Устройство и способ для обработки звукового сигнала с использованием комбинирования в диапазоне перекрытия

Иллюстрации

Показать все

Изобретение относится к средствам для обработки звукового сигнала. Технический результат заключается в повышении эффективности обработки сигнала. Устройство для обработки аудиосигнала, содержащего последовательность блоков спектральных значений, содержит: процессор для обработки последовательности блоков с использованием, по меньшей мере, одного значения модификации для первого блока, с тем чтобы получать первый результирующий сигнал с уменьшенным наложением спектров или без наложения спектров в диапазоне перекрытия, и с использованием, по меньшей мере, одного второго отличающегося значения модификации для второго блока из последовательности блоков, с тем чтобы получать второй результирующий сигнал с уменьшенным наложением спектров или без наложения спектров в диапазоне перекрытия; и модуль комбинирования для комбинирования первого результирующего сигнала и второго результирующего сигнала в диапазоне перекрытия, с тем чтобы получать обработанный сигнал для диапазона перекрытия. 3 н. и 12 з.п. ф-лы, 16 ил.

Реферат

Настоящее изобретение относится к аудиообработке, и в частности, к аудиообработке в контексте обработки аудиосигналов под влиянием наложения спектров.

В обычном режиме работы, модифицированное дискретное косинусное преобразование (MDCT) имеет признаки, которые делают его хорошо подходящим инструментальным средством для вариантов применения для кодирования аудио. Оно формирует критически дискретизированное спектральное представление сигналов из перекрывающихся кадров и предоставляет идеальное восстановление. Это означает то, что входной сигнал может быть восстановлен из спектральных коэффициентов прямого преобразования посредством применения операции обратного преобразования и суммирования с перекрытием в областях перекрытия. Тем не менее, если дополнительная обработка применяется к спектральным коэффициентам, MDCT имеет некоторые недостатки по сравнению с избыточно дискретизированными представлениями, такими как перекрывающаяся обработка на основе DFT. Даже относительно простая зависимая от времени и частотно-зависимая регулировка усиления, к примеру, используемая для управления динамическим диапазоном или предотвращения отсечения, может формировать нежелательные побочные эффекты. Следовательно, отдельная постобработка на основе DFT для декодирования аудио применяется в нескольких вариантах применения, которые требуют этого вида модификации сигналов, хотя спектральное представление на основе MDCT должно быть доступно в декодере. Один недостаток, помимо вычислительной сложности, заключается в дополнительной задержке, введенной посредством такой постобработки.

Стандартный подход для уменьшения наложения спектров во временной MDCT-области заключается в том, чтобы воссоздавать избыточно дискретизированное модулированное комплексное перекрывающееся преобразование (MCLT). MCLT возникает в результате комбинирования MDCT со своим комплексным аналогом, модифицированным дискретным синусным преобразованием (MDST). MCLT предлагает аналогичные признаки, такие как DFT-представление сигнала, и, следовательно, его устойчивость к наложению спектров во временной области (TDA) вследствие спектрального манипулирования является сравнимой с DFT-представлением. Однако, к сожалению, вычисление MDST-спектра из MDCT-спектра является вычислительно очень сложным и формирует значительную задержку сигнала. Следовательно, предшествующий уровень техники предоставляет технологии для уменьшения как задержки, так и сложности [2-3]. В этих подходах, преобразование из действительной в комплексную область (R2C) используется для того, чтобы аппроксимировать требуемые MDST-значения. Затем в MCLT-области применяется манипулирование спектральных коэффициентов. Впоследствии, комплексные значения преобразованы в MDCT-область снова с использованием преобразования из комплексной в действительную область (C2R). Хотя этот подход обеспечивает хорошие результаты с точки зрения наложения спектров устойчивости, он имеет некоторые недостатки. Во-первых, MDST-коэффициенты оцениваются, и их точность задается посредством величины вычислительной сложности. Во-вторых, цепочка преобразований R2C-C2R по-прежнему формирует задержку.

[1] H. S. Malvar "A modulated complex lapped transform and its applications to audio processing", in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Phoenix, March 1999.

[2] Kuech, F.; Edler, B. "Aliasing Reduction for Modified Discrete Cosine Transform Domain Filtering and its Application to Speech Enhancement", in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 21-24 Oct. 2007.

[3] Edler, B. "Aliasing Reduction for Gain Control with Critically Sampled Filter Banks", in First International Conference on Communications and Electronics, ICCE '06, 10-11 Oct. 2006.

[4] E. Larsen and R. M. Aarts "Audio Bandwidth Extension - Application to psychoacoustics, Signal Processing and Loudspeaker Design", John Wiley and Sons, Ltd, 2004.

[5] M. Dietz, L. Liljeryd, K. Kjörling and O. Kunz "Spectral Band Replication, the novel approach in audio coding", in 112th AES Convention, Munich, May 2002.

[6] P. Ekstrand "Bandwidth Extension of Audio Signals by Spectral Band Replication", in Proceedings of 1st IEEE Benelux Workshop on MPCA, Leuven, November 2002.

Цель настоящего изобретения заключается в том, чтобы предоставлять усовершенствованный принцип для обработки аудиосигнала.

Эта цель достигается посредством устройства для обработки аудиосигнала по п. 1, способа обработки аудиосигнала по п. 15 или компьютерной программы по п. 16.

В аспекте настоящего изобретения, устройство для обработки аудиосигнала, содержащего последовательность блоков спектральных значений, содержит процессор для обработки последовательности блоков спектральных значений с использованием, по меньшей мере, одного значения модификации для первого блока, с тем чтобы получать первый результирующий сигнал с уменьшенным наложением спектров или без наложения спектров в диапазоне перекрытия, и с использованием, по меньшей мере, одного второго отличающегося значения модификации из второго блока из последовательности блоков спектральных значений, с тем чтобы получать второй результирующий сигнал с уменьшенным наложением спектров или без наложения спектров в диапазоне перекрытия. Затем оба сигнала в диапазоне перекрытия, оба из которых составляют определенное представление идентичной части сигнала, комбинируются для того, чтобы получать обработанный сигнал для диапазона перекрытия.

Предпочтительно, это комбинирование основывается на плавном переходе от одного результирующего сигнала к другому результирующему сигналу, т.е. на постепенном затухании первого результирующего сигнала и параллельном постепенном нарастании второго результирующего сигнала.

Предпочтительно, процессор содержит модуль модификации для модификации первого блока последовательности с использованием, по меньшей мере, одного первого значения модификации, с тем чтобы получать первый модифицированный блок, для модификации второго блока последовательности с использованием, по меньшей мере, одного второго значения модификации, с тем чтобы получать второй модифицированный блок, для модификации второго блока с использованием, по меньшей мере, одного первого значения модификации, с тем чтобы получать третий модифицированный блок, и для модификации первого блока с использованием, по меньшей мере, одного второго значения модификации, с тем чтобы получать четвертый модифицированный блок. Спектрально-временной преобразователь выполнен с возможностью преобразования первого-четвертого модифицированных блоков в их временные представления, и предусмотрен сумматор с перекрытием для суммирования с перекрытием первого и третьего модифицированных блоков, с тем чтобы получать результирующий сигнал, и для суммирования с перекрытием временных представлений второго и четвертого модифицированных блоков, с тем чтобы получать второй результирующий сигнал. Следовательно, по существу выполняются две параллельных операции обратного преобразования, один для первого значения модификации усиления, и одна для второго значения модификации усиления.

Когда значение модификации усиления является только зависимым от времени, т.е. является постоянным на всем протяжении частотного диапазона, в таком случае только одно значение модификации усиления используется для модификации блока. Тем не менее, если значение модификации усиления варьируется по частоте, то каждый блок спектральных значений модифицируется с множеством значений модификации усиления. Значение модификации усиления может применяться к каждому отдельному спектральному значению или к группе спектральных значений, к примеру, к 2, 3, 4 или 5 смежным по частоте спектральным значениям. Тем не менее, в общем случае, одно значение модификации усиления может существовать для каждой спектральной линии, блок спектральных значений модифицируется с числом значений модификации усиления, причем число равно числу спектральных значений в блоке спектральных значений.

Следовательно, в соответствии с этим аспектом, два выходных сигнала с уменьшенным наложением спектров или без наложения спектров формируются для области перекрытия, и затем плавный переход выполняется между этими двумя выходными или результирующими сигналами.

В соответствии с дополнительным аспектом настоящего изобретения, устройство для обработки аудиосигнала содержит процессор для вычисления сигнала под влиянием наложения спектров с использованием, по меньшей мере, одного первого значения модификации для первого блока последовательности и, по меньшей мере, одного второго отличающегося значения модификации для второго блока из последовательности блоков спектральных значений. Далее оценивается сигнал ошибки вследствие наложения спектров, причем этот сигнал ошибки вследствие наложения спектров включен в аудиосигнал под влиянием наложения спектров (подвергаемый наложению спектров). Затем сигнал под влиянием наложения спектров и сигнал ошибки вследствие наложения спектров комбинируются таким образом, что сигнал, получаемый посредством комбинирования, представляет собой сигнал с уменьшенным наложением спектров или без наложения спектров.

Другими словами, другой аспект основывается на вычислении сигнала под влиянием наложения спектров и сигнала ошибки вследствие наложения спектров и последующем комбинировании обоих сигналов, с тем чтобы получать сигнал с уменьшенным наложением спектров или без наложения спектров. Предпочтительно, наложение спектров подавляется посредством восстановления входного сигнала в области перекрытия посредством дополнительного частотно-временного преобразования с равными усилениями для обоих блоков, умножения на оконную функцию или связанную функцию, обращения во времени, умножения на разность усилений между двумя значениями усиления или модификации и вычитания из вывода обработки с различным усилением.

Предпочтительно, используемый алгоритм преобразования представляет собой модифицированное дискретное косинусное преобразование (MDCT), и операция обратного преобразования представляет собой обратное модифицированное дискретное косинусное преобразование. Альтернативно, могут использоваться другие такие преобразования с введением наложения спектров, к примеру, MDST (модифицированное дискретное синусное преобразование) либо обратное модифицированное дискретное синусное преобразование (IMDST), либо любое другое такое преобразование, при котором на аналитической стороне число выборок во временной части превышает число спектральных значений, или иначе говоря, в котором предусмотрена область перекрытия между двумя последующими временными частями, приводящими к двум последующим блокам спектральных значений, т.е. в блоках спектральных значений, которые являются последующими во времени. Здесь, оба блока спектральных значений связаны, по меньшей мере, частично с одной и той же областью перекрытия, т.е. с областью перекрытия между тем двумя временными частями, которые в итоге приводят к двум последующим во времени блокам спектральных значений. Это означает то, что на аналитической стороне число выборок временной области в блоке выборок или в кадре превышает число значений в частотной области в блоке представления в частотной области, а на синтезирующей стороне число синтезированных выборок временной области превышает число спектральных значений в блоке, используемом для синтезирования перекрывающихся блоков выборок временной области.

Тем не менее, в качестве заключительного этапа на синтезирующей стороне, обработка суммирования с перекрытием выполняется таким образом, что, в конечном счете, число выборок в диапазоне перекрытия ниже числа выборок временной области в синтезированном кадре и предпочтительно равно числу спектральных значений блока спектральных значений. Во втором случае, получается критически дискретизированное преобразование, и такие преобразования предпочитаются для настоящего изобретения, но настоящее изобретение также может применяться к некритически дискретизированным преобразованиям, хотя эти преобразования имеют некоторый дополнительный объем служебной информации по сравнению с критически дискретизированными преобразованиями.

Изобретаемые аспекты являются полезными не только для компенсации наложения спектров вследствие изменяющейся во времени/по частоте модификации усиления, но также и для расширения полосы пропускания (BWE). В этом примере использования, реплицированный спектр, сформированный посредством стадии перезаписи BWE-алгоритма, должен формироваться со спектральной огибающей, которая максимально возможно близко совпадает с исходной спектральной огибающей [4-6]. Эта спектральная огибающая, в общем, является как зависимой от времени, так и частотно-зависимой. Хотя в большинстве BWE-технологий предшествующего уровня техники схема перезаписи является постоянной, можно выполнять изменяющуюся во времени перезапись, которая приводит к дополнительному наложению спектров. Новая предложенная технология подавления наложения спектров также имеет возможность обрабатывать эти BWE-артефакты.

Далее поясняются предпочтительные варианты осуществления настоящего изобретения в контексте прилагаемых чертежей, на которых:

Фиг. 1a является предпочтительным вариантом осуществления первого аспекта;

Фиг. 1b является предпочтительным вариантом осуществления второго аспекта;

Фиг. 1c является схематичным представлением последовательности блоков спектральных значений;

Фиг. 1d является схематичным представлением последовательности перекрывающихся временных частей, приводящих к последовательности блоков по фиг. 1c;

Фиг. 2a иллюстрирует реализацию прямого преобразования с введением наложения спектров;

Фиг. 2b иллюстрирует реализацию обратного преобразования с уменьшением наложения спектров;

Фиг. 3a иллюстрирует дополнительный вариант осуществления второго аспекта;

Фиг. 3b иллюстрирует дополнительный вариант осуществления второго аспекта;

Фиг. 3c иллюстрирует принципиальную схему применения расширения полосы пропускания для первого и второго аспектов;

Фиг. 4 иллюстрирует компонент ошибки вследствие наложения спектров для второго аспекта;

Фиг. 5a иллюстрирует вариант осуществления первого аспекта;

Фиг. 5b иллюстрирует вариант осуществления второго аспекта;

Фиг. 6 иллюстрирует член наложения спектров, сформированный посредством восстановления, обращения во времени и оконного преобразования, связанных со вторым аспектом;

Фиг. 7 иллюстрирует варьирующиеся коэффициенты усиления в кадре;

Фиг. 8 иллюстрирует применение коэффициентов усиления до обратной MDCT-обработки; и

Фиг. 9 иллюстрирует сигналы, связанные с обработкой по фиг. 8.

Фиг. 1a иллюстрирует устройство для обработки аудиосигнала, содержащего последовательность блоков спектральных значений в соответствии с первым аспектом. Устройство для обработки содержит процессор 100 для обработки последовательности блоков спектральных значений с использованием, по меньшей мере, одного значения 102 модификации для первого блока, с тем чтобы получать первый результирующий сигнал 104 с уменьшенным наложением спектров или без наложения спектров. Кроме того, процессор обрабатывает второй блок из последовательности блоков, которая следует после первого блока во времени или которая предшествует первому блоку во времени и которая является непосредственно смежной с первым блоком, с использованием, по меньшей мере, одного второго отличающегося значения модификации, т.е. второго значения 106 модификации, которое отличается от первого значения модификации, с тем чтобы получать второй результирующий сигнал 108 с уменьшенным наложением спектров или без наложения спектров в перекрывающемся диапазоне. Следовательно, процессор формирует два сигнала временной области без наложения спектров или, по меньшей мере, с уменьшенным наложением спектров для идентичного перекрывающегося диапазона. Эти сигналы 108 вводятся в модуль 110 комбинирования для комбинирования первого и второго результирующих сигналов в диапазоне перекрытия, с тем чтобы получать обработанный сигнал 112 для диапазона перекрытия. Предпочтительно, процессор выполнен с возможностью формирования двух выходных сигналов без наложения спектров для области перекрытия и затем предпочтительно выполняет плавный переход между этими двумя выходными сигналами без наложения спектров. Одна реализация для процессора, чтобы достигать этого, заключается в предоставлении полной обработки обратного преобразования, к примеру, IMDCT-обработки, для обоих блоков или обоих различных значений модификации для блоков. Другими словами, процессор формирует полную IMDCT-обработку для диапазона перекрытия первого блока, одних и тех же значений модификации для первого и второго блока. Кроме того, процессор выполняет полную IMDCT-обработку для первого и второго блока, но теперь с использованием вторых значений модификации. Обе из этих операций полной IMDCT-обработки приводят к двум результирующим сигналам временной области без наложения спектров или, по меньшей мере, с уменьшенным наложением спектров в перекрывающемся диапазоне, которые затем комбинируются посредством модуля комбинирования.

Далее поясняется второй аспект в контексте фиг. 1b. Фиг. 1b иллюстрирует устройство для обработки аудиосигнала, содержащего последовательность блоков спектральных значений в соответствии с вариантом осуществления настоящего изобретения относительно второго аспекта. Устройство содержит процессор 150 для вычисления сигнала 154 под влиянием наложения спектров с использованием, по меньшей мере, одного первого значения 102 модификации для первого блока из последовательности 114 блоков спектральных значений и с использованием, по меньшей мере, одного отличающегося второго значения 106 модификации для второго блока из последовательности 114 блоков спектральных значений. Процессор выполнен с возможностью оценки, в дополнение к сигналу 154 под влиянием наложения спектров, сигнала 158 ошибки вследствие наложения спектров. Кроме того, устройство содержит модуль 152 комбинирования для комбинирования сигнала под влиянием наложения спектров и сигнала ошибки вследствие наложения спектров таким образом, что обработанный аудиосигнал 112, полученный посредством комбинирования посредством модуля 152 комбинирования, представляет собой сигнал с уменьшенным наложением спектров или без наложения спектров.

В частности, в соответствии со вторым аспектом, проиллюстрированным на фиг. 1b, обработка выполняется с использованием различных значений модификации для блоков, связанных с идентичным перекрывающимся диапазоном, что приводит к сигналу 154 под влиянием наложения спектров. Тем не менее, в отличие от предшествующего уровня техники, в котором этот сигнал под влиянием наложения спектров используется для последующей обработки, и наведенная наложением спектров ошибка допускается, это не выполняется в настоящем изобретении. Вместо этого, процессор 150 дополнительно вычисляет сигнал 158 ошибки вследствие наложения спектров, сигнал ошибки вследствие наложения спектров затем типично комбинируется с сигналом под влиянием наложения спектров посредством вычитания или, в общем, линейного комбинирования со взвешиванием, так что обработанный аудиосигнал предпочтительно не имеет наложения спектров, но даже когда комбинация или конкретный сигнал ошибки вследствие наложения спектров полностью не вычисляется точно, комбинирование, тем не менее, приводит к обработанному аудиосигналу, имеющему меньшую ошибку вследствие наложения спектров, чем сигнал 154 под влиянием наложения спектров.

Во множестве вариантов применения, желательно модифицировать спектральные коэффициенты посредством применения коэффициентов усиления к ним перед подачей в IMDCT, так что:

,

где является MDCT-спектром j-го кадра, k является частотным индексом, является зависимой от времени и частотно-зависимой функцией спектрального взвешивания, и является фильтрованным MDCT-спектром. Это применение коэффициентов усиления также показано на фиг. 8.

В частности, фиг. 8 иллюстрирует типичную систему MDCT-синтеза предшествующего уровня техники, в которой спектральные значения предшествующего блока 800, имеющего временной индекс j-1, умножаются, по меньшей мере, на один коэффициент gj-1 усиления посредством умножителя 802. Кроме того, текущий блок 804 с временным индексом j умножается или модифицируется посредством коэффициента gj усиления для текущего блока, указываемого на 805. В частности, коэффициент 801 усиления для предыдущего блока с временным индексом j-1, указываемого на 801, и коэффициент gj усиления для текущего блока 805 отличаются друг от друга. Кроме того, как указано на фиг. 8, коэффициент усиления может быть частотно-зависимым. Это проиллюстрировано посредством частотного индекса k. Следовательно, каждое спектральное значение с индексом k умножается на соответствующий первый или второй коэффициент 801, 805 усиления, в зависимости от того, какому блоку 800 или 804 принадлежит коэффициент усиления. Следовательно, вследствие того факта, что коэффициенты усиления для двух блоков являются зависимыми от времени и/или частотно-зависимыми, ошибка вследствие наложения спектров приводит к обработке, когда обработка на фиг. 8 применяется. Эта обработка состоит из IMDCT-операции 807 для предшествующего блока 800 и дополнительной IMDCT-операции 808 для текущего блока 804. IMDCT-операция состоит из частотно-временного преобразования и последующей операции развертывания, как подробнее поясняется в контексте фиг. 2b. Затем обработка суммирования с перекрытием, которая дополнительно содержит, перед фактическим суммированием, модуль синтезирующего оконного преобразования, выполняется посредством блока 809, чтобы в итоге получать сигнал y(n) под влиянием наложения спектров, указываемый на 810. Следовательно, сигнал 810 под влиянием наложения спектров типично может быть точно идентичным сигналу под влиянием наложения спектров, проиллюстрированному на 154 на фиг. 1b.

Если усиления в двух последующих кадрах отличаются, члены наложения спектров более не сокращаются взаимно, как можно видеть на фиг. 9 (справа), на котором коэффициенты усиления являются постоянными по частоте, но не во времени. В этом примере, они составляют и , так что оставшийся компонент наложения спектров представляет собой наложение спектров из кадра 0, умноженное на коэффициент 0,3.

Следует отметить, что для такого простого случая, который в основном выбран для иллюстрации, обработка в частотной области не требуется, поскольку аналогичный эффект может достигаться без проблем наложения спектров посредством применения подходящей временной огибающей. Тем не менее, этот пример помогает пояснять базовую идею относительно схемы уменьшения наложения спектров. Здесь, оставшийся компонент наложения спектров является обращенным во времени и подвергнутым оконному преобразованию входным сигналом, умноженным на разность двух коэффициентов усиления, которая в нашем примере составляет 0,3. Следовательно, наложение спектров может подавляться посредством следующих этапов:

- восстановление входного сигнала в области перекрытия посредством дополнительного IMDCT с равными усилениями для двух блоков,

- умножение на функцию ,

- обращение во времени,

- умножение на разность усилений в 0,3,

- вычитание из вывода обработки с другим усилением.

Вывод первых трех этапов проиллюстрирован на фиг. 6.

В первом аспекте, вычисляются два выходных сигнала без наложения спектров для области перекрытия, и затем плавный переход выполняется между ними. Фиг. 5a показывает блок-схему варианта осуществления.

Первый сигнал получается из IMDCT-обработки двух затрагиваемых кадров со спектральными коэффициентами и с равными наборами коэффициентов усиления. Компоненты наложения спектров во временной области двух кадров подавляют друг друга, поскольку отсутствуют разности усилений. Второй сигнал формируется, соответственно, из и , но теперь с использованием коэффициентов усиления. Варьирование спектральной формы теперь может получаться посредством выполнения плавного перехода от к в области перекрытия:

,

где типично монотонно снижается с 1 до 0 в интервале . Для случая , можно показывать, что оба подхода формируют совершенно идентичный вывод (см. приложение для получения подробных сведений). Тем не менее, свобода выбора функций плавного перехода независимо от окна MDCT приносит пользу для этого подхода, который проиллюстрирован на фиг. 5a.

Что касается чистого варьирования усиления, вторая процедура может уменьшать компоненты наложения спектров посредством формирования двух сигналов без наложения спектров и выполнения плавного перехода. Здесь, каждый из двух сигналов получается посредством использования равного наложения и равных коэффициентов усиления в двух соответствующих кадрах (см. фиг. 5b). Специальные различия не должны проводиться для постоянного и фиксированного наложения. Постоянное наложение просто должно логически выводить равное преобразование для всех кадров.

Обработка становится более сложной, если коэффициенты усиления варьируются не только во времени, но также и по частоте. В этом случае, замена посредством временной огибающей более невозможна, и формирование обращенного во времени входного сигнала также не предоставляет подходящий сигнал для уменьшения компонента наложения спектров. Это проиллюстрировано в следующем примере, в котором усиления в первом кадре снова являются постоянными по частоте , но во втором кадре варьируется, как показано на фиг. 7.

Это приводит к неподавленному компоненту наложения спектров, который, тем не менее, имеет форму, отличную от формы, показанной на фиг. 9 (справа). Как видно в первом примере, разности усилений вызывают неподавленные компоненты наложения спектров. Следовательно, процедура показана на фиг. 3a.

Уменьшение наложения спектров выполняется посредством следующих этапов, проиллюстрированных на фиг. 3a:

- формирование дополнительных спектральных коэффициентов посредством взвешивания (307, 308) исходных коэффициентов посредством разностей усилений:

- восстановление (303, 304, 306) входного сигнала в области перекрытия посредством дополнительного IMDCT с помощью и ,

- умножение (330) на функцию ,

- обращение во времени (340),

- комбинирование, к примеру, суммирование или вычитание для вывода обработки с различным усилением.

Порядок члена разности усилений определяет то, должен вывод обращения во времени суммироваться или вычитаться из регулярного IMDCT-вывода для конкретно проиллюстрированной MDCT-реализации. Для других MDCT-реализаций, знаки могут отличаться:

: суммирование вывода обращения во времени с регулярным IMDCT-выводом.

: вычитание вывода обращения во времени из регулярного IMDCT-вывода.

Следовательно, для вышеописанного варианта осуществления и для проиллюстрированного случая на фиг. 3a, на котором проиллюстрирован , модуль 341 комбинирования должен реализовываться как сумматор, суммирующий оба ввода.

Следует отметить, что требуемые знаки могут отличаться для различных реализаций перекрывающихся преобразований. Предусмотрено, например, по меньшей мере, четыре варианта осуществления для MDCT с нечетным укладыванием. Кроме того, предусмотрены дополнительные варианты осуществления для MDCT с четным укладыванием или ELT с несколькими перекрытиями. Для MDCT с нечетным укладыванием знаки для членов коррекции отличаются. Следовательно, комбинирование, выполняемое в блоке 341, может содержать суммирование или вычитание.

Член коррекции наложения спектров для текущего примера показан вместе с IMDCT-выводом с наложением спектров на фиг. 4.

Стадия перезаписи BWE-алгоритма описывается посредством функции преобразования. Для копирования нижней половины спектральных коэффициентов в верхнюю половину, необходимо следующее:

Функция усиления является постоянной и равной 1 в нижней половине:

.

Если коэффициенты усиления варьируются в верхней половине спектра, снова возникает неподавленное наложение спектров. Тем не менее, уменьшение наложения спектров может выполняться точно аналогичным образом, как описано в первом подходе, описанном выше, с единственным отличием в том, что наложение также должно учитываться при формировании сигнала компенсации. Это может достигаться посредством использования преобразованных спектральных коэффициентов по мере того, как они подаются в IMDCT, и их взвешивания надлежащим образом с разностями усилений. В этом случае, все разности усилений в нижней половине являются нулевыми.

Усовершенствованное расширение полосы пропускания может применять наложение, которое варьируется между кадрами. Это может описываться посредством задания отдельной функции преобразования для каждого кадра. В этом случае, уменьшение наложения спектров должно учитывать то, что различные компоненты могут копироваться в идентичный частотный индекс в двух кадрах, оказывающих влияние на общую область перекрытия. Это должно рассматриваться при формировании компонента уменьшения наложения спектров. С этой целью, наложение в первом кадре обрабатывается, как описано выше, с усилением в в кадре и в 0 в кадре , и наложение в кадре j предположительно имеет усиление в 0 в кадре и в в кадре . Результирующие спектральные коэффициенты для формирования сигнала уменьшения наложения спектров являются следующими:

Блок-схема для этой конфигурации показана на фиг. 3b.

В следующем разделе подробнее поясняются два аспекта на фиг. 3a, а также на фиг. 5a и 5b относительно подобий.

MDCT с частотным разрешением спектральных коэффициентов кадра выборок , начинающихся в позиции выборки, задается следующим образом:

,

где является оконной функцией длины , является частотным индексом, является индексом выборки во временной области. Кадр временного сигнала задается следующим образом:

Промежуточный выходной кадр получается из спектральных компонентов с обратным преобразованием следующим образом:

Конечный вывод обработки обратного MDCT (IMDCT) вычисляется посредством суммирования перекрывающихся сегментов следующим образом:

Для сокращения и следующих условий для окон:

и:

,

вывод IMDCT в области перекрытия после применения коэффициентов усиления следующий:

,

где:

Член коррекции наложения спектров второго аспекта, описанного относительно фиг. 1b, 3a, после суммирования с перекрытием, оконного преобразования и обращения во времени следующий:

,

где:

Косинусные члены имеют следующие симметрии:

Их подстановка приводит к следующему:

Вычитание из обеспечивает члены, компонующие вывод уменьшения наложения спектров:

,

который соответствует плавному переходу между сигналами, восстановленными с усилениями и согласно первому аспекту, проиллюстрированному и описанному со ссылкой на фиг. 1a, 5a и 5b.

Далее следует обратиться к фиг 1c и 1d, чтобы иллюстрировать взаимосвязь временных частей и блоков либо на стороне кодера или на аналитической стороне, либо на стороне декодера или на синтезирующей стороне.

Фиг. 1d иллюстрирует схематичное представление нулевой-третьей временных частей, и каждая временная часть из этих последующих временных частей имеет определенный перекрывающийся диапазон 170. На основе этих временных частей, блоки из последовательности блоков, представляющих перекрывающиеся временные части, формируются посредством обработки, подробнее поясненной относительно фиг. 2a, показывающего аналитическую сторону операции преобразования с введением наложения спектров.

В частности, сигнал временной области, проиллюстрированный на фиг. 1d, когда фиг. 1d применяется к аналитической стороне, подвергается оконному преобразованию посредством применения функции аналитического оконного преобразования посредством модуля 201 оконного преобразования. Следовательно, для того чтобы получать нулевую временную часть, например, модуль оконного преобразования применяет функцию аналитического оконного преобразования, например, к 2048 выборкам и, в частности, к выборкам 1-2048. Следовательно, N равен 1024, и окно оконного преобразования имеет длину в 2N выборок, которая в примере составляет 2048. Затем модуль оконного преобразования применяет дополнительную операцию анализа, но не для выборки 2049 в качестве первой выборки блока, а для выборки 1025 в качестве первой выборки