Способ получения магнитной жидкости на органической основе
Изобретение может быть использовано в электротехнике, машиностроении и химической промышленности. Способ получения магнитной жидкости на органической основе, не смешивающейся с водой, включает введение магнитной жидкости на водной основе, содержащей магнитные наночастицы Fе3O4, в жидкость на органической основе, не смешивающуюся с водой. Перемешивают и отстаивают водно-органическую смесь до появления четкой границы раздела между водной и органической составляющими. При помощи магнитного поля перемещают магнитные наночастицы Fе3O4 в органическую основу. Выдерживают гетерогенную систему до разделения магнитной жидкости на органической основе, не смешивающейся с водой, и водной основы. Удаляют водную основу и проводят сушку магнитной жидкости, содержащей магнитные наночастицы Fе3O4, на органической основе с помощью осушающих реагентов. Изобретение позволяет получить магнитную жидкость с улучшенными эксплуатационными характеристиками высокопроизводительным, простым и экономичным способом. 1 ил.
Реферат
Изобретение может быть использовано в области машиностроения, химической области, а также в области электротехники.
Известны магнитные жидкости и их получение [Patent US №3,764,540], включающие измельчение путем жидкого помола и диспергирование немагнитного субоксида железа типа вюстит с составом от Fe0,95O до Fe0,85O при перемешивании с олеиновой кислотой в керосине с образованием стабильной коллоидной суспензии субоксида в жидкости, затем восстановление субоксида железа при нагревании суспензии до температуры в интервале 570-800°С, но ниже температуры разложения жидкости, в течение времени, достаточного для существенного превращения немагнитного субоксида в ферромагнитную форму.
Измельчение при перемалывании не дает возможности получить частицы очень малого размера, распределение частиц по размерам, достигнутое таким путем измельчения, очень широкое, а это влияет как на склонность частиц к агломерации (более мелкие стремятся присоединиться к более крупным, образуя агломератные комплексы), так и в конечном счете на эксплуатационные характеристики, связанные с неравномерным распределением магнитных частиц в жидкости-носителе и их агломерацией. Нагрев суспензии до указанных температур также ведет к необратимой агломерации частиц. К магнитным жидкостям на органической основе часто предъявляется требование стабильности при повышенных температурах, возникающих в узлах трения, где такие жидкости предполагается применять, но используемая в качестве стабилизатора олеиновая кислота обладает низкой термоокислительной способностью, что может привести к коагуляции коллоида. В полученной таким способом магнитной жидкости присутствуют как магнитные частицы магнетита, так и частицы железа, склонные к окислению, а потому магнитные характеристики такой жидкости нестабильны во времени и будут снижаться.
Наиболее близким к заявляемому является способ получения магнитной жидкости на органической основе [В.Е. Фертмана [Фертман В.Е. Магнитные жидкости: Справочное пособие- Минск: Вышэйшая школа, 1988, 184 с.] Способ включает механическое измельчение крупнодисперсных частиц магнетита с подводом поверхностно-активного вещества (ПАВ) и первоначальной основы (воды). Далее в полученную водную магнитную жидкость вводят флоккулирующий агент (ацетон) и удаляют жидкую фазу, содержащую первоначальное ПАВ и воду, мокрые твердые частицы отмывают водой, удаляя жидкость, содержащую остатки флоккулирующего агента. Затем проводят сушку частиц посредством нагрева до 93°С, и сухие твердые частицы подвергают механическому измельчению при параллельном введении конечного ПАВ и конечной основы.
Недостатком способа является неполное удаление влаги из исходной магнитной жидкости при сушке при температуре до 93°С, поскольку магнитная основа является высокопористой структурой и вода, находящаяся в капиллярах, требует для своего удаления более высокой температуры нагрева.
А присутствие воды в порах магнитной жидкости на органической основе при применении ее на повышенных температурах будет вести к постепенному слипанию частиц, участвующих в образовании пор, включающих внутрь себя воду, что в конечном счете понизит эксплуатационные характеристики магнитной жидкости. Во время сушки при нагреве полученные на водной основе магнитные наночастицы необратимо слипаются, а механическое измельчение в дальнейшем не дает возможности получить частицы малого размера. К недостаткам данного метода также относится многоэтапность, которая, в том числе ведет к большим потерям магнитного материала и уменьшению выхода магнитной жидкости на органической основе. Способ является экономически невыгодным из-за многошаговости и энергозатратности процесса получения магнитной жидкости по описанной технологии.
Технической проблемой является получение магнитной жидкости на органической основе высокопроизводительным и простым экономичным способом с улучшенными эксплуатационными характеристиками.
Для решения проблемы предложен способ получения магнитной жидкости на органической основе, не смешивающейся с водой. Способ включает введение магнитной жидкости на водной основе в жидкость на органической основе, перемешивание и отстаивание водноорганической смеси до появления четкой границы раздела между водной и органической составляющими. Затем с помощью магнитного поля перемещают магнитную составляющую магнитной жидкости в органическую основу, выдерживают гетерогенную систему для разделения магнитной жидкости на органической основе от водной основы, после чего удаляют водную основу и проводят сушку магнитной жидкости на органической основе с помощью осушающих реагентов.
Введение магнитной жидкости на водной основе в жидкость на органической основе и перемешивание водноорганической смеси позволяет распределить и частично заменить водное окружение магнитных частиц.
Отстаивание до появления четкой границы раздела между водной и органической составляющими и перемещение магнитной составляющей магнитной жидкости в органическую основу при помощи магнитного поля позволяет перевести магнитные частицы из водной основы в органическую и удержать их в ней, осуществив таким образом замену основы магнитной жидкости и быстрое по времени разделение водной основы и магнитной жидкости на органической основе с целью дальнейшего удаления отделенной водной основы и получения магнитной жидкости на органической основе.
Удаление из магнитной жидкости на органической основе следов воды с помощью осушающих реагентов позволяет полностью обезводить готовую смесь, осуществив полный перевод магнитной жидкости на водной основе в магнитную жидкость на органической основе и обеспечив абсолютно безводную среду.
Предложенный способ реализуется без нагрева, что способствует получению магнитных жидкостей на органической основе с частицами значительно меньшего размера, чем в описанных ранее способах, поскольку температурное воздействие способствует агломерации частиц, а это снижает в конечном счете эксплуатационные характеристики готовой магнитной жидкости. Отсутствие длительных обработок в мельнице позволяет существенно уменьшить время получения магнитной жидкости, значительно сократив при этом экономические затраты на операцию и максимально упростив процесс получения магнитной жидкости на органической основе. Действие магнитного поля также способствует быстрому переводу магнитных частиц из одной основы в другую и, кроме того, не создает благоприятных для агломерации частиц условий. Применение осушающих реагентов позволяет полностью удалить воду из магнитной жидкости и получить полностью обезвоженную магнитную жидкость на органической основе с высокими эксплуатационными характеристиками.
Устройство, с помощью которого реализуется предлагаемый способ, содержит: 1 - штатив с лапкой, 2 - делительную воронку, 3 - кольцевой магнит, 4 - органическую основу с магнитными частицами, 5 - водную основу (фиг. 1).
Магнитную жидкость Fe3O4 на водной основе, приготовленную методом химического осаждения и содержащую магнитные наночастицы со средним размером 10 нм, вливают в жидкость на органической основе - керосин. Смешение проводят в сосуде в виде делительной воронки. Затем устанавливают делительную воронку на механической качалке для перемешивания водноорганической смеси, обеспечивая тем самым плавное скольжение одной жидкости по другой, после чего закрепляют воронку на штативе в вертикальном положении. При появлении четкой границы раздела между водной и органической (керосиновой) составляющими с помощью кольцевого магнита, установленного с внешней стороны сосуда на уровне верхней части смеси, находящейся в делительной воронке, перемещают магнитные наночастицы Fe3O4 из магнитной жидкости на водной основе в керосин (фиг. 1), выдерживают гетерогенную систему для разделения органической (керосиновой) и водной основы, отделяют водную основу путем слива через нижний кран делительной воронки. Затем из магнитной жидкости на основе керосина удаляют следы воды в эксикаторе с помощью осушающего реагента Р4О10. Магнитные наночастицы в составе магнитной жидкости на органической основе имеют средний размер примерно 12 нм и имеют узкое распределение по размерам, что положительно влияет на эксплуатационные характеристики магнитной жидкости, так как постоянный примерно равный размер частиц обеспечивает ей высокую устойчивость во времени. Магнитная жидкость в соответствии с предложенным способом при полном удалении воды может быть получена в течение нескольких часов, что значительно меньше, чем в предложенных ранее способах. Способ прост в реализации, не требует сложного оборудования и высоких затрат, легко поддается масштабированию.
Магнитную жидкость Fe3O4 на водной основе, приготовленную методом химического осаждения и содержащую магнитные наночастицы со средним размером 10 нм, вливают в жидкость на органической основе - полиметилсилоксан (ПМС). Смешение проводят в сосуде в виде делительной воронки. Затем устанавливают делительную воронку на механической качалке для перемешивания водноорганической смеси, обеспечивая тем самым плавное скольжение одной жидкости по другой, после чего закрепляют воронку на штативе в вертикальном положении. При появлении четкой границы раздела между водной и полиметилсилоксановой составляющими с помощью кольцевого магнита, установленного с внешней стороны сосуда на уровне верхней части смеси, находящейся в делительной воронке, перемещают магнитные наночастицы Fe3O4 из магнитной жидкости на водной основе в ПМС (фиг. 1), выдерживают гетерогенную систему для разделения органической (полиметилсилоксановой) и водной основы, отделяют водную основу путем слива через нижний кран делительной воронки. Затем из магнитной жидкости на основе ПМС удаляют следы воды в U-образной трубке с помощью металлического Li.
Магнитные наночастицы в составе магнитной жидкости на органической основе имеют средний размер примерно 13 нм и обладают монодисперсностью, что успешно сказывается на эксплуатационных характеристиках магнитной жидкости, поскольку постоянный примерно равный размер частиц обеспечивает ей высокую устойчивость во времени. Магнитная жидкость в соответствии с предложенным способом при полном удалении воды может быть получена в течение нескольких часов, что существенно меньше, чем в предложенных ранее способах. Способ прост в реализации, не требует сложного оборудования и высоких затрат, легко масштабируется.
Способ получения магнитной жидкости на органической основе, не смешивающейся с водой, отличающийся тем, что магнитную жидкость на водной основе, содержащую магнитные наночастицы Fе3O4, вводят в жидкость на органической основе, не смешивающуюся с водой, перемешивают и отстаивают водно-органическую смесь до появления четкой границы раздела между водной и органической составляющими, при помощи магнитного поля перемещают магнитные наночастицы Fе3O4 в органическую основу, выдерживают гетерогенную систему до разделения магнитной жидкости на органической основе, не смешивающейся с водой, и водной основы, после чего удаляют водную основу и проводят сушку магнитной жидкости, содержащей магнитные наночастицы Fе3O4, на органической основе с помощью осушающих реагентов.