергии, первое сообщение содержит требование к сигналу мощности режима ожидания для сигнала мощности во время фазы ожидания; передатчик электроэнергии принимает сообщение; и передатчик электроэнергии обеспечивает сигнал мощности в соответствии с требованием к сигналу мощности режима ожидания во время фазы ожидания.

Изобретение может обеспечить улучшенную систему передачи электроэнергии. Во многих вариантах осуществления она дает возможность дополнительной функциональности и/или увеличенной производительности. Может быть обеспечено улучшенное пользовательское восприятие. Изобретение может дать возможность практического подхода и может обеспечить внедрение в существующие системы.

Подход может внести фазу ожидания, предназначенную для уменьшения потребления электроэнергии, и приемник электроэнергии управляет поведением мощности режима ожидания передатчика электроэнергии.

Во многих вариантах осуществления подход может, в частности, дать возможность улучшенной работы для систем, в которых приемник электроэнергии присоединен к передатчику электроэнергии в течение длительного времени (в том числе, в частности, несколько операций (пере)зарядки). Во многих сценариях может быть достигнута более быстрая активация устройства приемника электроэнергии из режима ожидания.

Приемник электроэнергии может извлечь электроэнергию из сигнала мощности (и, таким образом, из передатчика электроэнергии) во время фазы ожидания. Требование к сигналу мощности режима ожидания может представлять собой такое требование к мощности сигнала мощности режима ожидания, как минимальная амплитуда или ток, которые могут потребляться приемником электроэнергии.

Подход особенно выгоден тем, что приемник электроэнергии может управлять работой передатчика электроэнергии, когда находится в фазе ожидания, чтобы он обеспечил сигнал мощности, который отвечает заданным требованиям и предпочтениям приемника электроэнергии (или устройства, обеспечиваемого электроэнергией приемником электроэнергии). Приемник электроэнергии может, например, управлять передатчиком электроэнергии для обеспечения достаточной мощности для приемника электроэнергии, чтобы поддержать уменьшенную функциональность фазы ожидания, и/или он может управлять характеристиками сигнала мощности таким образом, что это позволяет приемнику электроэнергии пробудить передатчик электроэнергии достаточно быстро и, в частности, таким образом, что в фазу передачи электроэнергии можно войти достаточно быстро, но без чрезмерного использования ресурсов. Например, можно управлять временными интервалами между включениями сигнала мощности для обеспечения нагрузочной модуляции, чтобы удовлетворить требованиям заданного приемника электроэнергии (или связанного устройства).

Кроме того, подход соответствует общим принципам разработки систем передачи электроэнергии, таким как стандарт Qi, в котором он дает возможность основному управлению находиться вместе с приемником электроэнергии.

Подход также может быть относительно легко внедрен в такие системы, как системы стандарта Qi. Например, он может быть реализован с использованием только однонаправленной связи от приемника электроэнергии к передатчику электроэнергии.

В фазе ожидания приемник электроэнергии работает в режиме уменьшенной мощности. Потребляемая мощность приемника электроэнергии, находящегося в фазе ожидания, уменьшен относительно потребляемой мощности приемника электроэнергии, находящегося в режиме передачи электроэнергии. Приемник электроэнергии в фазе ожидания может выполнять уменьшенную функциональность. Как правило, уменьшенная функциональность может быть ограничена функциональностью, которая позволяет системе быть инициализированной для входа в номинальный режим работы (в частности, уменьшенная функциональность может быть ограничена функциональностью пробуждения). В частности, в фазе ожидания нагрузка может быть отсоединена приемником электроэнергии. В фазе передачи электроэнергии нагрузка будет присоединена.

В некоторых сценариях система может использовать цикл управления питанием при нахождении в фазе передачи электроэнергии, но не в фазе ожидания.

Термин "приемник электроэнергии" будет пониматься как относящийся к функциональности, реализованной для обеспечения возможности и выполнения беспроводной передачи электроэнергии. Также будет подразумеваться, что термин может относиться ко всей функциональности обеспечения электроэнергией посредством беспроводной передачи электроэнергии, и в частности, может включать в себя нагрузку. В частности, термин может включать в себя все устройство, поддерживаемое посредством беспроводной передачи электроэнергии, такое как, например, устройство связи или вычислительное устройство, обеспечиваемое электроэнергией через беспроводную передачу электроэнергии. Термин также может включать в себя такую более широкую функциональность независимо от того, реализована ли она в едином блоке или во множестве (физических или функциональных) блоков.

Фаза ожидания может содержать другие фазы или подфазы. Например, фаза ожидания может содержать или состоять из фазы выбора и фазы тестирования для системы типа стандарта Qi.

В соответствии с необязательным признаком изобретения требование к сигналу мощности режима ожидания является показателем требования к мощности сигнала мощности во время фазы ожидания.

Это может быть особенно выгодно во многих сценариях. Приемник электроэнергии может, в частности, управлять передатчиком электроэнергии, чтобы обеспечить сигнал мощности, который позволяет приемнику электроэнергии извлекать требуемую электроэнергию из сигнала мощности, но без чрезмерного использования ресурсов. Например, требование к мощности может представлять собой необходимый уровень мощности и, в частности, может являться средним или минимальным уровнем мощности. В некоторых сценариях сигнал мощности может применяться непрерывно, и уровень мощности может являться непрерывным значением. В некоторых вариантах осуществления сигнал мощности может быть прерывистым, и требование к мощности в режиме ожидания может указывать временную характеристику обеспечиваемой мощности.

В соответствии с необязательным признаком изобретения требование к сигналу мощности режима ожидания представляет минимальную мощность для уменьшенной функциональности приемника электроэнергии.

Это может быть особенно выгодно и может позволить системе быть оптимизированной для обеспечения достаточной мощности для поддержания уменьшенной функциональности приемника электроэнергии, когда он находится в фазе ожидания, но без излишней траты ресурсов.

В некоторых вариантах осуществления приемник электроэнергии может определять требование к сигналу мощности режима ожидания в ответ на потребление мощности для уменьшенной функциональности приемника электроэнергии.

В соответствии с необязательным признаком изобретения уменьшенная функциональность содержит функциональность для инициализации процесса пробуждения для приемника электроэнергии.

Это может, в частности, позволить уменьшить и часто в значительной степени минимизировать потребление мощности, по-прежнему позволяя приемнику электроэнергии (или подключенному устройству) быстро и эффективно возвратиться в рабочий режим и, в частности, в фазу передачи электроэнергии.

Процесс пробуждения, в частности, может представлять собой процессом, который переводит систему в фазу передачи электроэнергии. Процесс пробуждения, в частности, может являться активным процессом пробуждения, в котором приемник электроэнергии передает сообщение инициализации передатчику электроэнергии, не используя нагрузочную модуляцию сигнала мощности, или может, например, являться пассивным процессом пробуждения, в котором приемник электроэнергии передает сообщения передатчику электроэнергии посредством нагрузочной модуляции сигнала мощности.

В соответствии с необязательным признаком изобретения требование к мощности представляет минимальную мощность для поддержания требования к аккумулятору энергии для приемника электроэнергии во время фазы ожидания.

Это может представлять собой особенно выгодный подход. Система может, в частности, гарантировать, что приемник электроэнергии может войти в фазу ожидания, в которой потребляемая мощность уменьшена, по-прежнему гарантируя, что энергия, сохраненная в приемнике электроэнергии, остается достаточной. В частности, подход обеспечивает возможность фазы ожидания с низкой потребляемой мощностью, по-прежнему гарантируя, что батарея приемника электроэнергии поддерживается заряженной до желаемой степени, тем самым гарантировав, что устройство приемника электроэнергии остается готовым к работе.

В соответствии с необязательным признаком изобретения передатчик электроэнергии выполнен с возможностью обеспечивать сигнал мощности периодически во время фазы ожидания, и требование к сигналу мощности режима ожидания является показателем синхронизации временных интервалов, в которых обеспечивается сигнал мощности.

Это может во многих вариантах осуществления уменьшить потребление ресурсов и/или уменьшить функциональность. Например, это может обеспечить компромисс между потреблением мощности и временем для инициализации новой передачи электроэнергии, которое должно быть оптимизировано для предпочтений и требований конкретного приемника электроэнергии (включающего в себя устройство, обеспечиваемое электроэнергией с помощью приемника электроэнергии).

Прерывистый сигнал мощности может использоваться для переноса электроэнергии приемнику электроэнергии и/или обеспечения сигнала, позволяющего приемнику электроэнергии осуществлять связь посредством нагрузочной модуляции. Действительно, прерывистый сигнал мощности может использоваться для тестирования приемника электроэнергии и/или обеспечения электроэнергией приемника электроэнергии во время фазы ожидания.

В соответствии с необязательным признаком изобретения приемник электроэнергии передает сообщение пробуждения передатчику электроэнергии во время фазы ожидания; и передатчик электроэнергии переходит в фазу передачи электроэнергии в ответ на прием сообщения пробуждения.

Это может обеспечить возможность предпочтительной работы. Приемник электроэнергии может войти в фазу передачи электроэнергии в ответ на передачу сообщения пробуждения или, например, в ответ на прием подтверждения сообщения от передатчика электроэнергии.

В некоторых вариантах осуществления система может перейти непосредственно в фазу передачи электроэнергии без применения какой-либо фазы конфигурации. В некоторых вариантах осуществления система может перейти в фазу передачи электроэнергии через одну или несколько промежуточных фаз, таких как промежуточная фаза тестирования или конфигурации. В таких вариантах осуществления вход в фазу передачи электроэнергии может быть обусловлен работой в промежуточных фазах. Таким образом, система может перейти в фазу передачи электроэнергии только в некоторых сценариях (например, с условием подходящего ответа приемника электроэнергии в фазе тестирования).

Таким образом, фаза передачи электроэнергии может быть инициирована с использованием множества параметров конфигурации до пробуждения.

В соответствии с необязательным признаком изобретения сообщение пробуждения передается от приемника электроэнергии посредством нагрузочной модуляции сигнала мощности во время фазы ожидания.

Это может обеспечить эффективную работу во многих вариантах осуществления. В частности, потребление мощности во время фазы ожидания может быть уменьшено. Например, это может позволить обеспечивать сигнал мощности, который является недостаточным для обеспечения электроэнергией (уменьшенной) функциональности приемника электроэнергии, но достаточен для поддержания нагрузочной модуляции. Сокращение мощности может позволить обеспечивать сигнал мощности с намного большей частотой, тем самым давая возможность намного более быстрого пробуждения системы.

В некоторых вариантах осуществления сообщение пробуждения передается приемником электроэнергии с использованием функциональности, обеспечиваемой электроэнергией от внутреннего хранилища энергии приемника электроэнергии.

Это может обеспечить улучшенную производительность в некоторых сценариях. В частности, приемник электроэнергии может передать сообщение пробуждения без необходимости обеспечения с этой целью передатчиком электроэнергии сигнала мощности.

В соответствии с необязательным признаком изобретения приемник электроэнергии определяет уровень запаса энергии для хранилища энергии приемника электроэнергии и передает второе сообщение передатчику электроэнергии во время фазы ожидания, если уровень запаса энергии ниже порога; причем приемник электроэнергии и передатчик электроэнергии инициируют операцию передачи электроэнергии, если передано второе сообщение.

Это может обеспечить предпочтительную производительность и может, в частности, обеспечить эффективный метод поддержания достаточной энергии в приемнике электроэнергии без требования, чтобы фаза ожидания обеспечивала передачу электроэнергии. Таким образом, используется обычная операция передачи электроэнергии, но она может быть применена просто для перезарядки аккумулятора энергии (например, способность поддержания достаточного заряда для обеспечения электроэнергией части функциональности в течение кратковременного интервала).

В соответствии с необязательным признаком изобретения первое сообщение указывает максимальную продолжительность интервала в фазе ожидания, в котором сигнал мощности не обеспечивается посредством передатчика электроэнергии.

Это может обеспечить эффективную производительность во многих сценариях и может, в частности, во многих вариантах осуществления обеспечить возможность внедрения фазы ожидания в существующие системы. В частности, это может обеспечить эффективный метод реализации фазы ожидания с использованием фазы выбора и фазы тестирования систем стандарта Qi. Первое сообщение может обеспечить показатель времени синхронизации, когда следует переключаться между фазой выбора и фазой тестирования, например, максимальную продолжительность фазы выбора.

В соответствии с необязательным признаком изобретения приемник электроэнергии устанавливает уровень мощности для сигнала мощности посредством передачи сообщений ошибок управления мощностью в конце фазы передачи электроэнергии, и требование к сигналу мощности режима ожидания является показателем требования для поддержания уровня мощности во время фазы ожидания.

Это может обеспечить эффективную и в то же время имеющую низкую сложность работу.

В соответствии с необязательным признаком изобретения приемник электроэнергии выполнен с возможностью передавать первое сообщение во время фазы передачи электроэнергии.

Это может обеспечить эффективную и в то же время имеющую низкую сложность работу во многих вариантах осуществления и может, в частности, обеспечить надежную работу с эффективной сигнализацией.

В соответствии с необязательным признаком изобретения передатчик электроэнергии выполнен с возможностью входить в фазу ожидания в ответ на прием сообщения окончания фазы передачи электроэнергии.

Это может обеспечить эффективную и в то же время имеющую низкую сложность работу во многих вариантах осуществления и может, в частности, обеспечить надежную работу с эффективной сигнализацией.

В соответствии с необязательным признаком изобретения приемник электроэнергии заряжает внутреннее хранилище энергии от сигнала мощности во время фазы ожидания.

Это может обеспечить предпочтительную производительность и может, в частности, обеспечить эффективный метод поддержания достаточной энергии в приемнике электроэнергии.

В соответствии с дополнительной функцией изобретения передатчик электроэнергии и приемник электроэнергии переключаются из фазы ожидания в фазу передачи электроэнергии без входа в фазу конфигурации.

В может во многих сценариях обеспечить более эффективное и/или, в частности, более быстрое пробуждение приемника электроэнергии. Таким образом, фаза передачи электроэнергии может быть инициирована с использованием множества параметров конфигурации до пробуждения.

В некоторых вариантах осуществления передатчик электроэнергии и приемник электроэнергии переключаются из фазы ожидания (непосредственно) в фазу тестирования.

В некоторых вариантах осуществления передатчик электроэнергии и приемник электроэнергии переключаются из фазы ожидания (непосредственно) в фазу конфигурации.

В соответствии с необязательным признаком изобретения приемник электроэнергии выполнен с возможностью передавать первое сообщение во время фазы конфигурации, имеющей место до фазы передачи электроэнергии.

Это может обеспечить эффективную и в то же время имеющую низкую сложность работу во многих вариантах осуществления и может, в частности, обеспечить надежную работу с эффективной сигнализацией. Подход может обеспечить выполнение конфигурации фазы ожидания в соответствии с