Малеимидные смолы

Иллюстрации

Показать все

Изобретение относится к отверждаемой полимерной композиции, предназначенной для получения композита, и композиционному материалу. Отверждаемая полимерная композиция содержит следующие компоненты: (A) компонент, представляющий собой предшественник термореактивной бисмалеимидной смолы, полученный в результате реакции малеинового ангидрида и диамина, выбранного из толуолдиаминов, метилендианилинов, 1,3- и 1,4-фенилендиаминов, диаминодифенилизопропилиденов, диаминодифенилкетонов, диаминодифенилоксидов, диаминодифенилсульфидов и C2-20 алкилендиаминов; (B) арилсульфонсодержащий бисмалеимидный компонент и (C) полиарилсульфоновый термопластичный агент, повышающий сопротивление разрушению, который не содержит малеимидных боковых и/или концевых групп. Компоненты композиции присутствуют в таком количестве, что в результате отверждения отвержденная смола имеет гомогенную морфологию. Композиционный материал содержит вышеуказанную полимерную композицию и армирующие волокна в концентрации от 30 до 70% мас. Изобретение позволяет повысить сопротивление разрушению полимерных композиций. 2 н. и 14 з.п. ф-лы, 7 ил., 3 табл., 4 пр.

Реферат

Настоящее изобретение относится к получению новых сульфон-содержащих молекул, олигомеров и полимеров с малеимидными концевыми группами и их применению в качестве агентов, улучшающих совместимость, для агентов, повышающих сопротивление разрушению, в малеимидных смолах, а также их применению в качестве агентов, повышающих сопротивление разрушению, в самих малеимидных смолах.

Слоистые композиционные структуры с полимерной матрицей (PMC, композиционные материалы с полимерной матрицей) широко используют в ряде применений. Например, композиционные структуры все чаще используют в высокоэффективной аэрокосмической промышленности. PMC объединяют селективно ориентированные волокна, которые заключены в материале окружающей полимерной матрицы. Указанные композиционные структуры имеют хорошие механические свойства, относящиеся к их массе (например, прочность, жесткость, сопротивление разрушению, а также широкий диапазон рабочих температур и простоту производства, что делает их подходящими для применения в аэрокосмической промышленности.

В большинстве полимерных композиционных материалов используют эпоксидные смолы, благодаря хорошей комбинации механических свойств, широкому диапазону рабочих температур и простоты изготовления деталей за счет эпоксидов.

Однако для некоторых применений композиционных материалов требуются высокая тепловая стойкость готового композиционного материала, и детали из PMC, используемые в экстремальных условиях, таких как применение при высоких температурах, могут не обладать надлежащей тепловой стойкостью. Например, для эпоксидных смол может наблюдаться значительная потеря массы после длительного воздействия высоких температур. В настоящее время не существует экономически рентабельных композиционных материалов с полимерной матрицей, которые могут выдерживать экстремальные условия.

Полимеры, такие как бисмалеимиды (BMI), получают распространение в аэрокосмической промышленности, в которой требуются рабочие температуры, превышающие допустимые для эпоксидных смол. BMI имеют более высокие температуры стеклования (Tg), чем эпоксидные смолы, и демонстрируют относительно низкую потерю массы в ходе теплового старения. BMI также демонстрируют сходные с эпоксидными смолами технологические свойства и высокую температурную стойкость.

Однако, хотя температуры стеклования BMI выше, чем температуры стеклования эпоксидных смол, BMI также являются относительно хрупкими. В результате BMI композиционные материалы, как правило, характеризуются неудовлетворительной устойчивостью к повреждениям и неудовлетворительной устойчивостью к циклическому воздействию температуры, что приводит к образованию микротрещин.

Кроме того, попытки повысить сопротивление разрушению BMI с помощью добавок оказались относительно неудачными. Например, для агентов, повышающих сопротивление разрушению, обычно используемых в эпоксидных композициях, таких как бутадиенакрилонитрил с концевыми карбоксильными группами (CTBN), бутадиеновый и стирольные каучуки, наблюдалось снижение Tg или стимулирование значительной потери массы в ходе теплового старения. Тепловое воздействие может также снижать эффективность таких типов каучуков.

Повышение сопротивления разрушению бисмалеимидных систем было ограничено применением каучуков, модифицированных бисмалеимидных мономеров и низкоэффективных термопластиков, но они также снижают преимущественные свойства бисмалеимида, в первую очередь модуль упругости и высокую температуру стеклования.

Альтернативным способом повышения сопротивления разрушению является использование термопластичных агентов, повышающих сопротивление разрушению. Однако, как правило, бисмалеимиды имеют очень плохую совместимость с традиционно используемыми термопластичными агентами, повышающими сопротивление разрушению, и указанная несовместимость приводит либо к затруднению растворения термопластичного материала в базовой смоле в ходе получения, либо полное разделение фаз термопластика в процессе отверждения.

В настоящее время не существует доступного бисмалеимидного состава, сохраняющего все преимущественные свойства чистых бисмалеимидов и при этом имеющего сопротивление разрушению, подходящее для высокоэффективных применений.

Задачей настоящего изобретения является решение одной или более из указанных выше проблем.

В частности, задачей настоящего изобретения является обеспечение термореактивной смолы, которая имеет высокое сопротивление разрушению и превосходный модуль упругости, и которая, предпочтительно, также демонстрирует превосходные тепловые свойства (включая высокую Tg, хорошую термоокислительную стабильность и стойкость к высокой температуре). Предпочтительно, смола должна также иметь превосходные свойства по поглощению растворителя (например, измеренному по поглощению воды или поглощению МЭК, как известно в области техники). Смола должна также иметь гомогенную морфологию (в смысле, что морфология однородна по всему материалу), и в частности, гомогенную тонкодисперсную морфологию. Смола должна также иметь хорошую устойчивость к повреждениям и хорошую устойчивость к циклическому воздействию температуры в отношении образования микротрещин.

Дополнительной задачей изобретения является обеспечение малеимидной термореактивной смолы с повышенным сопротивлением разрушению без значительного ухудшения тепловых свойств смолы и/или свойств смолы по поглощению растворителя, и имеющей улучшения по меньшей мере некоторых указанных выше механических свойств малеимидной смолы.

Согласно настоящему изобретению предложена отверждаемая полимерная композиция, содержащая:

(A) компонент, представляющий собой предшественника термореактивной малеимидной смолы;

и дополнительно содержащая один или оба из следующих:

(B) арилсульфон-содержащий малеимидный компонент; и

(C) компонент, представляющий собой полиарилполимерный термопластичный агент, повышающий сопротивление разрушению,

причем при отсутствии компонента (B) указанный компонент (C) содержит одну или более малеимидных боковых и/или концевых групп.

Согласно наиболее предпочтительному варианту реализации указанная отверждаемая полимерная композиция содержит как арилсульфон-содержащий малеимидный компонент (B), так и компонент (C), представляющий собой полиарилполимерный термопластичный агент, повышающий сопротивление разрушению, причем указанный компонент (C) содержит полиарилполимерный термопластичный агент (C-i), повышающий сопротивление разрушению, который не содержит малеимидных боковых и/или концевых групп. Согласно указанному варианту реализации указанная композиция может необязательно дополнительно содержать полиарилполимерный термопластичный агент (C-ii), повышающий сопротивление разрушению, который содержит одну или более малеимидных боковых и/или концевых групп.

Согласно альтернативному варианту реализации указанная отверждаемая полимерная композиция содержит как арилсульфон-содержащий малеимидный компонент (B), так и компонент (C), представляющий собой полиарилполимерный термопластичный агент, повышающий сопротивление разрушению, причем указанный компонент (C) содержит полиарилполимерный термопластичный агент (C-ii), повышающий сопротивление разрушению, который содержит одну или более малеимидных боковых и/или концевых групп.

Согласно дополнительному альтернативному варианту реализации указанная отверждаемая полимерная композиция не содержит указанный компонент (C), представляющий собой полиарилполимерный термопластичный агент, повышающий сопротивление разрушению. Согласно указанному варианту реализации указанная отверждаемая полимерная композиция предпочтительно дополнительно содержит один или более агент(ов), повышающий(х) сопротивление разрушению, отличный(х) от полиарилполимерного термопластичного агента, повышающего сопротивление разрушению.

Согласно менее предпочтительному варианту реализации указанная отверждаемая полимерная композиция не содержит указанного арилсульфон-содержащего малеимидного компонента (B), но указанный компонент (C) содержит полиарилполимерный термопластичный агент (C-ii), повышающий сопротивление разрушению, который содержит одну или более малеимидных боковых и/или концевых групп. Согласно указанному варианту реализации указанная отверждаемая полимерная композиция может дополнительно содержать полиарилполимерный термопластичный агент (C-i), повышающий сопротивление разрушению, который не содержит малеимидных боковых и/или концевых групп.

Таким образом, указанные композиции согласно настоящему изобретению предпочтительно содержат компонент (B).

В указанных композициях согласно настоящему изобретению любой или каждый из указанных агентов, повышающих сопротивление разрушению, может быть представлен в форме частиц. В частности, компонент (C), описанный в настоящем документе, может быть представлен в форме частиц поперечно-сшитого полиарилполимера, в частности, указанного полиарилполимерного термопластичного агента (C-i), повышающего сопротивление разрушению, который не содержит малеимидных боковых и/или концевых групп.

В дополнение к агенту, повышающему сопротивление разрушению, из компонента (C), композиции согласно настоящему изобретению могут дополнительно содержать один или более дополнительный(х) агент(ов), повышающий(х) сопротивление разрушению, в частности, при этом по меньшей мере один из указанный(х) дополнительный(х) агент(ов), повышающий(х) сопротивление разрушению, представлен в форме частиц.

Согласно одному из вариантов реализации настоящего изобретения указанный предшественник малеимидной смолы представляет собой предшественник бисмалеимидной смолы. Кроме того или альтернативно, указанный арилсульфон-содержащий малеимидный компонент (B) представляет собой арилсульфон-содержащий бисмалеимидный компонент. Кроме того или альтернативно, указанный компонент (C), представляющий собой полиарилполимерный термопластичный агент, повышающий сопротивление разрушению, представляет собой, предпочтительно, компонент, представляющий собой полиарилсульфоновый термопластичный агент, повышающий сопротивление разрушению. Кроме того или альтернативно, указанный компонент (C) представляет собой компонент, представляющий собой полиарилсульфоновый термопластичный агент, повышающий сопротивление разрушению, который содержит одну или более бисмалеимидных боковых и/или концевых групп. Согласно одному из вариантов реализации настоящего изобретения предложена отверждаемая полимерная композиция, содержащая:

(A) компонент, представляющий собой предшественника термореактивной бисмалеимидной смолы;

(B) необязательно арилсульфон-содержащий бисмалеимидный компонент; и

(C) компонент, представляющий собой полиарилсульфоновый термопластичный агент, повышающий сопротивление разрушению,

причем при отсутствии компонента (B) указанный компонент (C) содержит одну или более бисмалеимидных боковых и/или концевых групп.

Указанные композиции согласно настоящему изобретению необязательно дополнительно содержат один или более радикальный(х) ингибитор(ов) и/или один или более катализатор(ов). Предпочтительно, указанные композиции согласно настоящему изобретению содержат один или более катализатор(ов).

Согласно дополнительному аспекту настоящего изобретения предложена композиция термореактивной смолы, полученная путем отверждения указанных выше отверждаемых полимерных композиций, например, путем взаимодействия в присутствии отверждающего агента.

Указанный арилсульфон-содержащий малеимидный компонент (B) представляет собой относительно низкомолекулярное мономерное или олигомерное арилсульфон-содержащее малеимидное соединение, которое повышает совместимость указанного компонента, представляющего собой полиарилполимерный термопластичный агент (C), повышающий сопротивление разрушению, с указанной термореактивной малеимидной смолой (A). Полагают, что компонент (B) действует путем изменения параметров растворимости базовой смолы, что позволяет регулировать морфологию или набухание частиц.

Когда компонент (B) отсутствует, указанная композиция содержит компонент (C), который представляет собой относительно высокомолекулярную полиарилполимер-содержащую малеимидную группу, которая осуществляет как функцию повышения сопротивления разрушению, так и функцию повышения совместимости. Образование малеимидных групп на концах полиарилполимерного термопластичного агента, повышающего сопротивление разрушению, обеспечивает возможность для указанного термопластика реагировать и совмещаться с указанной смолой (A) с термореактивной матрицей.

Следующее подробное описание представляет собой одни из лучших в настоящее время предполагаемых вариантов реализации изобретения. Описание не следует понимать в ограничительном смысле, поскольку оно приведено только с целью иллюстрации общих принципов изобретения.

Настоящее изобретение позволяет использовать малеимидные термореактивные смолы в высокоэффективных композиционных материалах, например, в сложных аэрокосмических применениях, посредством улучшения совместимости термопластичных агентов, повышающих сопротивление разрушению, с малеимидной смолой, таким образом обеспечивая повышение сопротивления разрушению без значительного снижения модуля упругости или Tg малеимидной смолы до степени, когда смола становится неподходящей для таких применений.

Использование сульфон-содержащих BMI, таких как m-ESEDA BMI, 3’3-DDS BMI и 4’4-DDS BMI, для повышения совместимости смесей BMI-H/диаллилбисфенола-A (DBA) с полимером PES/PEES с концевыми аминогруппами является особенно подходящим, причем исследование механических свойств указывает на повышение сопротивления разрушению по сравнению со смолой, для которой не проводили повышение сопротивления разрушению, при 10% включенного термопластика.

Данная концепция распространяется на агенты, повышающие сопротивление разрушению, на основе дополнительных сульфон-содержащих полимеров с высокой Tg на основе длинноцепочечного дихлорида (LCDC).

Предшественник термореактивной малеимидной смолы

Компонент (A), представляющий собой предшественника термореактивной малеимидной смолы, содержит способное к полимеризации малеимидное соединение, и согласно предпочтительному варианту реализации указанное способное к полимеризации малеимидное соединение представляет собой способное к полимеризации бисмалеимидное соединение. Трифункциональные и тетрафункциональные предшественники охватываются настоящим изобретением. Согласно предпочтительному варианту реализации указанный предшественник является дифункциональным и содержит два малеимидных фрагмента.

Указанный компонент-предшественник может содержать смесь одного или более полимеризуемых малеимидных соединений с различными функциональностями, т.е. один или более монофункциональных и/или один или более дифункциональных, и/или один или более трифункциональных, и/или один или более тетрафункциональных малеимидов, и/или одно или более полимеризуемых малеимидных соединений с большей функциональностью. Предпочтительно, указанный компонент-предшественник содержит одно или более полимеризуемых малеимидных соединений с функциональностью по меньшей мере два (т.е. бисмалеимид), необязательно с одним или более монофункциональным(и) и/или трифункциональным(и), и/или тетрафункциональным(и) малеимидом(ами), и/или одним или более полимеризуемыми малеимидными соединениями с большей функциональностью. Согласно дополнительному варианту реализации указанный компонент-предшественник содержит одно или более полимеризуемых малеимидных соединений с функциональностью три или четыре, необязательно с одним или более монофункциональными и/или дифункциональными малеимидами, и/или одним или более полимеризуемыми малеимидными соединениями с большей функциональностью. Таким образом, указанный предшественник может содержать одно или более монофункциональное(ых) соединение(й), в котором присутствует один малеимидный фрагмент в указанном(ых) соединении(ях), при этом указанный предшественник является предпочтительно по меньшей мере дифункциональным, что обеспечивает образование поперечных связей.

Настоящее изобретение описано ниже с конкретной ссылкой на предшественники бисмалеимидной смолы. Варианты реализации, в которых компонент-предшественник смолы содержит малеимиды другой функциональности, известные и традиционные в данной области техники, и описанные выше, будут очевидны для специалиста в данной области техники.

Примеры подходящих бисмалеимидов описаны в US4644039 и US5003018, и конкретные описания таких малеимидов, приведенные в указанных источниках, включены в настоящее описание посредством ссылки. Дополнительные подходящие бисмалеимидные смолы могут включать, но не ограничиваются ими, толуолдиаминбисмалеимид (TDA-BMI) и 4,4 бисмалеимидодифенилметан (например, Matrimid 5292A, Huntsman Corp.).

BMI, в целом, получают посредством взаимодействия малеинового ангидрида или замещенных малеиновых ангидридов с подходящим диамином. Как ароматические, так и алифатические диамины подходят для получения BMI. Указанная композиция согласно настоящему изобретению может содержать как ароматические, так и алифатические BMI. Полиамины используют для малеимидов с более высокой функциональностью.

Подходящие ароматические диамины включают различные толуолдиамины и метилендианилины. Другие подходящие ароматические диамины включают 1,3- и 1,4-фенилендиамин и 2,2’-, 2,4’-, 3,3’-, и 4,4’- диаминодифенилсульфоны, диаминодифенилизопропилидены, диаминодифенилкетоны, диаминодифенил-оксиды и диаминодифенилсульфиды.

Подходящие алифатические диамины включают линейные и разветвленные C2-20 алкилендиамины, например, этилендиамин, 1,3-пропилендиамин, 1,4-бутилендиамин, 1,5-пентандиамин, 1,6-гександиамин, 1,8-октандиамин, 1,10-декандиамин, 1,12-додекандиамин, 2,2,4-триметил-1,6-гександиамин, изофорондиамин, 1,3- и 1,4-циклогександиамин, ксилилендиамин, и диамины, содержащие структуру трициклодекана, полученную из дициклопентадиена. Таким образом, примеры алифатических BMI включают, но не ограничиваются ими, BMI, полученные из триметилгександиамина (TMH-BMI) и гександиамина (гексаметилендиамин бисмалеимид или HMDA-BMI).

Бисмалеимиды, полученные из диаминов, содержащих гетероатомы, также являются подходящими, например, полученные из полиэфирсульфонов, полиэфиркетонов, полиэфиркетонкетонов, полиэфирэфиркетонов с концевыми аминогруппами и аналогичные олигомеры, полученные в соответствии с патентом США № 4175175, а также полиоксиалкиленполиэфиры с концевыми аминогруппами, N,N-диалкилпиперидины с концевыми аминогруппами, и т.п.

Также подходят полиаминобисмалеимидные форполимеры, которые можно получить посредством взаимодействия стехиометрического избытка одного или более бисмалеимидов с ди- или полиамином. Такие полиаминобисмалеимиды или родственные продукты можно также получить in situ путем включения в систему смолы одного из указанных выше диаминов, предпочтительно одного из диаминодифенилсульфонов.

Так называемые эвтектические бисмалеимиды, которые представляют собой смеси двух или более различных бисмалеимидных мономеров, также являются подходящими. Посредством использования таких смесей температура плавления бисмалеимидного компонента может быть значительно снижена по сравнению температурой плавления отдельных бисмалеимидных мономеров. Предпочтительно, используют тройные или более смеси, например, смеси, содержащие бисмалеимиды толуолдиаминов, диаминодифенилметанов и одного или более алифатических диаминов, таких как 1,8-октандиамин, 1,12-додекандиамин или 2,2,4-триметил-1,6-гександиамин. Такие эвтектики легкодоступны в коммерческих вариантах реализации.

Согласно предпочтительному варианту реализации указанная композиция дополнительно содержит один или более сореагентов или сомономеров. Такие сореагенты, как правило, и действительно предпочтительно, являются жидкими сореагентами. Указанные сомономеры могут представлять собой сомономеры, которые взаимодействуют с бисмалеимидными мономерами, или которые взаимодействуют друг с другом или другими сомономерами, или могут представлять собой одинаковые или различные бисмалеимидные смолы в жидкой форме. Такие сомономеры включают, например, сомономеры, описанные в патентах США № 4100140 и 4035345, которые включены в настоящее описание посредством ссылки. Аллилнадицимидные (allylnadicimide) смолы, эпоксидные смолы, ди- и полиамины, цианатные смолы, смолы на основе ненасыщенных сложных полиэфиров и соединения с алкенилфенольными концевыми группами являются подходящими. Сомономеры, характеризующиеся присутствием одной или более -CH=CH2, >C=CH2, или -C=CH- групп, способных к полимеризации с двойными связями углерод-углерод малеимидных групп, также являются подходящими, и такие сомономеры включают N-винил-2-пирролидинон, этиленгликольдиметакрилат, диэтиленгликольдиметакрилат, триметилолпропантриакрилат, триметилолпропантриметакрилат, пентаэритриттриакрилат, пентаэритриттетраакрилат, пентаэритриттетраметакрилат, триаллилизоцианурат, диаллилфталат, триаллилтримеллитат, дивинилбензол, дициклопентадиенилакрилат, дициклопентадиенилоксиэтилакрилат, винилциклогексенмоноэпоксид, 1,4-бутандиолдивиниловый эфир, 1,4-дигидрокси-2-бутен, стирол, альфаметилстирол, хлорстирол, п-фенилстирол, трет-бутилстирол, простой фенилвиниловый эфир, ненасыщенные сложные полиэфиры, смолы на основе сложных винилэфиров и т.п. Силиконовые каучуки могут быть также использованы в качестве сомономеров, особенно силиконовые каучуки с концевыми малеимидными, эпоксидными, винильными группами и аминогруппами. В качестве сореагентов подходят ненасыщенные органические соединения, в частности соединения, которые имеют несколько ненасыщенных связей. Ненасыщенность может быть по природе этиленовой или ацетиленовой.

Сореагенты могут присутствовать в концентрации до примерно 40 масс. %, предпочтительно до примерно 30 масс. %, в пересчете на общую массу полимерной композиции.

В частности, предпочтительные сомономеры представляют собой алкенилоксифенолы и алкенилфенолы, например, описанные в US4100140. Предпочтительно, сореагенты выбраны из o,o’-диаллилбисфенолов, o,o’-дипропенилбисфенолов и олигомерных соединений с аллилфенокси, пропенилфенокси, аллилфенильными и пропенилфенильными концевыми группами. Подходящими являются, например, o,o’-диаллил- и o,o’-дипропенилбисфенолы, такие как o,o’-диаллил- и o,o’-дипропенилбисфенол A, бисфенол F и/или бисфенол S. Также подходящими являются дициклопентадиены с алкенилфенольными и алкенилоксифенильными концевыми группами. Примеры включают o,o’-диаллилбисфенол A (например, Matrimid®5292B, Huntsman Corp), o,o’-диизопропенилбисфенол A, аллилэвгенол, алкенилфеноксибензофоны и т.п.

Согласно одному из вариантов реализации единственными сореагентами, присутствующими с предшественниками малеимидной смолы, являются алкенилоксифенолы и алкенилфенолы.

Аллилнадицимиды являются подходящими сореагентами, как описано в US4666997 и US4667003. Подходящими являются надицимиды толуолдиамина, алифатических аминов, метилендианилина, алифатических диаминов, изофорондиамина и т.п.

Указанная композиция может содержать одну или более эпоксидных смол с низкой вязкостью в качестве сореагентов, присутствующих в небольших количествах. Эпоксигруппы могут представлять собой концевые эпоксигруппы или внутренние эпоксигруппы. Эпоксиды делятся на два общих вида: полиглицидиловые соединения или продукты, полученные путем эпоксидирования диенов или полиенов. Подходящие эпоксидные смолы включают, но не ограничиваются ими, эпоксидные смолы на основе бисфенола A, эпоксидные смолы на основе бисфенола F или эпоксидные смолы на основе резорцина. Примерами таких смол являются бисглицидиловые простые эфиры бисфенолов, в частности бисфенола A, бисфенола F и бисфенола S. Также подходящими являются различные фенольные и крезольные новолачные смолы, а также различные глицидоксиамины и аминофенолы, в частности N,N,N’,N’-тетракис(глицидил)-4,4’-диаминодифенилметан и N,N,O-трис(глицидил)-4-аминофенол. Эпоксидная смола на основе простых глицидиловых эфиров различных дигидроксинафталинов и фенолированных дициклопентадиенов также является подходящей. Другие примеры могут включать жидкие эпоксидные смолы, перечисленные в Handbook of Epoxy Resins by Lee and Neville, McGraw-Hill, и Epoxy Resins, Chemistry and Technology, May, Ed., Marcel Dekker, 1973, которые в полном объеме включены в настоящее описание посредством ссылки. Эпоксидные смолы могут присутствовать в концентрации от примерно 2 до примерно 10 масс. % в пересчете на общую массу указанной композиции. Согласно дополнительным вариантам реализации эпоксидные смолы могут присутствовать в концентрации от примерно 3 до примерно 7 масс. % в пересчете на общую массу указанной композиции.

Если эпоксидные смолы используют в качестве сореагентов, желательно добавлять в состав ароматический диамин, как описано в настоящем документе. Указанный диамин должен иметь низкий уровень реакционной способности по отношению к эпоксидной смоле и бисмалеимиду при комнатной температуре. Можно использовать стехиометрическое отношение от 0,1 до 1,0 эквивалентов -NH на эквивалент - (1,2-эпоксидная группа плюс малеимидная группа). Диамины также являются подходящими, даже если эпоксигруппы не присутствуют в указанной композиции, для целей, описанных в настоящем документе.

Указанная композиция может дополнительно содержать ускоритель для увеличения скорости отверждения в реакции эпоксида с амином. Ускорители, которые могут быть использованы в настоящем изобретении, включают кислоты Льюиса, комплексы аминов, такие как BF3.моноэтиламин, BF3.пиперидин, BF3.2-метилимидазол; амины, такие как имидазол и его производные, такие как 4-этил-2-метилимидазол, 1-метилимидазол, 2-метилимидазол, N,N-диметилбензиламин; кислые соли третичных аминов, такие как комплекс п-толуолсульфоновая кислота:имидазол, соли трифторметансульфоновой кислоты, такие как FC-520 (полученные от компании 3М), галогениды органофосфония и дициандиамид. Если используется, ускоритель обычно присутствует в количестве до примерно 6 масс. %, и предпочтительно по меньшей мере 1 масс. %, в пересчете на массу эпоксидного компонента.

Цианатные функциональные сомономеры также подходят в качестве сореагентов. Такие мономеры получают путем взаимодействия хлорида или бромида циана с диолом или полиолом. Примеры подходящих диолов включают бисфенолы, тетраметилбисфенолы, другие цианаты, коммерчески доступные и известные в литературе, резорцин, гидроксиалкилцианураты и изоцианураты и тому подобное. Такие цианатные системы хорошо известны специалистам в данной области техники и коммерчески доступны из множества источников. Их получение также хорошо известно и может быть осуществлено с помощью методов, предложенных в US4546131. Цианатные смолы удобно использовать в сочетании с катализатором. Примеры сложных цианатных эфиров включают цианатобензол, дицианатобензол; 1,3,5-трицианатобензол; 1,3-, 1,4-, 1,6-, 1,8-, 2,6- или 2,7- дицианатонафталин, 1,3,6-трицианатонафталин; 4,4’-дицианатобифенил; бис(4-цианатофенил)метан; 2,2-бис(4-цианатофенил)пропан, 2,2-бис(3,5-дихлор-4-цианатофенил)пропан, 2,2-бис(3,5-дибром-4-дицианатофенил)пропан, простой бис(4-цианатофенил)эфир, простой бис(4-цианатофенил)тиоэфир, бис(4-цианатофенил)сульфон, трис(4-цианатофенил)фосфит, трис(4-цианатофенил)фосфат, бис(3-хлор-4-цианатофенил)метан; цианированный новолак, полученный из новолачного цианированного поликарбонатного олигомера на основе бисфенола, при этом олигомер получен из поликарбонатного олигомера на основе бисфенола, и смесь указанных соединений. Цианатные сложные эфиры можно использовать в виде смесей. Могут быть использованы форполимеры, содержащие сим-триазиновое кольцо, которое получают путем тримеризации цианатных групп цианатного сложного эфира, и которые имеют среднюю молекулярную массу по меньшей мере 400, но не более 6000. Такие форполимеры могут быть получены путем полимеризации указанных выше цианатных сложных эфиров в присутствии, в качестве катализатора, кислоты, такой как минеральная кислота или кислота Льюиса, основания, такого как гидроксид натрия, алкоголят натрия или третичный амин, или соли, такой как карбонат натрия или хлорид лития. Цианатный сложный эфир может быть использован в виде смеси мономера и форполимера.

Предпочтительно в указанных композициях согласно настоящему изобретению присутствуют катализаторы, предпочтительно в количествах от примерно 0,01 до примерно 5,0 масс. % в пересчете на общую массу указанной композиции. Предпочтительные катализаторы включают трифенилфосфин, различные третичные амины, имидазолы или диамины. Для полимеризации сомономеров может потребоваться катализатор.

Указанная композиция может также содержать одно или более ингибирующих соединений, которые снижают реакционную способность компонентов состава, особенно для ингибирования виниловой полимеризации. Подходящие ингибиторы известны в данной области, например, более подробно описаны в US5955566, содержание которого в полном объеме включено в настоящее описание посредством ссылки. Конкретные примеры включают, но не ограничиваются ими, гидрохинон, трет-бутилгидрохинон, бензохинон, п-метоксифенол и гидрат 4-нитро-м-крезола и 1,4-нафтохинона. Гидрохиноны используются в большинстве коммерческих применений, и поэтому их присутствие предпочтительно в композициях согласно настоящему изобретению. Ингибирующие соединения могут присутствовать в концентрации до примерно 2 масс. % и, как правило, по меньшей мере 0,5масс. % в пересчете на общую массу указанной композиции.

Указанная композиция может также включать инициатор винильной полимеризации, такой как пероксид ди-трет-бутила, пероксид дикумила, 1,1-бис-(трет-бутилперокси)циклогексан, азо-бис-(изобутиронитрил), трет-бутилпербензоат и т.п. Инициатор, как правило, содержится в количестве от 0 до примерно 3 масс. % в пересчете на общую массу указанной композиции.

Указанная композиция может также содержать один или более агентов, повышающих текучесть, для регулирования вязкости указанной композиции. Агенты, повышающие текучесть, могут содержать термопластики. Примеры таких термопластиков могут включать, но не ограничиваются ими, полиимиды. Модификаторы текучести могут присутствовать в концентрации от примерно 0,5 до примерно 3 масс. % в пересчете на общую массу указанной композиции.

Указанные композиции согласно настоящему изобретению могут необязательно содержать термопластичный полимер, такой как простые полиэфиры полиарилена, описанные в US4108837, US4175175 и US3332209. Указанные материалы имеют положительное влияние на характеристики вязкости и прочности пленки смеси бисмалеимид/жидкий сореагент. В данном случае также подходят полигидроксиэфиры; и поликарбонаты (такие как на основе бисфенола A, тетраметилбисфенола A, 4,4’-дигидроксидифенилсульфона, 4,4’-дигидрокси-3,3’,5,5’-тетраметил-дифенилсульфона, гидрохинона, резорцина, 4,4’-дигидрокси-3,3’,5,5’-тетраметилдифенилсульфида, 4,4’-бифенола, 4,4’-дигидроксидифенилсульфида, фенолфталеина, 2,2,4,4-тетраметил-1,3-циклобутандиола и т.п.). Другие подходящие термопластики включают поли (ε-капролактон); полибутадиен; сополимеры полибутадиен/акрилонитрил, включая необязательно содержащие амино, карбоксил, гидрокси или --SH группы; сложные полиэфиры, такие как поли(бутилентерефталат); поли(этилентерефталат); полиэфиримиды, такие как смолы Ultem® (полученные от General Electric Company); сополимеры акрилонитрила/бутадиена/стирола, полиамиды, такие как найлон 6, найлон 6,6, найлон 6,12, и Trogamid® T (полученный от Dynamit Nobel Corporation); поли(амидимиды), такие как поли(амидимид) Torlon® (полученный от Amoco Chemical Corporation, Napierville, Ill.); полиолефины, полиэтиленоксид; поли(бутилметакрилат); ударопрочный полистирол; сульфированный полиэтилен; полиакрилаты, такие как полиарилаты, такие как полученные из бисфенола A и изофталевой и терефталевой кислоты; поли(2,6-диметилфениленоксид); поливинилхлорид и его сополимеры; полиацетали; полифениленсульфид и т.п. Поли(винилацетат) и сополимеры винилацетата с другими винильными и акриловыми мономерами можно также использовать. Также подходящими являются винилметил или винилфенил силоксановые каучуки, такие как полимеры формулы -[R2SiO]-, причем до 10% R групп представляют собой винил, и оставшиеся представляют собой или метил и/или фенил. Предпочтительные термопластики включают полисульфоны, фенокси смолы и полиарилаты.

В дополнение к компонентам, описанным выше, указанная композиция может дополнительно содержать другие нереакционноспособные вспомогательные компоненты для систем, включающие, но не ограничивающиеся ими, пластификаторы, наполнители, красители, пигменты, другие термопластичные модификаторы сопротивления разрушению, другие агенты для контроля реологии, агенты, придающие липкость, и т.п., которые хорошо известны специалистам в данной области техники.

Компонент (C), представляющий собой полиарилполимерный термопластичный агент, повышающий сопротивление разрушению

Полиарилполимерный термопластичный агент, повышающий сопротивление разрушению, из компонента (C) содержит по меньшей мере одну группу SO2 в полимерной цепи, т.е. является арилсульфон-содержащим полимером. Полиарилполимерный термопластичный агент, повышающий сопротивление разрушению, из компонента (C) представляет собой, предпочтительно, полиарилсульфоновый термопластичный агент, повышающий сопротивление разрушению. Указанный термопластичный агент (C), повышающий сопротивление разрушению, предпочтительно содержит один или более полиарилполимеров, синтезированных из последовательностей (Ar), причем (Ar) представляет собой фенилен. Указанные (Ar) группы соединены в виде конденсированных колец через одинарную химическую связь или через любую двухвалентную группу, такую как, но не ограничиваясь ими, SO2, CO, O, S или двухвалентный углеводород. Предпочтительно, указанная двухвалентная группа выбрана из SO2, CO, O, S или двухвалентного углеводорода и, более предпочтительно, из SO2, O и S. Предпочтительно указанный полиарилполимер содержит связи SO2, O и одинарные химические связи. Предпочтительно, в любой заданной полимерной цепи может присутствовать множество различных связей, при условии, что во всех цепях содержится по меньшей мере одна SO2.

Предпочтительно, полиарилполимер содержит реакционноспособные боковые и/или концевые группы, которые можно при необходимости использовать для сшивания с получением веществ в форме частиц.

Фениленовые группы в полиарилполимере могут быть замещены одной или более замещающими группами (R), каждая из которых независимо выбрана из C1-8 алифатических насыщенных или ненасыщенных алифатических групп или фрагментов с разветвленной или прямой цепью, необязательно, содержащих один или более гетероатомов, выбранных из O, S, N, или галоген (например, Cl или F); и групп, обеспечивающих активный водород, особенно OH, NH2, NHRa или -SH, где Ra представляет собой углеводородную группу, содержащую до восьми атомов углерода, или обеспечивающих другую сшивающую активность, особенно эпоксидов, (мет)акрилатов, цианатов, изоцианатов, ацетилена или этилена, как в виниле, аллиле или малеимиде, ангидриде, оксазолине и мономерах, содержащих ненасыщенность.

Предпочтительно, указанная фениленовая группа является мета- или пара- (предпочтительно пара).

В US6437080 описаны способы получения таких композиций из их мономерных предшественников путем выделения мономерных предшественников в выбранном диапазоне молекулярной массы, и данные описания включены в настоящее описание посредством ссылки.

Как указано выше, полиарилполимер предпочтительно содержит реакционноспособные боковые и/или концевые группы. Реакционноспособные концевые группы могут быть получены путем взаимодействия мономеров или путем последовательного превращения продуктов полимеров до или после выделения. Предпочтительные группы представляют соб