Способ управления двигателем (варианты)

Иллюстрации

Показать все

Изобретение относится к двигателям транспортных средств. В способе управления двигателем определяют, образовался ли лед во впускном коллекторе или корпусе дросселя двигателя, в ответ на рабочие параметры двигателя. Затем глушат двигатель в ответ на действие водителя. Определяют, растопился ли лед после глушения двигателя. Определяют, рассеялся ли растопленный лед. Активируют диагностику пропусков зажигания в двигателе после запуска двигателя в ответ на определение о рассеянном растопленном льде. Кроме наличия льда, определяют также его количество. Повышается точность диагностики пропусков зажигания. 3 н. и 17 з.п. ф-лы, 4 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящие изобретение относится к пропускам зажигания в двигателе.

УРОВЕНЬ ТЕХНИКИ

В условиях крейсерского хода в холодную погоду, лед может образовываться в корпусе дросселя двигателя, впускном коллекторе и клапане принудительной вентиляции картера (PCV). Выхлопные газы двигателя могут прорываться через поршень в картер двигателя, а затем вентилироваться в корпус дросселя или впускной коллектор через клапан PCV. Выхлопные газы могут содержать в себе водяной пар, который может замерзать, особенно в грузовиках, в условиях крейсерского хода в холодную погоду, когда холодный воздух, текущий через моторный отсек может поддерживать корпус дроссель и впускной коллектор ниже температур замерзания.

Лед может оставаться в корпусе дросселя и впускном коллекторе после выключения двигателя. Если лед остается при последующем запуске двигателя, он может растапливаться и получающаяся в результате вода может вызывать пропуски зажигания в двигателе до тех пор, пока вода не вычищена. Процедура бортовой диагностики пропусков зажигания в двигателе, в таком случае, может указывать неисправность пропусков зажигания, требующую технического обслуживания и текущего ремонта, даже если двигатель был работающим надлежащим образом.

В US 8170772 (опубл. 01.05.2012, МПК F02D 28/00) и в US 2012/244994 (опубл. 27.09.2012, МПК B60W 10/04, B60W 50/02, F02D 45/00) раскрывается определение накопления льда на основании температуры. В ответ на обнаружение льда, скорость вращения двигателя повышается, чтобы понижать чувствительность двигателя к плохим топливно-воздушным смесям, вызванным растопленным льдом и получающимися в результате пропусками зажигания. Авторы в материалах настоящего описания выявили, однако, что эти противопоставленные материалы не принимают меры в ответ на бортовую диагностику пропусков зажигания в двигателе и ложные указания пропусков зажигания.

Еще один подход состоял в том, чтобы определять накопление льда, а затем, задерживать диагностику пропусков зажигания после запуска двигателя на заданное время, чтобы обеспечивать растопку льда. Авторы в материалах настоящего описания выявили, что этот подход может давать в результате задерживание диагностики пропусков зажигания без необходимости после того, как лед растопился, а растопленный лед рассеялся.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

В одном из аспектов изобретения, раскрытого в материалах настоящего описания, авторы решили указанные проблемы посредством способа управления двигателем, включающим в себя этапы, на которых:

определяют, образовался ли лед во впускном коллекторе или корпусе дросселя двигателя, в ответ на рабочие параметры двигателя;

глушат двигатель в ответ на действие водителя;

определяют, растопился ли указанный лед после указанного глушения двигателя;

определяют, рассеялся ли указанный растопленный лед; и

активируют диагностику пропусков зажигания в двигателе после запуска двигателя в ответ на указанное определение о рассеянном растопленном льде.

В одном из вариантов предложен способ, в котором указанные рабочие параметры двигателя включают в себя одно или более из следующего: температуры впускного коллектора; температуры хладагента двигателя; потока воздуха, введенного через указанный корпус дросселя; и скорости крейсерского хода, а также продолжительности времени указанной скорости крейсерского хода, транспортного средства, приводимого в движение двигателем.

В одном из вариантов предложен способ, в котором указанное определение о растопленном льде осуществляют в ответ на время после указанного глушения двигателя и температуру указанного впускного коллектора или корпуса дросселя.

В одном из вариантов предложен способ, в котором указанное определение о рассеянном растопленном льде осуществляют в ответ на время после указанного глушения двигателя и температуру указанного впускного коллектора или корпуса дросселя после указанного глушения двигателя.

В одном из вариантов предложен способ, в котором указанное определение о рассеянном растопленном льде дополнительно осуществляют в ответ на температуру указанного впускного коллектора или корпуса дросселя при работе двигателя перед указанным глушением двигателя.

В одном из вариантов предложен способ, в котором указанное рассеивание растопленного льда содержит испарение и утечку.

В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором присоединяют клапан принудительной вентиляции картера из картера двигателя в указанный впускной коллектор.

В одном из дополнительных аспектов предложен способ управления двигателем, приводящим в движение моторное транспортное средство, включающий в себя этапы, на которых:

оценивают количество льда, образованного во впускном коллекторе или корпусе дросселя двигателя, в ответ на рабочие параметры двигателя;

глушат двигатель в ответ на действие водителя;

определяют, растопилось ли указанное количество льда после указанного глушения двигателя;

определяют, рассеялся ли указанный растопленный лед; и

выводят из работы диагностику пропусков зажигания в двигателе после запуска двигателя в ответ на указанное определение, что указанный лед растопился, но не рассеялся.

В одном из вариантов предложен способ, в котором указанные рабочие параметры двигателя включают в себя одно или более из следующего: температуры впускного коллектора; температуры хладагента двигателя; массового расхода воздуха, введенного через указанный корпус дросселя; скорости крейсерского хода, и продолжительности времени указанной скорости крейсерского хода, транспортного средства; влажности окружающей среды и оценки количества вентилируемых газов через клапан принудительной вентиляции картера (PCV) в коллектор.

В одном из вариантов предложен способ, в котором указанное рассеивание растопленного льда содержит испарение и утечку из указанного впускного коллектора.

В одном из вариантов предложен способ, в котором указанное определение растопленного льда происходит в ответ на время после указанного глушения двигателя и температуру указанного впускного коллектора или корпуса дросселя.

В одном из вариантов предложен способ, в котором указанное определение рассеянного растопленного льда происходит в ответ на время после указанного глушения двигателя и температуру указанного впускного коллектора или корпуса дросселя после указанного глушения двигателя.

В одном из еще дополнительных аспектов предложен способ управления двигателем, приводящим в движение моторное транспортное средство, включающий в себя этапы, на которых:

оценивают количество льда, образованного во впускном коллекторе или корпусе дросселя двигателя, в ответ на рабочие параметры двигателя;

глушат двигатель в ответ на действие водителя;

определяют, растопился ли указанный лед после указанного глушения двигателя;

определяют, рассеялся ли указанный растопленный лед;

оказывают тепловое воздействие на указанный корпус дросселя или впускной коллектор для способствования растопке и рассеиванию льда; и

активируют диагностику пропусков зажигания в двигателе после запуска двигателя в ответ на указанные растопку и рассеивание указанного льда.

В одном из вариантов предложен способ, в котором указанные рабочие параметры двигателя включают в себя одно или более из следующего: температуры впускного коллектора; температуры хладагента двигателя; массового расхода воздуха, введенного через указанный корпус дросселя; скорости крейсерского хода, и продолжительности времени указанной скорости крейсерского хода, транспортного средства; и оценки количества вентилируемых газов через клапан PCV в коллектор.

В одном из вариантов предложен способ, в котором указанное оказание теплового воздействия на указанный впускной коллектор или корпус дросселя включает в себя этап, на котором оказывают тепловое воздействие из теплообменника, который присоединен к воздушному компрессору турбонагнетателя.

В одном из вариантов предложен способ, в котором указанное оказание теплового воздействия на указанный коллектор или корпус дросселя включает в себя этап, на котором оказывают тепловое воздействие из системы охлаждения двигателя.

В одном из вариантов предложен способ, в котором указанное оказание теплового воздействия на указанный коллектор или корпус дросселя осуществляют при работе двигателя, когда рабочие параметры указывают, что может образовываться лед.

В одном из вариантов предложен способ, в котором указанное оказание теплового воздействия на указанный коллектор или корпус дросселя осуществляют при запуске двигателя в ответ на указанное определение растопленного льда, который не рассеялся.

В одном из вариантов предложен способ, в котором указанное определение о растопленном льде осуществляют в ответ на время после указанного глушения двигателя и температуру указанного впускного коллектора или корпуса дросселя. В одном из вариантов предложен способ, в котором указанное определение о рассеянном растопленном льде осуществляют в ответ на время после указанного глушения двигателя и температуру указанного впускного коллектора или корпуса дросселя после указанного глушения двигателя.

Таким образом, диагностика пропусков зажигания может не задерживаться без необходимости. Взамен, обнаружение пропусков зажигания будет задерживаться только после того, как есть реальное указание или определение, что был лед, который растопился, но не рассеялся благодаря испарению и/или утечке через коллектор. Любая задержка диагностики пропусков зажигания, поэтому происходит, только когда действительно нужно и только на минимальное время.

В еще одном аспекте изобретения, авторы оценивают количество образованного льда, чтобы дополнительно уменьшать среднюю задержку диагностики пропусков зажигания. В еще одном другом аспекте изобретения, авторы содействовали растопке льда и рассеиванию растопленного льда посредством оказания теплового воздействия на впускной коллектор или корпус дросселя.

Следует понимать, что раскрытие изобретения, приведенное выше, представлено для ознакомления с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Не предполагается идентифицировать ключевые или существенные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен вариантами осуществления, которые исключают какие-либо недостатки, отмеченные выше или в любой части этого описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Предмет настоящего раскрытия будет лучше понятен после прочтения последующего подробного описания неограничивающих вариантов осуществления со ссылкой на прилагаемые чертежи.

Фиг. 1 показывает схематичное изображение системы двигателя, присоединенной к системе принудительной вентиляции картера.

Фиг. 2 показывает блок-схему последовательности операций способа, иллюстрирующую процедуру для активации или задерживания диагностики пропусков зажигания на основании образования льда, растопки льда и рассеивания растопленного льда.

Фиг. 3 показывает блок-схему последовательности операций способа, иллюстрирующую процедуру для содействия растопке льда и рассеиванию растопленного льда.

Фиг. 4 показывает примерную операцию, такую как активация или задержка диагностики пропусков зажигания на основании образования, растопки льда и рассеивания растопленного льда.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ

ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Последующее описание относится к системам и способам определения об образовании льда, растопке льда и рассеивании растопленного льда во впускном коллекторе, корпусе дросселя и/или клапане принудительной вентиляции системы двигателя, такой как система двигателя по Фиг. 1. Контроллер может выполнять процедуру, такую как процедура на Фиг. 2, чтобы активировать или задерживать диагностику пропусков зажигания на основании образования, растопки льда и рассеивания растопленного льда. Кроме того, контроллер может выполнять процедуру, такую как процедура на Фиг. 3, чтобы определять величину образования льда и оказывать тепловое воздействие на впускной коллектор или корпус дросселя, тем самым, содействуя растопке льда и рассеянию растопленного льда. Пример регулировки операции выявления пропусков зажигания на основании присутствия льда и растопленного льда показан на Фиг. 4.

Далее, со ссылкой на Фиг. 1, он показывает примерную конфигурацию системы многоцилиндрового двигателя внутреннего сгорания, в целом изображенного под 10, которая может быть включена в силовую установку автомобильного транспортного средства. Двигатель 10 может управляться, по меньшей мере частично, системой управления, включающей в себя контроллер 12, и входными сигналами от водителя 132 транспортного средства через устройство 130 ввода. В этом примере, устройство 130 ввода включает в себя педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала PP положения педали.

Двигатель 10 может включать в себя нижнюю часть блока цилиндров двигателя, указанную в целом под 26, которая может включать в себя картер 28 двигателя, заключающий в оболочку коленчатый вал 30, с маслосборником 32, расположенным под коленчатым валом. Маслозаливная горловина 29 может быть расположена на картере 28 двигателя, так чтобы масло могло подаваться в маслосборник 32. В дополнение, картер 28 двигателя может включать в себя множество других отверстий для обслуживания компонентов в картере 28 двигателя. Эти отверстия в картере 28 двигателя могут поддерживаться закрытыми при работе двигателя, так что система вентиляции картера (описанная ниже) может работать во время работы двигателя.

Верхняя часть блока 26 цилиндров двигателя может включать в себя камеру 34 сгорания (то есть, цилиндр). Камера 34 сгорания может включать в себя стенки 36 камеры сгорания с поршнем 38, расположенным в них. Поршень 38 может быть присоединен к коленчатому валу 30, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Камера 34 сгорания может принимать топливо из топливной форсунки 45 (в материалах настоящего описания, сконфигурированной в качестве топливной форсунки непосредственного впрыска) и всасываемый воздух из впускного коллектора 42, который расположен ниже по потоку от корпуса 44 дросселя, имеющего дроссельную заслонку 43. Блок 26 цилиндров двигателя также может включать в себя датчик 46 хладагента двигателя (ECT), расположенный на входе в контроллер 12 двигателя (подробнее описанный ниже в материалах настоящего описания).

Корпус 44 дросселя может быть расположен на впуске двигателя для управления потоком воздуха, поступающим во впускной коллектор 42, и, например, может быть предварен выше по потоку компрессором 50, сопровождаемым охладителем 52 наддувочного воздуха. Датчик температуры корпуса дросселя (не показан) может быть расположен в корпусе дросселя, чтобы выдавать указание температуры корпуса дросселя. Воздушный фильтр 54 может быть расположен выше по потоку от компрессора 50 и может фильтровать свежий воздух, поступающий во впускной канал 13. Кроме того, датчик 51 влажности, выполненный с возможностью выявлять влажность окружающей среды, может быть расположен во впускном коллекторе. В одном из примеров, датчик 64 выхлопных газов (описанный ниже со ссылкой на Фиг. 1), такой как датчик кислорода, может быть выполнен с возможностью выявлять влажность окружающей среды.

Датчик температуры впускного коллектора (не показан) может быть расположен во впускном коллекторе, чтобы выдавать указание температуры впускного коллектора. В некоторых примерных системах, датчик температуры, расположенный во впускном коллекторе, может выдавать указание температуры всасываемого воздуха, и температура впускного коллектора может оцениваться на основании температуры всасываемого воздуха и температуры хладагента двигателя. Всасываемый воздух может поступать в камеру 34 сгорания через систему 40 впускных клапанов с кулачковым приводом. Подобным образом, сгоревшие выхлопные газы могут выходить из камеры 34 сгорания через систему 41 выпускных клапанов с кулачковым приводом. В альтернативном варианте осуществления, одна или более из системы впускных клапанов и системы выпускных клапанов могут быть с электроприводом.

Выпускные газообразные продукты сгорания выходят из камеры 34 сгорания через выпускной канал 60, расположенный выше по потоку от турбины 62. Датчик 64 выхлопных газов может быть расположен вдоль выпускного канала 60 выше по потоку от турбины 62. Турбина 62 может быть оборудована регулятором давления наддува, обводящим ее. Датчик 64 может быть датчиком, пригодным для выдачи показания соотношения воздуха выхлопных газов/топлива, таким как линейный датчик кислорода или UEGO (универсальный или широкодиапазонный датчик кислорода в выхлопных газах), двухрежимный датчик кислорода или EGO, HEGO (подогреваемый EGO), датчик содержания NOx, HC, или CO. Датчик 64 выхлопных газов может быть соединен с контроллером 12.

В примере по Фиг. 1, система 16 принудительной вентиляции картера (PCV) присоединена к впуску двигателя, так что газы в картере двигателя могут вентилироваться управляемым образом из картера двигателя. Во время условия без наддува (когда давление в коллекторе (MAP) меньше, чем барометрическое давление (BP)), система 16 вентиляции картера всасывает воздух в картер 28 двигателя через сапунную или вентиляционную трубку 74. Трубка 74 вентиляции картера двигателя может быть присоединена к впускному каналу 13 свежего воздуха выше по потоку от компрессора 50. В некоторых примерах, трубка вентиляции картера может быть присоединена ниже по потоку от воздушного фильтра 54 (как показано). В других примерах, трубка вентиляции картера может быть присоединена к впускному каналу 13 выше по потоку от воздушного фильтра 54.

Система 16 PCV также вентилирует газы из картера двигателя и во впускной коллектор 42 через трубопровод 76 PCV (в материалах настоящего описания также указываемый ссылкой как магистраль 76 PCV). Следует принимать во внимание, что, в качестве используемого в материалах настоящего описания, поток PCV указывает ссылкой на поток газов через трубопровод 76 из картера двигателя во впускной коллектор. Подобным образом, в качестве используемого в материалах настоящего описания, обратный поток PCV указывает ссылкой на поток газов через трубопровод 76 из впускного коллектора в картер двигателя. Обратный поток PCV может возникать, когда давление во впускном коллекторе является более высоким, чем давление в картере двигателя. В некоторых примерах, система 16 PCV может быть оборудована средством для предотвращения обратного потока PCV. В других примерах, возникновение обратного потока PCV может быть неважным или даже желательным; в этих примерах, система 16 PCV может исключать средство для предотвращения обратного потока PCV или, например, преимущественно может использовать обратный поток PCV для формирования разрежения.

Газы в картере 28 двигателя могут состоят из несгоревшего топлива, несожженного воздуха и полностью или частично сгоревших газов. Кроме того, также может присутствовать смазочный масляный туман. По существу, различные маслоотделители могут быть включены в систему 16 вентиляции картера двигателя для уменьшения выхода масляного тумана из картера двигателя через систему PCV. Например, магистраль 76 PCV может включать в себя однонаправленный маслоотделитель 80, который отфильтровывает масло из паров, выходящих из картера 28 двигателя, до того, как они повторно поступают во впускной коллектор 42. Еще один маслоотделитель 81 может быть расположен в трубопроводе 74 для удаления масла из потока газов, выходящих из картера двигателя при работе с наддувом. Дополнительно, магистраль 76 PCV также может включать в себя датчик 82 разрежения, присоединенный к системе PCV.

Система 16 PCV может включать в себя один или более клапанов 84 PCV для регулирования потока PCV в трубопроводе 76. Как описано выше, регулирование потока PCV может быть необходимым, чтобы гарантировать, что достигаются требования к потоку для надлежащей вентиляции картера двигателя, и чтобы гарантировать, что топливно-воздушное соотношение во впускном коллекторе дает возможность эффективной работы двигателя.

Кроме того, система рециркуляции выхлопных газов (EGR) может направлять требуемую часть выхлопных газов из выпускного канала 60 во впускной коллектор 42 через канал 85 EGR высокого давления (HP-EGR) и/или канал EGR низкого давления (LP-EGR). Величина EGR, выдаваемой во впускной коллектор 42, может меняться контроллером 12 через клапан 86 HP-EGR или клапан LP-EGR (не показан). В некоторых вариантах осуществления, дроссель может быть включен в выпуск для содействия возбуждению EGR. Кроме того, датчик 87 EGR может быть расположен внутри канала EGR и может выдавать показание одного или более из давления, температуры, концентрации выхлопных газов. В качестве альтернативы, EGR может управляться посредством расчетного значения, основанного на сигналах с датчика MAF (выше по потоку), MAP (впускного коллектора), MAT (температуры газа в коллекторе) и датчика скорости вращения коленчатого вала (не показан). Кроме того, EGR может управляться на основании датчика O2 выхлопных газов и/или кислородного датчика на впуске (впускного коллектора). В некоторых условиях, система EGR может использоваться для регулирования температуры смеси воздуха и топлива в пределах камеры сгорания. Фиг. 1 показывает систему HP-EGR, где EGR направляется из выше по потоку от турбины турбонагнетателя в ниже по потоку от компрессора турбонагнетателя. В качестве альтернативы, может использоваться система LP-EGR, где EGR направляется из ниже по потоку от турбины турбонагнетателя в выше по потоку от компрессора турбонагнетателя. В еще одном примере, может использоваться комбинация системы HP-EGR и системы LP-EGR.

Контроллер 12 показан на Фиг. 1 в качестве микрокомпьютера, включающего в себя микропроцессорный блок 108, порты 110 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве микросхемы 112 постоянного запоминающего устройства в этом конкретном примере, оперативное запоминающее устройство 114, энергонезависимую память 116 и шину данных. Контроллер 12 может принимать различные сигналы с датчиков, присоединенных к двигателю 10, в том числе измерение вводимого массового расхода воздуха (MAF) с датчика 58 массового расхода воздуха; температуру хладагента двигателя (ECT) с датчика 46 температуры; температуру корпуса дросселя с датчика корпуса дросселя; давление PCV с датчика 82 разрежения; топливно-воздушное соотношение выхлопных газов с датчика 64 выхлопных газов; и т.д. Более того, контроллер 12 может контролировать и регулировать положение различных исполнительных механизмов на основании входного сигнала, принимаемого с различных датчиков. Эти исполнительные механизмы, например, могут включать в себя дроссель 44, системы 40, 41 впускных и выпускных клапанов. Постоянное запоминающее устройство 112 запоминающего носителя может быть запрограммировано машиночитаемыми данными, представляющими команды, исполняемые процессором 108 для выполнения способов, описанных ниже, а также вариантов, которые предвосхищены, но специально не перечислены. Примерные способы и процедуры описаны в материалах настоящего описания со ссылкой на Фиг. 2-4.

Как описано выше, Фиг. 1 показывает только один цилиндр многоцилиндрового двигателя, и каждый цилиндр может подобным образом включать в себя свой собственный набор впускных/выпускных клапанов, топливную форсунку и т.д.

С обращением к Фиг. 2, показан примерный способ обнаружения льда во впускном коллекторе и/или корпусе дросселя и регулировки диагностики пропусков зажигания на основании растопки и рассеивания льда.

Для уменьшения выбросов с выхлопными газами, выхлопные газы из тракта EGR и пары из системы PCV могут вентилироваться во впускной коллектор. Выхлопные газы и пары могут содержать в себе водяной пар, который может замерзать при работе двигателя в холодных погодных условиях, побуждая лед накапливаться во впускном коллекторе или корпусе дросселя. На этапе 202, контроллер может определять рабочие параметры двигателя, чтобы выявлять образование льда во впускном коллекторе. Дополнительно, лед может образовываться в корпусе дросселя и/или клапане принудительной вентиляции картера. Образование льда, например, может происходить при работе двигателя при низкой температуре во время холодных погодных условий. Образование льда может выявляться на основании рабочих параметров двигателя, в том числе, одного или более из температуры впускного коллектора, температуры хладагента двигателя, потока воздуха, засасываемого через корпус дросселя и впускной коллектор, скорости крейсерского хода, продолжительности времени скорости крейсерского хода и массы EGR. Например, в условиях, когда впускной коллектор (или корпус дросселя) находится ниже температур замерзания, транспортное средство, движущееся под гору на конкретной скорости, может выпускать меньшее количество выхлопных газов (из системы EGR и системы PCV) во впускной коллектор, и меньший поток воздуха может засасываться через впускной коллектор, чем транспортное средство, едущее в гору на той же самой скорости, вследствие двигателя, работающего на более высокой нагрузке, при движении в гору. Следовательно, вследствие большего количества выхлопных газов, вентилируемых во впускной коллектор, и большего количества воздуха, засасываемого через впускной коллектор, когда транспортное средство движется в гору, большее количество водяного пара может проходить через впускной коллектор и, как результат, может обнаруживаться большее образование льда. Поэтому, образование льда может выявляться на основании рабочих параметров двигателя, в том числе, температуры впускного коллектора, массы EGR, потока воздуха и скорости крейсерского хода, как обсуждено выше. Кроме того, счетчик обледенения может использоваться, как описано в материалах настоящего описания со ссылкой на Фиг. 4, для выявления образования льда.

После определения рабочих параметров двигателя на этапе 202, на этапе 204 контроллер может определять, выявлено ли образование льда. Если да, то процедура может переходить на этап 206, чтобы определять, была ли операция глушения двигателя в ответ на команду водителя. Если да, после обнаружения операции глушения двигателя, на этапе 208, может определяться время, истекшее после глушения двигателя, и температура впускного коллектора. Затем, на этапе 210, контроллер может определять, выявлена ли растопка льда во впускном коллекторе или корпусе дросселя. Растопка льда может определяться на основании продолжительности времени после глушения двигателя и температуры впускного коллектора или корпуса дросселя. Например, если температура впускного коллектора находится выше заданного порогового значения, и продолжительность времени, истекшего после глушения двигателя находится выше порогового значения растопки, то может определяться, что вода из тающего льда может присутствовать во впускном коллекторе или корпусе дросселя.

Следует принимать во внимание, что условия глушения двигателя могут меняться на основании конфигурации системы транспортного средства. Например, варианты осуществления условий глушения двигателя могут разниться для ориентированных на гибридный привод систем транспортного средства, ориентированных на негибридный привод систем транспортного средства и ориентированных на кнопочный запуск двигателя систем транспортного средства. Следует принимать во внимание, однако, что условия глушения двигателя, указываемые ссылкой в материалах настоящего описания один в один эквивалентны условиям выключения транспортного средства.

В качестве первого примера, в транспортных средствах, сконфигурированных активным ключом, состояние выключения транспортного средства может включать в себя состояние выключения ключа зажигания. По существу, в основанных на активном ключе конфигурациях транспортного средства, активный ключ вставляется в замочную скважину для перемещения гнезда замочной скважины между первым положением, соответствующим выключенному состоянию транспортного средства, вторым положением, соответствующим состоянию включения транспортного средства, и третьим положением, соответствующим состоянию включения стартера. Чтобы начать проворачивание коленчатого вала двигателя транспортного средства, ключ вставляется в замочную скважину, и гнездо перемещается из первого положения в третье положение через второе положение. Событие выключения транспортного средства происходит, когда активный ключ используется для возврата гнезда из третьего положения в первое положение, сопровождаемого удалением ключа из гнезда. В ответ на возврат гнезда в первое положение и удаление активного ключа, указывается выключенное состояние двигателя, а также выключения транспортного средства.

В качестве второго примера, в транспортных средствах, сконфигурированных кнопкой пуска/останова, выключенное состояние транспортного средства может включать в себя состояние приведенной в действие кнопки останова. В таких вариантах осуществления, транспортное средство может включать в себя ключ, который вставляется в гнездо, а также дополнительную кнопку, которая может перемежаться между положением пуска и положением останова. Чтобы начать проворачивание коленчатого вала двигателя, ключ транспортного средства вставляется в замочную скважину для перемещения гнезда в положение «включено» и, дополнительно, кнопка пуска/останова нажимается (или приводится в действие) в положение пуска, чтобы начать работу стартера двигателя. В материалах настоящего описания, выключенное состояние транспортного средства указывается, когда кнопка пуска/останова приводится в действие в положении останова.

В качестве третьего примера, в транспортных средствах, сконфигурированных пассивным ключом, выключенное состояние транспортного средства может включать в себя пассивный ключ, находящийся за пределами порогового расстояния транспортного средства. Пассивный ключ может включать в себя идентификационную метку, такую как RFID-метку, или устройство беспроводной связи с определенным шифрованным кодом. В таких вариантах осуществления, вместо замочной скважины, пассивный ключ используется для указания присутствия водителя транспортного средства в транспортном средстве. Может быть дополнительная кнопка пуска/останова предусмотрена, которая может перемежаться между положением пуска и положением останова, чтобы соответствующим образом запускать или останавливать двигатель транспортного средства. Для запуска работы двигателя, пассивный ключ должен присутствовать внутри транспортного средства (или в пределах порогового расстояния от транспортного средства), и кнопке необходимо нажиматься (приводиться в действие) в положении пуска, чтобы начать приведение в действие стартера двигателя. Выключенное состояние транспортного средства (а также выключения двигателя) указывается присутствием пассивного ключа вне транспортного средства или за пределами порогового расстояния от транспортного средства.

После обнаружения присутствия воды от растопленного льда на этапе 212, контроллер может определять, может ли быть обнаружено рассеивание растопленного льда. Рассеивание растопленного льда, например, может происходить посредством испарения и/или утечки, и рассеивание может определяться на основании продолжительности времени, истекшего после глушения двигателя, и температуры впускного коллектора. Например, если продолжительность времени после глушения больше, чем пороговое значение рассеивания, и если температура впускного коллектора находится выше порогового значения, контроллер может определять, что произошло рассеивание растопленного льда. Пороговое значение рассеивания может быть большим, чем пороговое значение растопки, чтобы давать достаточное время для рассеивания растопленного льда.

Если, на этапе 212, обнаружено рассеивание растопленного льда, контроллер может переходить на этап 214, где может определяться, имеет ли место состояние включения двигателя. Состояние включения двигателя может быть событием активированного водителем включения двигателя. По определению события включения двигателя, более позднего относительно обнаружения рассеивания растопленного льда, контроллер может активировать диагностику пропусков зажигания на этапе 216. В отсутствие события включения двигателя непосредственно вслед за обнаружением рассеивания растопленного льда, контроллер может хранить команды, чтобы давать возможность диагностики пропусков зажигания при следующем событии включения двигателя. Таким образом, посредством обнаружения рассеивания растопленного льда и предоставления возможности диагностики пропусков зажигания при очередном событии включения двигателя, может предотвращаться процедура диагностики пропусков зажигания.

Возвращаясь на этапе 210, если вода из растопленного льда не обнаружена, процедура может переходить на этапе 218, чтобы определять, произошло ли событие включения двигателя. Например, продолжительность времени, истекшего после события выключения двигателя, может не быть большей, чем пороговое значение растопки. Как результат, растопка льда может не обнаруживаться. Если, на этапе 218, выявлено событие включения двигателя, контроллер может переходить на этап 216, чтобы активировать диагностику пропусков зажигания. Таким образом, если растопленный лед не обнаружена, ненужная задержка выявления пропусков зажигания может предотвращаться. Если событие включения двигателя не выявлено на этапе 218, контроллер может пересчитывать время, истекшее после глушения двигателя, и температуру впускного коллектора, и процедура может переходить, как обсуждено выше, с этапа 208.

Возвращаясь на этап 212, по выявлению воды из растопленного льда, если рассеивание растопленного льда не обнаружено, процедура может переходить на этап 224, чтобы определять, произошло ли событие включения двигателя. Например, если продолжительность времени, истекшего после глушения двигателя, не больше, чем пороговое значение рассеивания, может определяться, что растопленный лед не рассеялась, с указанием, что вода из растопленного льда может присутствовать во впускном коллекторе или корпусе дросселя. Следовательно, после обнаружения присутствия воды из растопленного льда, если событие включения двигателя выявлено на этапе 224, контроллер может задерживать диагностику пропусков зажигания на этапе 222, чтобы предотвращать выявление бортовой диагностикой потенциально возможных пропусков зажигания, обусловленных водой из растопленного льда. В одном из примеров, контроллер может задерживать диагностику пропусков зажигания на заданное время. В еще одном примере, контроллер может задерживать диагностику пропусков зажигания до тех пор, пока не обнаружено рассеивание растопленного льда. Если, на этапе 224, событие включения двигателя не выявлено, контроллер может возвращаться на этап 212.

Таким образом, на основании рабочих параметров двигателя, может выявляться образование льда. Впоследствии, на основании продолжительности времени после глушения двигателя и температуры впускного коллектора, может выявляться растопка льда и рассеивание растопленного льда. При выявлении растопки льда, а впоследствии, выявлении рассеивания растопленного льда, может активироваться диагностика пропусков зажигания. Кроме того, диагностика пропусков зажигания может активироваться в условиях, когда не выявляется растопка льда. Однако диагностика пропусков зажигания может задерживаться, когда образовавшийся лед растопился, но не рассеян. Поэтому, диагностика пропусков зажигания задерживается, только когда вода из растопленного льда, присутствует во впускном коллекторе. Таким образом, посредством задержки ди