Системы и способы выбора и конфигурирования схемы модуляции и кодирования

Иллюстрации

Показать все

Изобретение относится к выбору и конфигурации схемы модуляции и кодирования для осуществления коммуникации по сети мобильной связи. Устройство пользовательского оборудования (UE) содержит одно или более устройств для хранения данных, предназначенных для хранения данных модуляции, показывающих: первую группу данных модуляции и вторую группу данных модуляции. Устройство пользовательского оборудования также содержит один или более процессоров, функционально соединенных с одним или более устройствами для хранения данных и выполненных с возможностью: определения того, какая должна использоваться группа из первой группы данных модуляции и второй группы данных модуляции, на основании по меньшей мере частично: параметра уровня, более высокого, чем физический уровень; временного идентификатора радиосети (RNTI), используемого для скремблирования циклического контроля избыточности (CRC); и отличительного признака сообщения управляющей информации нисходящей линии связи (DCI); и обработки сообщения, поступающего из сотовой базовой станции с использованием определенной одной группы из первой группы данных модуляции и второй группы данных модуляции. 3 н. и 19 з.п. ф-лы, 4 табл., 10 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к выбору и конфигурированию схемы модуляции и кодирования для осуществления коммуникации по сети мобильной связи.

Краткое описание чертежей

Фиг. 1 представляет собой блок-схему, иллюстрирующую примерную систему беспроводной связи.

Фиг. 2 представляет собой блок-схему примерных компонентов устройства пользователя (UE).

Фиг. 3 представляет собой блок-схему примерных компонентов базовой станции.

Фиг. 4 иллюстрирует график, показывающий логарифм отношения правдоподобия для различных схем модуляции.

Фиг. 5 представляет собой блок-схему алгоритма, иллюстрирующую способ определения и сообщения индикатора качества канала.

Фиг. 6 схематично изображает блок-схему алгоритма, иллюстрирующую способ определения и сообщения схемы модуляции и кодирования для беспроводной связи.

Фиг. 7 схематично изображает блок-схему алгоритма, иллюстрирующую способ определения схемы модуляции и кодирования для приема данных по каналу нисходящей линии связи.

Фиг. 8 схематично изображает блок-схему алгоритма, иллюстрирующую способ конфигурирования схемы модуляции и кодирования.

Фиг. 9 схематично изображает блок-схему алгоритма, иллюстрирующую другой способ конфигурирования схемы модуляции и кодирования.

Фиг. 10 показывает блок-схему беспроводного устройства (например, UE) в соответствии с примером.

Подробное описание предпочтительных вариантов осуществления

Далее приведено подробное описание систем и способов в соответствии с вариантами осуществления настоящего изобретения. Хотя описаны только некоторые варианты осуществления, следует понимать, что настоящее изобретение не ограничено каким-либо одним вариантом осуществления, но вместо этого включает в себя многочисленные альтернативные варианты, модификации и эквиваленты. Кроме того, многочисленные конкретные детали изложены в последующем описании для обеспечения полного понимания вариантов осуществления, раскрытых в данном документе, однако, некоторые варианты осуществления могут применяться на практике без некоторых или всех этих деталей. Более того, с целью ясности, некоторые технические материалы, которые известны в предшествующем уровне техники, не были описаны подробно, с целью упрощения описания.

Технология беспроводной мобильной связи используют различные стандарты и протоколы для передачи данных между узлом (например, передающая станция или приемопередатчик узла) и беспроводным устройством (например, устройство мобильной связи). Некоторые устройства беспроводной связи используют множественный доступ с ортогональным частотным разделением каналов (OFDMA) при передаче данных по нисходящей линии связи (DL) и множественный доступ с частотным разделением на одной несущей (SC-FDMA) при передаче данных по восходящей линии связи (UL). Стандарты и протоколы, которые используют мультиплексирование с ортогональным частотным разделением каналов (OFDM) для передачи сигналов, включают в себя стандарт проекта партнерства третьего поколения (3GPP) долгосрочного развития (LTE) релиз 8, 9 и 10, Институт инженеров по электротехнике и электронике (IEEE) 802.16 (например, 802.16e, 802.16m), который обычно известен промышленным группам, как стандарт WiMAX (глобальная совместимость для микроволнового доступа), и стандарт IEEE 802.11- 2012, который широко известен промышленным группам, как Wi-Fi.

В 3GPP сети радиодоступа (RAN) LTE системы, узел может представлять собой комбинацию узла Bs усовершенствованной универсальной наземной сети радиодоступа (E-UTRAN) (также обычно называется, как развитый узел Вs, усовершенствованный узел Bs, eNodeBs, или еNBs) и контроллеров радиосети (RNCs), которые поддерживают связь с беспроводным устройством, известным как устройство пользователя (UE). Передачи данных по нисходящей линии связи (DL) могут осуществляться от узла (например, еNB) на беспроводное устройство (например, UE), и передачи данных по восходящей линии связи (UL) могут осуществляться от беспроводного устройства к узлу.

В однородных сетях узел, называемый также макроузел или макросота, может обеспечить основное покрытие беспроводной связи для беспроводных устройств в соте. Сота может быть областью, в которой беспроводные устройства выполнены с возможностью устанавливать связь с макроузлом. Гетерогенные сети (HetNets) могут быть использованы для обработки повышенной нагрузки трафика на макроузлах благодаря увеличению использования и функциональности беспроводных устройств. HetNets может включать в себя уровень запланированных макроузлов высокой мощности (макро-еNBs или макросоты), с перекрытием уровней узлов малой мощности (малые соты, малые еNBs, микро-еNBs, пико-еNBs, фемто-еNBs или исходные еNBs [ HeNBs]), которые могут быть развернуты в менее хорошо спланированной, или даже полностью не координируемой в пределах зоны покрытия (соты) макроузла. Узлы малой мощности обычно могут упоминаться как "малые соты", малые узлы или маломощные узлы.

В дополнение к увеличению зоны покрытия и/или уровня нагрузки, близость к узлу и благоприятная геометрия, используемая UEs в некоторых схемах развертывания малой соты, обеспечивается возможность использования схем модуляции более высокого порядка для передачи данных по нисходящей линии. Например, современные схемы модуляции в 3GPP обеспечивают пиковую скорость передачи при 64 квадратурной амплитудной модуляции (QAM), в то время, как улучшенная близость и геометрия может позволить осуществить 256-QAM. Тем не менее поддержка дополнительной схемы модуляции может, в некоторых предложениях, включать в себя изменения в форматах управляющей сигнализации нисходящей линии связи для индикации схемы модуляции и кодирования (MCS) 256-QAM, а также изменение в форматах сигнализации информации управления восходящей линии связи (UCI) для сообщения индикатора качества канала (CQI) для качества линии связи, соответствующей 256-QAM. В некоторых случаях прямое расширение существующей сигнализации путем добавления дополнительных битов в соответствующие поля информации управления нисходящей и восходящей линии связи не желательно, из-за наличия дополнительной служебной сигнализации и потенциального негативного влияния на покрытие восходящей линии связи для некоторых управляющих сообщений восходящей линии связи (например, физический канал управления восходящей линии связи [PUCCH]).

В настоящее время, в соответствии со спецификацией LTE (см. Технические спецификации 3GPP [TS] 36.213 v. 11.4.0 [2013-10]) модуляция извлекается на UE на основании 5-битового поля, предоставляемого обслуживающей сотой в DCI на каждый транспортный блок с использованием параметра MCS индекса (IMCS). UE использует IMCS значение, принятое в DCI в сочетании с таблицей, закодированной в спецификации (в частности, таблица 7.1.7.1-1 3GPP TS. 36.213) для определения порядка (QM) модуляции и размера транспортного блока (ТBS), используемого в физическом совместно используемом канале нисходящей линии связи (PDSCH).

Индикатор качества канала (CQI) содержит информацию, отправленную из UE в еNB (т.е. по UL), чтобы указать наиболее подходящее значение MCS для передач по нисходящей линии связи. CQI представляет собой 4-битное значение и основано на наблюдаемом отношении сигнал-помеха плюс шум (SINR) на устройстве пользователя на каждом кодовом слове. Оценка CQI учитывает UE функциональные возможности, такие как количество антенн и тип используемого приемника для детектирования. Значения CQI используются еNB для выбора MCS (адаптации линии связи) для передачи по нисходящей линии связи. Дефиниция CQI и интерпретации индексов CQI приведены в таблице 7.2.3-1 спецификации 3GPP TS 36.213. На основе неограниченного интервала наблюдения по времени и частоте, UE извлекает для каждого значения CQI, переданного по восходящей линии связи в субкадре n, самый высокий индекс CQI между 1 и 15 в таблице 7.2.3-1, который удовлетворяет условию качества канала, или CQI индекс 0, если CQI индекс 1 не удовлетворяет условию. В частности, условие качества канала является условием, когда один PDSCH, транспортный блок с комбинацией схемы модуляции и размера транспортного блока, соответствующего CQI индексу, и занимающий группу физических блоков ресурсов нисходящей линии связи, называемые CSI опорными ресурсами, может быть принят с вероятностью ошибки транспортного блока не превышающей 0,1.

На основании вышеизложенного и в свете настоящего описания, можно видеть, что прямое расширение существующего MCS и CQI таблиц с дополнительными записями, соответствующими 256-QAM, потребует дополнительного бита для каждого из IMCS и CQI параметров. Тем не менее, это изменение потребует изменений в форматах управляющей сигнализации нисходящей линии связи и восходящей линии связи. В настоящем описании, мы предлагаем различные способы конфигурации 256-QAM сигнализации в нисходящей линии связи и каналов управления восходящей линии связи без необходимости изменения форматов сигнализации управления восходящей и нисходящей линий связи. В одном варианте осуществления размеры таблиц, используемые для индикации IMCS и CQI, поддерживаются таким образом, что нет необходимости в определении нового DCI формата и CQI отчетности.

В одном варианте осуществления UE включает в себя компонент таблицы, компонент выбора таблицы и компонент связи. Компонент таблицы выполнен с возможностью поддерживать две таблицы или более, каждая из которых имеет записи для множества доступных схем модуляции. Две таблицы или более включают в себя таблицу по умолчанию и вторичную таблицу. Таблица по умолчанию и вторичная таблица имеет сопоставленное число записей, и вторичная таблица содержит запись, соответствующую 256-QAM схеме. Компонент выбора таблицы выполнен с возможностью выбирать выбранную таблицу из одной из таблиц по умолчанию и вторичной таблицы. Компонент связи выполнен с возможностью принимать и обрабатывать сообщения от еNB, на основании схемы модуляции и кодирования выбранной таблицы. В некоторых вариантах осуществления настоящее изобретение позволяет UE или еNB поддерживать весь спектр схем модуляции (от QPSK до 256-QAM) без каких-либо изменений в формате сигнализации для каналов управления нисходящей линии связи и восходящей линии связи (т.е. без нового DCI и UCI форматов).

В данном описании термины "узел" и "сота" оба предназначены для использования как синонимы и относятся к точке беспроводной передачи, выполненной с возможностью устанавливать связь с множеством устройств пользователя, таким как еNB, маломощный узел или другая базовая станция.

На фиг. 1 представлена схема, иллюстрирующая узлы в RAN. RAN включает в себя еNB 102, который предоставляет услуги беспроводной связи в пределах зоны 104 покрытия соты. В пределах зоны 104 покрытия макросоты находятся две малые соты 106, 108, которые могут быть использованы для улучшения функциональных возможностей в зонах интенсивного использования, позволяя макросоте разгрузить нагрузку сот 106, 108. Другая малая сота 110 показана, как находящаяся на границе зоны 104 покрытия. Малые соты 106, 108 и 110 обеспечивают покрытие в зонах 114 покрытия малой соты, которые могут быть использованы для заполнения пробела в зоне 104 покрытия макросоты, и на краю границ между зоной 104 покрытия макросоты, как показано на фиг. 1. еNB 102 и малые соты обеспечивают услуги связи для одного или более UEs 112. В одном варианте осуществления еNB 102 и малые соты 106, 108 и 110 координирует связь, выполняют процедуру хендовера и другие услуги связи, как показано стрелками 116.

Несмотря на то что проиллюстрированы только три малые соты 106, 108, 110 в зоне 104 покрытия макросоты еNB 102, зона покрытия макросоты может включать в себя сотни малых узлов. Например, малые узлы, сконфигурированные как HeNBs, могут быть расположены в сотнях домов, которые находятся в пределах зоны покрытия одного макроузла. Аналогичным образом, в пределах одной RAN может быть комбинация из разреженных и плотных схем развертываний малых сот. В одном варианте осуществления одна или более малых сот 106, 108, 110 развернуты независимо от макроузла. Аналогичным образом, одна или несколько малых сот могут быть расположены таким образом, что не существует никакого перекрытия с зоной 104 покрытия макроузла.

В соответствии с одним из вариантов осуществления еNB 102 или другие контроллеры для макросоты, малые соты 106, 108 и 110 выполнены с возможностью варьировать МCS, используемый для связи с UEs 112. Например, МCS, используемый для связи с конкретным UE 112, может изменяться в зависимости от текущего качества канала. Как уже говорилось выше, из-за уменьшения расстояния и улучшения геометрии UEs 112 могут быть способны осуществлять связь с использованием схемы модуляции высшего порядка в пределах малых сот, чем в пределах макросоты. В одном варианте осуществления UE 112 и еNB 102 (или другой RNC), поддерживают или конфигурируют альтернативные таблицы для выбора или указания МCS. Например, еNB 102 может послать сообщение в UE 112, конфигурируя новую таблицу, которая будет использоваться вместо унаследованной таблицы. Новая таблица может включать в себя MCS, который имеет более высокую спектральную эффективность, чем унаследованная таблица. UE 112 может определить, какую таблицу следует использовать для отправки индикаторов качества канала и для интерпретации индикации MCS, который используется для обработки принятых сообщений. Более подробное описание работы и примеры будут обсуждены со ссылкой на оставшиеся чертежи.

На фиг. 2 представлена ​​блок-схема одного варианта осуществления UE 112. UE 112 включает в себя компонент 202 таблицы, компонент 204 выбора таблицы, компонент 206 связи, буфер 208 программного обеспечения и компонент 210 размера буфера программного обеспечения. Компоненты 202-210 приведены в качестве только примера и не могут быть включены в состав всех вариантов осуществления изобретения. Некоторые варианты осуществления могут включать в себя любой один или любую комбинацию двух или более компонентов 202-210.

Компонент 202 таблицы выполнен с возможностью сохранять или поддерживать множество таблиц. В одном варианте осуществления компонент 202 таблицы выполнен с возможностью поддерживать таблицы для выбора и указания схем модуляции, скоростей кодирования, размера транспортного блока или тому подобное. В одном варианте осуществления компонент 202 таблицы поддерживает две различные таблицы, которые используются для той же цели. Например, компонент 202 таблицы может хранить таблицу по умолчанию и вторичную таблицу, которая может быть использована вместо таблицы по умолчанию. Таблица по умолчанию может соответствовать предшествующей версии стандарта связи или схемам модуляции, где некоторые UEs 112, которые используют сеть мобильной связи, способны использовать. Например, несколько типов и версий UEs 112 могут быть использованы для получения доступа к сети мобильной связи, и различные типы и варианты могут иметь различные пиковые значения скорости передачи данных или порядок модуляции. В одном из вариантов осуществления, в данном субкадре на данной соте используется только одна из таблиц. Например, все PDSCH в пределах данного субкадра может интерпретироваться на основе той же таблицы.

Каждая таблица может включать в себя множество записей для различных схем модуляции, которые могут быть использованы UE 112 или еNB 102. В одном варианте осуществления количество записей в каждой таблице соответствует, таким образом, записям, которые могут быть использованы вместо друг друга. В одном варианте осуществления количество записей во вторичной таблице меньше или равно количеству записей в таблице по умолчанию. В одном варианте осуществления таблица по умолчанию включает в себя схемы, которые могут быть использованы любым подключенным UE 112, тогда как вторичная таблица включает в себя схемы модуляций более высокого порядка или схемы, которые могут быть использованы только определенными UEs 112. В одном варианте осуществления вторичная таблица включает в себя схему модуляции, которая имеет более модуляцию более высокого порядка, чем любая из схем в таблице по умолчанию. Например, максимальный порядок модуляции в таблице по умолчанию, может быть 64-QAM, в то время как модуляция высокого порядка во вторичной таблице может быть 256- QАМ.

В одном варианте осуществления компонент 202 таблицы хранит или поддерживает таблицу схемы модуляции и кодирования индекса IMCS. Таблица IMCS может включать в себя таблицу, используемую для выбора порядка модуляции и размера транспортного блока (с использованием ITBS) на основании MCS индекса. Один из примеров таблицы IMCS включает в себя таблицу модуляции и TBS индекса для PDSCH (таблица 7.1.7.1-1), определенного в 3GPP TS 36.213, которая приводится ниже.

Таблица 1

MCS Индекс (Imcs) Порядок модуляции (Qm) TBS Индекс (Itbs)
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 4 9
11 4 10
12 4 11
13 4 12
14 4 13
15 4 14
16 4 15
17 6 15
18 6 16
19 6 17
20 6 18
21 6 19
22 6 20
23 6 21
24 6 22

25 6 23
26 6 24
27 6 25
28 6 26
29 2 резерв
30 4 резерв
31 6 резерв

В одном из вариантов осуществления, таблица 1 используется в качестве таблицы по умолчанию или как унаследованная таблица, в то время как новая таблица используется в качестве усовершенствованной или вторичной таблицы. Использование таблицы 1 может обеспечить обратную совместимость с существующими UEs 112, которые работают в соответствии с действующими стандартами. В одном варианте осуществления вторичная таблица используется для обеспечения схем модуляции, которые могут быть использованы новыми UEs 112 и последующими версиями. В одном варианте осуществления вторичная таблица включает в себя 256-QAM порядок модуляции (QM = 8). В одном варианте осуществления общее количество записей в каждой таблице по умолчанию и вторичной таблице не превышает 32 для размещения индикации с использованием IMCS в 5-битовое поле.

В одном варианте осуществления несколько вторичных таблиц указываются или поддерживается. Например, любая из вторичных таблиц может быть кандидатом для вторичной (или новой) таблицы. В одном из вариантов осуществления сообщение управления радиоресурсами (RRC) из обслуживающей соты указывает на то, какую таблицу из множества вторичных таблиц следует использовать в качестве вторичной таблицы. В одном из вариантов осуществления один из вторичных таблиц определяются как вторичная таблица по умолчанию. UE 112 может использовать вторичную таблицу по умолчанию в качестве вторичной таблицы, если обслуживающая сота или еNB 102 не указывают иное.

В одном варианте осуществления вторичная таблица включает в себя таблицу, аналогичную таблице 1, с одной или несколькими записями (например, строки), выгруженные для другой конфигурации. В одном варианте осуществления таблица по умолчанию включает в себя первую запись, соответствующую первому порядку модуляции, и вторую запись, соответствующую второму порядку модуляции более высокому порядку, чем первый порядок модуляции, и имеющий ту же спектральную эффективность. В одном варианте осуществления вторичная таблица включает в себя схему 256-QAM вместо одной первой записи и второй записи. В качестве примера, строки, соответствующие IMCS значениям 10 и 17 в таблице 1, могут быть выгружены в 256-QAM порядке модуляции (QM = 8) во вторичную таблицу. Значения 10 и 17 могут представлять интерес, потому что они имеют такую же спектральную эффективность, как значения IMCS 9 и 16. В частности, обратите внимание, что в таблице 1, две записи с той же спектральной эффективностью определяются, так как один работает лучше, чем другие в зависимости от частоты/времени избирательности канала. Например, IMCS значения 9 и 10 имеют одинаковую спектральную эффективность и IMCS значения 16 и 17 имеют одинаковую спектральную эффективность, но IMCS = 9 работает лучше, чем IMCS = 10 в меньшем частотно-избирательном канале, в то время как IMCS = 10 работает лучше, чем IMCS = 9 в более частотно-избирательном канале. Тем не менее, в одном варианте осуществления, основной целью вторичной таблицы является обслуживание UE 112 в меньшем временном/частотном избирательном канале. В этом варианте осуществления мы можем заменить записи для IMCS значений 10 и 17, чтобы сделать доступными больше записей для 256-QAM записей, минимизируя влияние на производительность, имеющие меньшее количество записей, назначенных для QPSK, 16-QAM и 64-QAM. Таблица 2 иллюстрирует один из вариантов осуществления вторичной IMCS таблицы.

Таблица 2

MCS индекс Порядок модуляцииуляциимоммодуляции TBS индекс
(Imcs) (Om) (Itbs)
0 2 0
1 8 27
2 2 2
3 8 28
4 2 4
5 8 29
6 2 6
7 8 30
8 2 8
9 8 31
10 8 32
11 4 10
12 4 11
13 4 12
14 4 13
15 4 14
16 4 15
17 8 33
18 6 16
19 6 17
20 6 18
21 6 19
22 6 20
23 6 21
24 6 22
25 6 23
26 6 24
27 6 25
28 6 26
29 2 резерв
30 4 резерв
31 6 резерв

В одном из вариантов осуществления таблица по умолчанию и вторичная таблица каждая включает в себя CQI таблицу. CQI таблица может включать в себя таблицу, используемую для обозначения модуляции, предпочитаемую UE 112, и скорость кодирования, предпочитаемую UE 112, на основании CQI индекса. Один пример CQI таблицы включает в себя таблицу 7.2.3-1, определенную в 3GPP TS 36.213, которая приводится ниже как таблица 3.

Таблица 3

CQI индекс Модуляция Скорость кодирования x 1024 Эффективность
0 Вне диапазона
1 QPSK 78 0.1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6016
5 QPSK 449 0.8770
6 QPSK 602 1.1758
7 16QAM 378 1.4766
8 16QAM 490 1.9144
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547

Любой один из примеров или принципов, описанных выше по отношению к таблице IMCS, может быть использован по отношению к CQI таблице для получения информации о состоянии канала. Например, UE 112, которое поддерживает 256-QAM, может быть сконфигурировано с двумя таблицами отображения CQI, где некоторые из записей в двух таблицах различны, и, по меньшей мере, одна таблица должны включать в себя значения CQI, соответствующие 256-QAM порядку модуляции. Общее количество записей в каждой из конфигурированных таблиц не может превышать 16, чтобы вместить максимальную длину 4-битного CQI отчета. Для данного CQI отчета используется только одна CQI таблица. В одном варианте осуществления множество вторичных CQI таблиц указывается или поддерживается. Подобно варианту осуществления с несколькими IMCS таблицами, RRC сообщение может указывать, какая таблица из множества вторичных CQI таблиц используется в качестве вторичной таблицы. Кроме того, одна вторичная CQI таблица может быть указана в качестве вторичной CQI таблицы по умолчанию. Вторичная CQI таблица по умолчанию может быть использована, если сигнализации RRC не изменяет вторичную таблицу, чтобы быть другой вторичной CQI таблицей. Один из вариантов осуществления вторичной CQI таблицы показан ниже в таблице 4.

Таблица 4

CQI индекс Модуляция Скорость кодирования Эффективность
x 1024
0 Вне диапазона
1 QPSK 78 0.1523
2 256QAM 803 6.2734
3 QPSK 193 0.3770
4 256QAM 889 6.9453
5 QPSK 449 0.8770
6 256QAM 952 7.4375
7 16QAM 378 1.4766
8 16QAM 490 1.9144
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547