Способ определения расположения нижней границы консолидированного слоя торосов и стамух по солености талой воды при электротермобурении

Изобретение относится к ледоведению и ледотехнике и может быть использовано в ледовых исследованиях, в частности в районах добычи углеводородов на шельфе замерзающих морей. Способ включает осуществление теплового электрического бурения скважин во льду. Одновременно с бурением производят отсос с края рабочей части нагревательной коронки талой воды, которая по шлангу подается на поверхность льда к измерителю солености, и запись на компьютер или логгер скорости бурения и солености талой воды в зависимости от глубины, при последующей обработке записей сопоставляют скорость бурения с соленостью талой воды с учетом времени прохода воды из скважины по шлангу до измерителя солености, и возрастание скорости бурения, соответствующее переходу бура из плотного льда в рыхлый лед или пустоту, ближайшее к резкому увеличению солености откачанной воды за счет большой разницы в соленостях расплава льда и морской воды, определяют как выход бура из консолидированного слоя и фиксируют глубину расположения его нижней границы. Технический результат заключается в создании способа определения расположения нижней границы консолидированного слоя.

Реферат

Изобретение относится к ледоведению и ледотехнике и может быть использовано в ледовых исследованиях, в частности в районах добычи углеводородов на шельфе замерзающих морей.

Торос представляет собой хаотическое нагромождение льда, находящееся на плаву, и частично смороженное. Стамуха представляет собой неподвижный торос, образовавшийся или придрейфовавший на мелководье и сидящий на грунте. Задачей исследования внутреннего строения льда является оценка возможных воздействий этих ледяных образований на различные морские сооружения. Одной из важнейших характеристик торосов и стамух, интересующих разработчиков, является толщина консолидированного слоя (КС). Консолидированная часть льда - это слой смороженных кусков льда. Эта часть льда водонепроницаема, поэтому при тепловом бурении-плавлении в скважине находится талая вода.

Известные дистанционные методы исследования льда, такие как радиолокация и гидролокация, не могут обеспечить получение достоверных данных о расположении границ и толщине КС торосов и стамух из-за помех при зондировании неоднородного льда. Для таких исследований обычно проводят бурение скважин во льду с отбором или без отбора керна.

Известен способ определения расположения и толщины КС по извлеченному из скважины керну. Во время бурения по провалам бура фиксируются встречающиеся пустоты, и по глубине погружения керноотборника определяется их расположение по вертикали. По анализу текстуры льда блоков керна и глубине их расположения определяется участок керна, соответствующий КС. Достоинством данного способа является достоверность определения толщины КС. Недостатками являются низкая точность (отклонение до 0,1 м) определения расположения КС по глубине и высокая трудоемкость отбора кернов, не позволяющая выполнить массовое исследование КС ледяного образования.

Известен способ определения расположения нижней границы КС по измерениям температуры льда в скважинах. Температура льда в пределах консолидированного слоя изменяется линейно от самой низкой в верхней части слоя до температуры замерзания воды на нижней его границе. На глубине ниже КС наблюдается гомотермия. Достоинством данного способа является достоверность определения расположения нижней границы КС. Недостатками являются неоднозначность определения расположения верхней границы КС и высокая трудоемкость, позволяющая выполнить исследование температуры ледяного образования всего в нескольких точках.

Известен способ определения расположения и толщины КС по исследованиям локальной прочности льда в скважине с помощью зонд-индентора [1]. Измеряется распределение локальной прочности льда в скважине по глубине, затем выделяется участок скважины, располагающийся в районе уровня воды, где локальная прочность льда имеет высокие значения. Этот участок соответствует КС. Достоинством данного способа является достоверность определения наличия прочного льда, соответствующего КС, на горизонтах, где выполняется зондирование. Недостатком является приблизительность определения границ расположения КС, т.к. зондирование выполняется с интервалом не менее 0,4 м.

Известен способ определения расположения нижней границы КС по моменту появления в скважине морской воды при механическом бурении. Способ основан на том, что КС водонепроницаем, а в момент, когда бур выходит из КС в полость, сообщающуюся с морем, в скважине появляется вода. Достоинством данного способа является его простота, недостатками являются недостаточная точность определения глубины расположения нижней границы КС и невозможность его использовать, если превышение верхней границы льда торосистого образования над уровнем моря составляет выше 0,5-1 м из-за невозможности визуально зафиксировать момент появления воды в скважине.

Известен способ определения расположения и толщины КС по скорости погружения бура при бурении ледяного образования. Фиксируется, на каких участках скважины бур погружался медленно, с трудом. Эти участки отмечаются как соответствующие плотному льду. Первый такой участок плотного льда, расположенный ниже уровня воды, соответствует КС. Наиболее близким является «Способ определения структуры торосов и стамух, свойств льда и границы льда и грунта» [2], когда участки плотного льда определяются по компьютерной записи скорости погружения термобура. Достоинством этого способа с компьютерной записью скорости бурения является возможность определения величины и расположения пустот во льду с высокой точностью, а также возможность непосредственного определения расположения нижней границы КС по давлению воды над нагревательной коронкой. Недостатком данного способа является то, что при низких температурах воздуха измерение давления воды в скважине представляет трудности и даже становится невозможным, а без записи давления воды в некоторых случаях присутствует неоднозначность в определении границ КС, например, если в КС присутствуют каверны. Бур проваливается в каверну, на записи фиксируется пустота, формально ниже которой начинается новый блок льда.

Целью настоящего изобретения является получение при бескерновом электротермобурении объективной информации для определения расположения нижней границы КС.

Указанная цель достигается следующими действиями.

1. Для бурения торосов и стамух в составе электротермобура используют «Устройство для бурения скважин в ледяных образованиях» [3], в дальнейшем - нагревательная коронка.

2. Одновременно с бурением производят отсос талой воды с края рабочей части нагревательной коронки. Эта вода по шлангу подается на поверхность льда к измерителю солености. Мощность насоса должна быть подобрана так, чтобы вся талая вода, образующаяся при бурении, откачивалась наверх.

3. В процессе теплового бурения-плавления льда производят запись на компьютер скорости бурения и солености талой воды.

4. При выходе бура из КС в неконсолидированную часть киля насос начнет закачивать смесь талой воды и окружающей морской воды. Соленость талой воды составляет единицы промилле, в то время как соленость морской воды в большинстве морей и океанов превышает . При последующей обработке записей на компьютере сопоставляются зависимости скорости бурения и солености талой воды от глубины с учетом времени прохода воды из скважины по шлангу до измерителя солености. Изменение скорости бурения, соответствующее переходу бура из плотного льда в рыхлый лед или пустоту, ближайшее к резкому изменению солености талой воды, определяется как выход бура из КС. Соответственно, глубина перехода термобура из плотного льда в рыхлый лед или пустоту определяется как глубина расположения нижней границы КС.

Осуществление данного способа исследования КС торосов и стамух производится путем модернизации электротермобура для возможности отсоса талой воды с края нагревательной коронки и подачи ее по шлангу на поверхность льда. Электропитание насоса для откачки воды осуществляется от того же генератора, что и электротермобур.

Предлагаемый способ обеспечивает получение большого объема необходимой объективной информации о КС торосов и стамух. Экономический эффект от использования предлагаемого способа состоит из экономии времени высококвалифицированных специалистов при полевых работах. Учитывая повышенный интерес к строению торосистых образований в районах добычи углеводородов на шельфах замерзающих морей, настоящее предложение можно считать актуальным.

Источники информации

1. Ковалев С.М., Никитин В.А., Смирнов В.Н., Шушлебин А.И. Способ определения физико-механических свойств ледовых образований в натурных условиях в скважинах. Патент на изобретение №2238018 от 27.02.2009. Бюллетень №6.

2. Морев В.А., Морев А.В., Харитонов В.В. Способ определения структуры торосов и стамух, свойств льда и границы льда и грунта. Патент на изобретение №2153070 от 20.07.2000. Бюллетень №20.

3. Морев В.А., Морев А.В., Харитонов В.В., Никифоров А.Г. Устройство для бурения скважин в ледяных образованиях. Патент на полезную модель №52068 от 03.10.2005 г. Бюллетень №7.

Способ определения расположения нижней границы консолидированного слоя торосов и стамух, характеризующийся тем, что осуществляют тепловое электрическое бурение скважин во льду, одновременно с бурением производят отсос с края рабочей части нагревательной коронки талой воды, которая по шлангу подается на поверхность льда к измерителю солености, и запись на компьютер или логгер скорости бурения и солености талой воды в зависимости от глубины, при последующей обработке записей сопоставляют скорость бурения с соленостью талой воды с учетом времени прохода воды из скважины по шлангу до измерителя солености, и возрастание скорости бурения, соответствующее переходу бура из плотного льда в рыхлый лед или пустоту, ближайшее к резкому увеличению солености откачанной воды за счет большой разницы в соленостях расплава льда и морской воды, определяют как выход бура из консолидированного слоя и фиксируют глубину расположения его нижней границы.