Получение и применение новых термопластических полиуретановых эластомеров на основе простых полиэфиркарбонатполиолов
Иллюстрации
Показать всеНастоящее изобретение относится к способу получения термопластического полиуретанового эластомера, а также к применению данного эластомера для изготовления изделий методом литья под давлением или экструзии. Способ включает взаимодействие по меньшей мере одного органического диизоцианата А), по меньшей мере одного полиола В) со среднечисленной молекулярной массой Mn≥500 и ≤5000 г/моль, одного или несколько агентов удлинения цепи С) с молекулярной массой ≥60 и ≤490 г/моль и при необходимости катализатора Е). Взаимодействие компонентов проводят в одну стадию в реакционном экструдере или по ленточному способу со смесительной головкой. Молярное соотношение между изоцианатными группами А) и суммой способных реагировать с изоцианатом групп в B) и С) составляет ≥0,9:1 и ≤1,2:1. Компонент В) содержит по меньшей мере один простой полиэфиркарбонатполиол, который получают присоединением диоксида углерода и алкиленоксидов к H-функциональным веществам-инициаторам. Содержание карбонатных групп простого полиэфиркарбонатполиола составляет ≥3 и ≤35 мас.%. Среднечисленная молекулярная масса простого полиэфиркарбонатполиола составляет ≥500 и ≤10000 г/моль и средняя функциональность по ОН равна 1,85 до ≤2,5. Полученные термопластические полиуретановые эластомеры обладают хорошими механическими свойствами, в частности повышенным пределом прочности при растяжении, низкими показателями истирания и улучшенной термической устойчивостью. 4 н. и 9 з.п. ф-лы, 2 табл., 1 пр.
Реферат
Настоящее изобретение касается способа получения термопластического полиуретанового эластомера на основе простых полиэфиркарбонатполиолов. Другие объекты изобретения - полученный по способу согласно изобретению термопластический полиуретановый эластомер, его применение для изготовления изделий методами экструзии и литья под давлением, а также изделия, изготовленные методами экструзии и литья под давлением.
Термопластические полиуретановые эластомеры (ТПУ) имеют большое техническое значение, поскольку они обладают прекрасными механическими свойствами и поддаются недорогой термопластической обработке.
Благодаря применению различных дополнительных химических компонентов их механические свойства можно изменять в широких пределах. Обзорное описание ТПУ, их свойств и вариантов применения приведено в изданиях Kunststoffe 68 (1978), S.819-825 и Kautschuk, Gummi, Kunststoffe 35 (1982), S.568-584.
ТПУ состоят из линейных полиолов, в большинстве случаев сложных полиэфирполиолов, простых полиэфирполиолов или поликарбонатполиолов, органических диизоцианатов и короткоцепочечных соединений с двумя группами, способными реагировать с изоцианатом (агентов удлинения цепи). Для ускорения реакции образования можно дополнительно добавлять катализаторы. Молярные соотношения между компонентами наращивания могут варьировать в широких пределах, что позволяет регулировать свойства продукта. В зависимости от молярного соотношения полиолов и агентов удлинения цепи получают продукты с твердостью по Шору в широком диапазоне. Получать пригодные к термопластической обработке полиуретановые эластомеры можно либо пошаговым способом (способ с форполимерами), либо посредством одновременной реакции всех компонентов в одна стадия (способ one shot). Получение ТПУ можно проводить непрерывным или периодическим способом. Самые известные технические способы изготовления представляют собой ленточный способ и экструзионный способ.
ТПУ на основе полиэтиленоксидполиолов и/или полипропиленоксидполиолов (С2- либо, соответственно С3-простые полиэфирполиолы), которые можно получать известными способами с катализом КОН или полиметаллоцианидным комплексом (DMC-катализ), путем полимеризации этиленоксида и/или пропиленоксида, отличаются благоприятным общим профилем свойств. Упомянуть, в частности, следует высокую скорость затвердевания после литья под давлением, а также очень хорошую сопротивляемость изготовленных этим методом изделий гидролизу и микробному воздействию. В улучшении такие материалы из ТПУ нуждаются с точки зрения механических характеристик, как, например, предела прочности на растяжение, удлинения при растяжении и устойчивости к истиранию, а также с точки зрения термических характеристик, как, например, термической устойчивости.
До сих пор таких улучшений удавалось добиться, например, путем применения сложных полиэфирполиолов, поликарбонатполиолов или С4-простых полиэфирполиолов (политетраметиленгликолей). Два вида полимерных полиолов, указанные последними, однако, получают затратным методом, и они частично состоят из дорогих исходных компонентов, в силу чего они также существенно дороже, чем простые С2- и С3-полиэфирполиолы. Недостаток сложных полиэфирполиолов состоит в их склонности к гидролизу.
В немецкой заявке на патент DE 10147711 А описан способ получения простых полиэфироспиртов из оксирановых соединений в присутствии катализаторов DMC и газа-замедлителя, как, например, диоксида углерода, монооксида углерода, водорода и закиси азота. В результате того, что во время получения используют низкое давление, максимальный уровень встраивания СО2 составляет 20 моль%, так что в простых полиэфирполиолах практически отсутствуют карбонатные единицы. Полученные простые полиэфирполиолы также можно применять для получения термопластических полиуретановых эластомеров, но из-за очень малой доли карбонатных единиц не следует ожидать улучшения свойств.
S. Хu и М. Zhang описали в J. Appl. Polym Sci. 2007, Vol.104, S.3818-3826 двухстадийное получение эластомеров, основанных на полиэтиленкарбо-натполиолах, которые получают сополимеризацией этиленоксида с СО2 в присутствии биметаллического катализатора на полимере-носителе. Высокая доля в эластомере мономеров, полученных из этиленоксида приводит к очень сильной гидрофильности, из-за чего эти вещества непригодны для многих областей применения.
В международной заявке WO 2010/115567 А описано получение микроячеистых эластомеров путем реакции форполимера, завершенного NCO и изготовленного из изоцианата и первого полиола, со вторым полиолом, у которого среднечисленная молекулярная масса Мn составляет от 1000 до 10000 г/моль, и агентом удлинения цепи с молекулярной массой ниже 800 г/моль. Микроячеистую структуру создают применением химических или физических вспенивающих агентов, как, например, воды. В качестве полиолов можно применять простые полиэфиркарбонатполиолы, которые получают сополимеризацией СО2 и алкиленоксидов. Микроячеистые структуры, созданные применением вспенивающих агентов, нежелательны при обработке ТПУ в машинах для литья под давлением и в процессе экструзии, поскольку из-за них ухудшается уровень механических свойств, в особенности предел прочности на растяжение и удлинение при разрыве, либо, соответственно, при изготовлении пленок образуются дефекты.
Из европейской заявки на патент ЕР 1707586 А известен многостадийное получение полиуретановых смол, основанных на простых полиэфиркарбонатдиолах, которые получают путем переэтерификации карбонатных эфиров, как, например, диметилкарбоната простыми полиэфирдиолами, которые имеют молекулярную массу ниже 500 г/моль. Получение продуктов осуществляют посредством сложного двухстадийного получения. Из-за этого длительного процесса переэтерификации часто возникает нежелательное окрашивание продуктов, а ввиду побочных реакций (отщепление воды с образованием двойных связей) функциональность по ОН часто <2 (в основном 1,92-1,96), так что образуются ТПУ-продукты с малой молекулярной массой. В этих случаях уровень механических свойств также оказывается ниже, чем в случае гликолей с высокой функциональностью по ОН (1,98-2,00).
Следовательно, задача настоящего изобретения состояла в том, чтобы предоставить способ получения недорогих термопластических полиуретановых эластомеров, которые характеризуются благоприятным общим профилем свойств, а дополнительно обладают механическими свойствами на особо высоком уровне и, соответственно, пригодны к множеству вариантов применения. В частности, изготовленные ТПУ, помимо повышенного предела прочности на растяжение, должны характеризоваться особо низкими показателями истирания и улучшенной термической устойчивостью по сравнению с известными из уровня техники соответствующими ТПУ на основе чистых С2-простых полиэфирполиолов и С2-простых полиэфирполиолов.
Согласно изобретению эту задачу решают посредством способа получения термопластического полиуретаного эластомера, который включает в себя реакцию по меньшей мере
A) одного органического диизоцианата, содержащего две изоцианатные группы,
B) одного полиола со среднечисленной молекулярной массой Μn≥500 и ≤5000 г/моль, имеющего две способные реагировать с изоциана-том группы,
C) агента удлинения цепи с молекулярной массой ≥60 и ≤490 г/моль, имеющего две способные реагировать с изоцианатом группы,
и при необходимости
D) монофункционального прерывателя цепи, имеющего одну способную реагировать с изоцианатом группу, и/или
E) катализатора,
причем молярное соотношение между изоцианатными группами из А) и суммой способных реагировать с изоцианатом групп в В), С) и при необходимости D) составляет ≥0,9:1 и ≤1,2:1,
а компонент В) содержит по меньшей мере один простой полиэфиркарбонатполиол, который получают путем присоединения диоксида углерода и алкиленоксидов к Η-функциональным веществам-инициаторам.
Неожиданно было обнаружено, что ТПУ, полученные по способу согласно изобретению, обладают хорошими механическими свойствами. В частности, наблюдается более высокий предел прочности на растяжение и лучшие показатели термической устойчивости, чем у соответствующих ТПУ на основе чистых простых С2- или С3-полиэфирполиолов, а также значения износа при истирании существенно ниже. При низких температурах полученные согласно изобретению ТПУ также еще обладают очень хорошими показателями эластичности, поскольку не происходит кристаллизация мягких сегментов.
В рамках настоящего изобретения под термопластическими полиуретановыми эластомерами подразумевают пригодные к термопластической переработке эластомеры, которые содержат уретановые единицы. Речь при этом идет о линейных многофазных блок-сополимерах, которые состоят из так называемых твердых и мягких сегментов.
Под твердыми сегментами подразумевают такие сегменты, которые сформированы жесткими блоками сополимера, образующимися при реакции короткоцепочечных агентов удлинения цепи и диизоцианатов. Эти блоки упорядочены, что возможно благодаря физическому взаимодействию с блоками агентов удлинения цепи соседней полимерной цепи. Эти взаимодействия образуют узловые точки сети для эластичности. Одновременно эти обратимо плавящиеся точки сети являются предпосылкой для термопластических свойств (термопластического поведения).
При реакции более длинноцепочечных полиольных компонентов с диизоцианатами в сополимере образуются гибкие блоки, которые формируют неупорядоченные мягкие сегменты. Они отвечают за химические свойства, а также за гибкость ТПУ на холоде.
В качестве органических диизоцианатов А) можно применять, например, диизоцианаты, которые описаны в Justus Liebigs Annalen der Chemie, 562, S.75-136.
В частности, в качестве примеров следует упомянуть:
ароматические диизоцианаты, например, 2,4-толуилендиизоцианат, смеси 2,4-толуилендиизоцианата и 2,6-толуилендиизоцианата, 4,4'-дифенилметандиизоцианат, 2,4'-дифенилметандиизоцианат и 2,2'-дифенилметандиизоцианат, смеси 2,4-дифенилметандиизоцианата и 4,4'-дифенилметандиизоцианата, уретан-модифицированные жидкие 4,4'-дифенилметандиизоцианаты и 2,4'-дифенилметандиизоцианаты, 4,4'-диизоцианатодифенил-этан-(1,2) и 1,5-нафтилендиизоцианат. Предпочтительно в качестве ароматических органических диизоцианатов применяют смеси изомеров дифенилметандиизоцианата с содержанием 4,4'-дифенилметандиизоцианата >96 мас.%, а в особенности 4,4'-дифенилметандиизоцианат и 1,5-нафтилендиизоцианат. Указанные диизоцианаты можно применять по отдельности или в форме смесей друг с другом. Также возможно их совместное применение с полиизоцианатом в количестве до 15 мас.% (рассчитанном от общего количества диизоцианата), например, с трифенилметан-4,4',4"-триизоцианатом или полифенил-полиметилен-полиизоцианатами.
В качестве прочих диизоцианатов А) можно применять алифатические и циклоалифатические диизоцианаты. В качестве примеров следует упомянуть гексаметилендиизоцианат, изофорондиизоцианат, 1,4-циклогександи-изоцианат, 1-метил-2,4-циклогександиизоцианат и 1-метил-2,6-циклогек-сандиизоцианат, а также соответствующие смеси изомеров и 4,4'-, 2,4'- и 2,2'-дициклогексилметандиизоцианат, а также соответствующие смеси изомеров. Предпочтительно, чтобы применяемый алифатический органический диизоцианат по меньшей мере на 50 мас.%, предпочтительно га 75 мас.%, а особо предпочтительно на 100 мас.% состоял из 1,6-гексаметилендиизоцианата.
В соответствии с предпочтительной формой исполнения изобретения в состав органического диизоцианата А) входит по меньшей мере одно соединение, выбранное из группы алифатических, ароматических, циклоалифатических диизоцианатов, а особо предпочтительно - по меньшей мере один алифатический и/или циклоалифатический диизоцианат, крайне предпочтительно - по меньшей мере один алифатический диизоцианат.
Компонент В) согласно изобретению содержит по меньшей мере один простой полиэфиркарбонатполиол, который получают путем присоединения диоксида углерода и алкиленоксидов к Η-функциональным веществам-инициаторам. Под "Н-функциональными" в рамках изобретения подразумевают соединение-инициатор, которое обладает атомами водорода, реактивными относительно алкоксилирования.
Получение простых полиэфиркаборнатполиолов путем присоединения алкиленоксидов и СО2 к Н-фукнциональным инициаторам известен, например, из европейских заявок на патент ЕР 0222453 А, ЕР 2115032 А и международной заявки WO 2008/013731 А.
В предпочтительной форме исполнения изобретения простой полиэфир-карбонатполиол характеризуется содержанием карбонатных групп, рассчитанных как СО2, ≥3 и ≤35 мас.%, предпочтительно в ≥5 и ≤30 мас.%, а особо предпочтительно ≥10 и ≤28 мас.% Определение выполняют посредством ЯМР по методу анализа, указанному в разделе "Методы".
Еще в одной предпочтительной форме исполнения изобретения средне-численная молекулярная масса Мn простого полиэфиркарбонатполиола составляет ≥500 и ≤10000 г/моль, предпочтительно ≥500 и ≤7500 г/моль, особо предпочтительно ≥750 и ≤6000 г/моль, а крайне предпочтительно ≥1000 и ≤5000 г/моль. Определение проводят методом титрования концевых гидроксильных групп в соответствии с методом анализа, указанным в разделе "Методы" в подразделе "Определение гидроксильного числа".
Целесообразно, чтобы средняя функциональность простого полиэфиркарбонатполиола по ОН составляла 1,90 и ≤2,30, в особенности ≥1,93 и ≤2,20, особо предпочтительно ≥1,96 и ≤2,05, а крайне предпочтительно ≥1,98 и ≤2,02.
В общем случае для получения простых полиэфиркарбонатполиолов можно применять алкиленоксиды (эпоксиды) с 2-24 атомами углерода.. Алкиленоксиды с 2-24 атомами углерода представляют собой, например, одно или несколько соединений, выбранных из группы, которую образуют этиленоксид, пропиленоксид, 1-бутеноксид, 2,3-бутеноксид, 2-метил-1,2-пропеноксид (изобутеноксид), 1-пентеноксид, 2,3-пентеноксид, 2-метил-1,2-бутеноксид, 3-метил-1,2-бутеноксид, 1-гексеноксид, 2,3-гексеноксид, 3,4-гексеноксид, 2-метил-1,2-пентеноксид, 4-метил-1,2-пентеноксид, 2-этил-1,2-бутеноксид, 1-гептеноксид, 1-октеноксид, 1-ноненоксид, 1-деценоксид, 1-ундеценоксид, 1-додеценоксид, 4-метил-1,2-пентеноксид, бутандиенмоноксид, изопренмоноксид, циклопентеноксид, циклогексеноксид, циклогептеноксид, циклооктеноксид, стиролоксид, метилстиролоксид, пиненоксид, однократно или многократно эпоксидированные жиры как моноглицериды, диглицериды или триглицериды, эпоксидированные жирные кислоты, сложные эфиры эпоксидированных дирных кислот с 1-24 атомами углерода, эпихлоргидрин, глицидол и производные глицидола, как, например, метилглицидиловый эфир, этилглицидиловый эфир, 2-этилгексилглицидиловый эфир, Аллилглицидиловый эфир, глицидилметакрилат, а также эпоксид-функциональные алкилоксисиланы, как, например, 3-глицидилоксипропилтриметоксисилан, 3-глицидилоксипропилтриэтоксисилан, 3-глицидилоксипропилтрипропоксисилан, 3-глицидилокси-пропилметилдиметоксисилан, 3-глицидилокси-пропилэтилдиэтоксисилан, 3-глицидилоксипропилтриизопропоксисилан. В качестве алкиленоксидов предпочтительно используют этиленоксид и/или пропиленоксид, в особенности пропиленоксид.
В особо предпочтительной форме исполнения изобретения доля этиленоксида в используемом в общей сложности количестве алкиленоксидов составляет этиленоксид ≥0 и ≤90 мас.%, предпочтительно ≥0 и ≤50 мас.% и особо предпочтительно ≥0 и ≤25 мас.%
В качестве надлежащего Η-функционального вещества-инициатора можно применять соединения с активными для алкоксилирования атомами водорода. Активные для алкоксилирования группы с активными атомами водорода - это, например, -ОН, -NH2 (первичные амины), -NH- (вторичные амины), -SH и -СО2Н, предпочтительны -ОН и -NH2, особо предпочтительна -ОН. В качестве Η-функционального вещества-инициатора применяют, например, одно или несколько соединений, выбранных из группы, которую образуют многоатомные спирты, многоатомные амины, многоатомные тиолы, аминоспирты, тиоспирты, сложные гидроксиэфиры, простые полиэфирполиолы, сложные полиэфирполиолы, сложные полиэфир-простые полиэфирполиолы, простые полиэфиркарбонатполиолы, поликарбонатполиолы, поликарбонаты, полиэтиленимины, простые полиэфирамины (например, так называемые "Джефф-амины" (Jeffamine®) производства Huntsman), политетрагидрофураны (например, полиТГФ® производства BASF, как, например, полиТГФ® 250, 650S, 1000, 1000S, 1400, 1800, 2000), политетрагидрофуранамины (продукт BASF политетрагидрофуранамин 1700), простые полиэфиртиолы, полиакрилатполиолы, касторовое масло, моноглицерид или диглицерид рициноловой кислоты, моноглицериды жирных кислот, химически модифицированные моноглицериды, диглицериды и/или триглицериды жирных кислот и сложные эфиры, образованные жирными кислотами и алкилами с 1-24 атомами углерода, которые в среднем содержат по меньшей мере две гидроксильные группы на молекулу. В качестве примеров сложных эфиров, образованных жирными кислотами и ал килами с 1-24 атомами углерода, которые в среднем содержат по меньшей мере две гидроксильные группы на молекулу, можно назвать торговые продукты Lupranol Balance® (фирма BASF AG), различные типы продукта Merginol® (фирма Hobum Oleochemicals GmbH), различные типы продукта Sovermol® (фирма Cognis Deutschland GmbH & Co. KG) и различные типы продукта Soyol®TM (фирма USSC Co.).
Пригодные к применению в качестве Η-функциональных веществ-инициаторов многоатомные спирты представляют собой, например, двухатомные спирты, как, например, этиленгликоль, диэтиленгликоль, пропиленгликоль, дипропиленгликоль, 1,3-пропандиол, 1,4-бутандиол, 1,4-бутендиол, 1,4-бутиндиол, неопентилгликоль, 1,5-пентантандиол, метил-пентандиолы (как, например, 3-метил-1,5-пентандиол), 1,6-гександиол; 1,8-октандиол, 1,10-декандиол, 1,12-додекандиол, бис-(гидроксиметил)-циклогексаны (как, например, 1,4-бис-(гидроксиметил)циклогексан), триэтиленгликоль, тетраэтиленгликоль, полиэтиленгликоль, дипропиленгликоль, трипропиленгликоль, полипропиленгликоль, дибутиленгликоль и полибутиленгликоли, а также все продукты модификации этих вышеуказанных спиртов различными количествами ε-капролактона. В смесях Н-функциональных инициаторов можно также применять трехатомные спирты, как, например, триметилолпропан, глицерин, трисгидроксиэтилизоцианурат и касторовое масло.
Η-функциональные вещества-инициаторы можно также выбирать из класса простых полиэфирполиолов, в особенности таковых со среднечисленной молекулярной массой Мn в пределах от 200 до 4000 г/моль, предпочтительно от 250 до 2000 г/моль. Предпочтительны простые полиэфирполиолы, которые образованы из повторяющихся этиленоксидных и пропиленоксидных единиц, предпочтительно имеющие долю от 35 до 100% пропиленоксидных единиц, особо предпочтительно, с долей пропиленоксидных единиц от 50 до 100%. Речь при этом может идти о статистических сополимерах, градиентных сополимерах, чередующийся сополимерах или блок-сополимерах этиленоксида и прпоиленоксида. Подходящие к применению простые полиэфирполиолы, построенные повторяющимися пропиленоксидными и/или этиленоксидными мономерами, это, например, полиолы Desmophen®, Acclaim®, Arcol®, Baycoll®, Bayfill®, Bayflex® Baygal®-PET® и простые полиэфирполиолы производства Bayer MaterialScience AG (как, например, Desmophen® 3600Z, Desmophen® 1900U, Acclaim® Polyol 2200, Acclaim® Polyol 4000I, Arcol® Polyol 1004, Arcol® Polyol 1010, Arcol® Polyol 1030, Arcol® Polyol 1070, Baycoll® BD 1110, Bayfill® VPPU 0789, Baygal® K55, PET® 1004, Polyether® S180). Другие пригодные к применению гомо-полиэтиленоксиды представляют собой, например, марки Pluriol® Ε производства BASF SE, пригодные к применению гомо-полипропиленоксиды представляют собой, например, марки Pluriol® Ρ производства BASF SE, пригодные к применению смешанные сополимеры этиленоксида и пропиленоксида представляют собой, например, марки Pluronic® РЕ или Pluriol® RPE производства BASF SE.
Η-функциональные вещества-инициаторы можно также выбирать из класса сложных полиэфирполиолов, в особенности таковых со среднечисленной молекулярной массой Мn в пределах от 200 до 4500 г/моль, предпочтительно от 400 до 2500 г/моль В качестве сложных полиэфирполиолов применяют по меньшей мере дифункциональные сложные полиэфиры. Предпочтительно, чтобы сложные полиэфирполиолы состояли из чередующихся кислотных и спиртовых единиц. В качестве кислотных компонентов применяют, например, янтарную кислоту, малеиновую кислоту, ангидрид малеиновой кислоты, адипиновую кислоту, ангидрид фталевой кислоты, фталевую кислоту, изофталевую кислоту, терефталевую кислоту, тетрагидрофталевую кислоту, ангидрид тетрагидрофталевой кислоты, ангидрид гексагидрофталевой кислоты или смеси указанных кислот и/или ангидридов. В качестве спиртовых компонентов применяют, например, 1,2-этандиол, 1,2-пропандиол, 1,3-пропандиол, 1,4-бутандиол, 1,5-пентандиол, неопентил гликоль, 1,6-гександиол, 1,4-бис-(гидроксиметил)-циклогексан, диэтиленгликоль, дипропиленгликоль, триметилолпропан, глицерин или смеси указанных спиртов. Если в качестве спиртового компонента применяют двухатомные или многоатомные простые полиэфирполиолы, то получают полиэфирэфирполиолы, которые также могут служить веществами-инициаторами для получения простых полиэфиркарбонатполиолов Если для получения полиэфирэфирполиолов применяют простые полиэфирполиолы, то предпочтительны простые полиэфирполиолы, имеющие среднечисленную молекулярную массу Мn от 150 до 2000 г/моль.
Кроме того, в качестве Η-функциональных веществ-инициаторов можно применять поликарбонатполиолы, как, например, поликарбонатдиолы, в особенности таковые, имеющие среднечисленную молекулярную массу Мn в пределах от 150 до 4500 г/моль, предпочтительно от 500 до 2500, которые получают, например, реакцией фосгена, диметилкарбоната, диэтилкарбоната или дифенилкарбоната и дифункциональных и/или полифункциональных спиртов или сложных полиэфирполиолов или простых полиэфирполиолов. Примеры поликарбонатполиолов приведены, например, в европейской заявке на патент ЕР 1359177 А. В качестве поликарбонатдиолов можно использовать, например, различные типы Desmophen® С производства Bayer MaterialScience AG, как, например, Desmophen® С 1100 или Desmophen® С 2200.
Равным образом можно применять в качестве Η-функциональных веществ-инициаторов простые полиэфиркарбонатполиолы. В особенности применяют простые полиэфиркарбонатполиолы, которые получаюи описанным здесь способом. Эти простые полиэфиркарбонатполиолы, используемые в качестве Η-функциональных веществ-инициаторов, получают для этого заранее на отдельной стадии реакции.
В общем случае Η-функциональные вещества-инициаторы обладают функциональностью (то есть, количеством активных для полимеризации атомов водорода на молекулу) от 1 до 4, предпочтительно 2 или 3, а особо предпочтительно 2. Η-функциональные вещества-инициаторы применяют либо по отдельности, либо в виде смеси по меньшей мере двух Н-функциональных веществ-инициаторов.
Предпочтительные Η-функциональные вещества-инициаторы представляют собой спирты общей формулы (I),
НО-(СН2)х-ОН (I)
причем x представляет собой число от 1 до 20, предпочтительно - четное число от 2 до 20. Примерами спиртов согласно формуле (I) являются этиленгликоль, 1,4-бутандиол, 1,6-гександиол, 1,8-октандиол, 1,10 декандиол и 1,12-додекандиол. Другие предпочтительные Η-функциональные вещества-инициаторы представляют собой неопентилгликоль, триметилолпропан, глицерин, пентаэритрит, продукты реакции спиртов согласно формуле (I) с ε-капролактоном, например, продукты реакции триметилолпропана с ε-капролактоном, продукты реакции глицерина с ε-капролактоном, а также продукты реакции пентаэритрита с ε-капролактоном. Также в качестве Н-функциональных веществ-инициаторов (стартеров) предпочтительно применяют воду, диэтиленгликоль, дипропиленгликоль, касторовое масло, сорбит и простые полиэфирполиолы, образованные повторяющимися полиалкиленоксидными единицами.
Особо предпочтительно, чтобы Η-функциональные вещества-стартеры представляли собой одно или несколько соединений, выбранных из группы, которую образуют этиленгликоль, пропиленгликоль, 1,3-пропандиол, 1,3-бутандиол, 1,4-бутандиол, 1,5-пентандиол, 2-метилпропан-1,3-диол, неопентилгликоль, 1,6-гександиол, диэтиленгликоль, дипропиленгликоль, глицерин, триметилолпропан, ди- и трифункциональные простые полиэфирполиолы, причем простой полиэфирполиол составлен из ди- или три-Н-функциональной субстанции-стартера и пропиленоксида либо, соответственно из ди- или три-Н-функциональной субстанции-стартера, пропиленоксида и этиленоксида. Предпочтительно простые полиэфирполиолы обладают среднечисленной молекулярной массой Мn в пределах от 62 до 4500 г/моль, а в особенности среднечисленной молекулярной массой Мn в пределах от 62 до 3000 г/моль, крайне предпочтительно - молекулярной массой от 62 до 1500 г/моль. Предпочтительно, чтобы функциональность простых полиэфирполиолов составляла от 2 до 3, особо предпочтительно 2.
В предпочтительной форме исполнения изобретения простой полиэфир-карбонатполиол получают присоединением диоксида углерода и алкиленоксидов к Η-функциональным веществам-инициаторам с применением полиметаллоцианидных катализаторов (DMC-катализаторов). Получение простых полиэфиркаборнатполиолов путем присоединения алкиленоксидов и СO2 к Н-фукнциональным инициаторам с применением DMC-катализаторов известен, например, из европейских заявок на патент ЕР 0222453 А, ЕР 2115032 А и международной заявки, WO 2008/013731 А.
DMC-катализаторы принципиально известны из уровня техники, их применяют для гомополимеризации эпоксидов (см., например, патенты US 3404109 A, US 3829505 A, US 3941849 А и US 5158922 А). DMC-катализаторы, которые описаны, например, в патенте US 5470813 А, европейских заявок на патент ЕР 700949 А, ЕР 743093 А, ЕР 761708 А, международных заявках WO 97/40086 A, WO 98/16310 А и WO 00/47649 А, обладают очень высокой активностью в гомополимеризации эпоксидов и дают возможность получать простые полиэфирполиолы при очень малых концентрациях катализаторов (25 частей на млн или менее). Типичный пример представляют собой описанные в европейской заявке на патент ЕР-А 700949 катализаторы DMC с высокой активностью, которые помимо двойного металлоцианидного соединения (например, гексацианокобальта та (III) цинка) и органического комплексного лиганда (например, трет.-бутанола) содержат еще простой полиэфир со среднечисленной молекулярной массой более 500 г/моль.
DMC-катализатор применяют в большинстве случаев в количестве менее 1 мас.%, предпочтительно в количестве менее 0,5 мас.%, особо предпочтительно в количестве менее 500 частей на млн и в особенности в количестве менее 300 частей на млн в каждом случае относительно массы простого полиэфиркарбонатполиола.
Получение простых полиэфиркарбонатполиолов осуществляют предпочтительно в реакторе под давлением. Добавление одного или нескольких алкиленоксидов и диоксида углерода осуществляют после проводимой необязательно сушки вещества-инициатора или смеси нескольких веществ-инициаторов (стартеров) и добавления катализатора DMC, а также добавки (добавок), которые вводят до или после сушки в виде твердого вещества или в форме суспензии. Добавление одного или нескольких алкиленоксидов и диоксида углерода можно, в принципе, осуществлять различным образом. Начинать добавление можно в вакууме или при заранее выбранном исходном давлении. Исходное давление предпочтительно задавать введением инертного газа, как, например, азота, причем устанавливают давление от 10 мбар до 5 бар, целесообразно от 100 мбар до 3 бар, а предпочтительно от 500 мбар до 2 бар.
Добавление одного или нескольких алкиленоксидов и диоксида углерода можно проводить одновременно или последовательно, причем можно вводить все количество диоксида углерода за один раз или добавлять дозированно с распределением по времени реакции. Предпочтительно дозировать диоксид углерода. Введение (дозирование) одного или нескольких алкиленоксидов осуществляют одновременно или последовательно относительно дозирования диоксида углерода. Если для получения простых полиэфиркарбонатполиолов применяют несколько алкиленоксидов, то их введение (дозирование) можно проводить одновременно или последовательно, в каждом случае путем отдельной подачи или с использованием одного или нескольких устройств подачи, причем по меньшей мере два алкиленоксида вводят в виде смеси. Варьируя вид дозирования алкиленоксидов и диоксида углерода, возможно получать статистические, чередующиеся, блоковые или градиентные простые полиэфиркарбонатполиолы.
Предпочтительно использовать избыток диоксида углерода, в частности, количество диоксида углерода определяют по общему давлению при условиях реакции. Ввиду инертности диоксида углерода избыток диоксида углерода выгоден. Было показано, что реакция при 60-150°С, предпочтительно при 70-140°С, особо предпочтительно при 80-130°С и давлении в 0-100 бар, предпочтительно от 1 до 90 бар и особо предпочтительно от 3 до 80 бар дает в итоге простые полиэфиркарбонатполиолы. При температурах ниже 60°С реакция останавливается. При температурах выше 150°С резко увеличивается количество нежелательных побочных продуктов.
Доля простых полиэфиркарбонатполиолов в общей массе компонента В) предпочтительно составляет ≥5 и ≤100 вес.%, особо предпочтительно ≥20 и ≤100% вес.%, а крайне предпочтительно ≥40 и ≤100 вес.%. В качестве компонента В) могут также присутствовать различные простые полиэфиркарбонатполиолы.
В качестве компонента В) можно также применять смеси вышеуказанных простых полиэфиркарбонатполиолов с другими гидроксил-завершенными полиолами, имеющими среднечисленную молекулярную массу Μn от 500 до 5000 г/моль, предпочтительно от 750 до 4000 г/моль, а особо предпочтительно от 1000 до 3000 г/моль. По обусловленным производством причинам они часто содержат небольшие количества нелинейных соединений. По этому часто говорят о «в основном линейных полиолах». В качестве других полиолов предпочтительны сложные полиэфирполиолы, простые полиэфирполиолы, поликарбонатдиолы или их смеси.
Надлежащие простые полиэфирдиолы можно получать, проводя реакцию одного или нескольких алкиленоксидов, имеющих от 2 до 4 атомов углерода в алкиленовом остатке, с молекулой-стартером, содержащей два связанных активных атома водорода. В качестве алкиленоксидов можно, например, назвать этиленоксид, 1,2-пропиленоксид, эпихлоргидрин и 1,2-бутиленоксид и 2,3-бутиленоксид. Предпочтительно применяют этиленоксид, пропиленоксид и смеси 1,2-пропиленоксида и этиленоксида. Применять алкиленоксиды можно по отдельности, попеременно друг за другом или в виде смесей. В качестве молекул-инициаторов (стартеров) можно использовать, например, воду, аминоспирты, например, N-алкил-диэтаноламины, например, N-метил-диэтаноламин, и диолы, например, этиленгликоль, 1,3-пропиленгликоль, 1,4-бутандиол и 1,6-гександиол. При необходимости можно также применять смеси различных молекул-инициаторов. Надлежащие простые полиэфирдиолы представляют собой-также содержащие гидроксильные группы продукты полимеризации тетра-гидрофурана. Кроме того можно применять трифункциональные простые полиэфиры в количествах от 0 до 30 мас.% относительно бифункциональных полиэфиров; их максимальная доля, однако, должна допускать формирование продукта, пригодного к термопластической обработке. Среднечисленные значения молекулярной массы Мn простых полиэфир-диолов предпочтительно составляют 500-6000 г/моль, предпочтительно 750-4000 г/моль, а крайне предпочтительно - от 1000 до 3000 г/моль. Их можно применять как по отдельности, так и в форме смесей друг с другом.
Надлежащие сложные полиэфирдиолы можно получать, например, из дикарбоновых кислот, имеющих от 2 до 12 атомов углерода, предпочтительно - от 4 до 6 атомов углерода, и многоатомных спиртов. Дикарбоновые кислоты, которые можно использовать, это, например, алифатические дикарбоновые кислоты, например, янтарная кислота, малеиновая кислота, глутаровая кислота, азелаиновая кислота, пробковая кислота, азелаиновая кислота и себациновая кислота, а также ароматические дикарбоновые кислоты, например, фталевая кислота, изофталевая кислота и терефталевая кислота. Дикарбоновые кислоты можно применять по отдельности или в смесях, например, в форме смеси янтарной, глутаровой и адипиновой кислот. Для получения сложных полиэфир-диолов может оказаться целесообразно использовать вместо дикарбоновых кислот соответствующие их производные, например, сложные диэфиры карбоновых кислот, имеющих в спиртовом остатке от 1 до 4 атомов углерода, ангидриды карбоновых кислот или хлориды карбоновых кислот. Примерами многоатомных спиртов являются гликоли, имеющие от 2 до 10, предпочтительно от 2 до 6 атомов углерода, например, этиленгликоль, диэтиленгликоль, 1,4-бутандиол, 1,5- пентандиол, 1,6-гександиол, 1,10-декандиол, 1,12-додекандиол, 2,2-диметил-1,3-пропандиол, 1,3-пропандиол и дипропиленгликоль. В зависимости от желательных свойств многоатомные спирты можно применять по отдельности или в смесях друг с другом. Кроме того, можно применять сложные эфиры угольной кислоты и указанных диолов, в особенности таковых, имеющих от 4 до 6 атомов углерода, например, 1,4-бутандиол или 1,6-гександиол, продукты конденсации, например, гидроксикарбоновых кислот, например, гидроксикапроновой кислоты, и продукты полимеризации лактонов, например, капролактонов, при необходимости, замещенных. В качестве сложных полиэфирдиолов предпочтительно применяют этан-диол-полиадипаты, 1,4-бутандиол-полиадипаты, этандиол-1,4-бутандиол-полиадипаты, 1,6-гександиол-неопентилгликоль-полиадипаты, 1,6-гександиол-1,4-бутандиол-полиадипаты и поликапролактоны. Сложные полиэфирдиолы имеют среднечисленную молекулярную массу Мn от 500 до 5000 г/моль, предпочтительно от 600 до 4000 г/моль, а особо предпочтительно от 800 до 3000 г/моль, и их можно применять по отдельности или в виде смесей друг с другом.
В качестве агентов удлинения цепи С) можно применять низкомолекулярные соединения с молекулярной массой ≥60 и ≤490 г/моль, предпочтительно ≥62 и ≤400 г/моль, а особо предпочтительно ≥62 и ≤300 г/моль, у которых имеются две способные реагировать с изоцианатом группы.
В предпочтительной форме исполнения изобретения агенты удлинения цепи С) содержат диолы, диамины или смеси диолов и диаминов, однако, предпочтительно диолы (или состоят из них).
Надлежащие агенты удлинения цепи представляют собой диолы, как, например, этандиол, 1,3-пропандиол, 1,4-бутандиол, 1,5-пентандиол, 1,6-гександиол, 1,8-октандиол, 1,10-декандиол, 1,12-додекандиол, диэтиленгликоль, дипропиленгликоль, неопентилгликоль, сложные диэфиры терефталевой кислоты с гликолями с 2-4 атомами углерода, как, например, терефталевая кислота-бис-1,4-бутандиол, простые гидроксиалкиленовые эфиры гидрохинона, как, например, 1,4-ди-(гидроксиэтил)-гидрохинон и этоксилированные бисфенолы, а также продукты их реакции с ε-капролактоном.
Предпочтительными агентами удлинения цепи являются алифатические диолы с 2-14 атомами углерода, как, например, этандиол, 1,3-пропандиол, 1,4-бутандиол 1,5-пентандиол, 1,6-гександиол, 1,8-октандиол, 1,10-декандиол, 1,12-додекандиол, диэтиленгликоль, дипропиленгликоль, неопентилгликоль и 1,4-ди-(гидроксиэтил)-гидрохинон. Особо предпочтительно применять в качестве агента удлинения цепи 1,3-пропандиол, 1,4-бутандиол, 1,6-гександиол и 1,4-ди-(гидроксиэтил)-гидрохинон.
Надлежащие агенты удлинения цепи представляют собой также (цикло)алифатические диамины, как, например, изофорондиамин, этилендиамин, 1,2-пропилендиамин, 1,3-пропилендиамин, N-метил-пропилен-1,3-диамин, Ν,Ν'-диметил-этилендиамин и ароматические диамины, как, например, 2,4-толуилендиамин и 2,6-толуилен-диамин, 3,5-диэтил-2,4-толуилендиамин и 3,5-диэтил-2,6-толуилендиамин и первичные 4,4'-диаминодифенилметаны, замещенные моно-, ди-, три- или тетраалкилами
Кроме того, можно добавлять небольшие количества триолов.
В качестве прерывателей цепи D) можно применять низкомолекулярные соединения с одной способной реагировать с изоцианатом группой, как, например, моноспирты или моноамины. Предпочтительно применяют по меньшей мере одно соединение, выбранное из группы, в которую входят 1-октанол, стеариловый спирт, 1-бутиламин или стеариламин, особо предпочтительно применяют 1-октанол.
Для получения ТПУ можно проводить реакцию компонентов образования в таких количествах, чтобы молярное отнош