Каталитические комплексы с карбеновым лигандом, способ их получения и применение в реакции метатезиса

Иллюстрации

Показать все

Изобретение относится к катализатору с карбеновым лигандом, характеризующемуся общей структурой формулы (I)

В формуле (I) М представляет собой переходный металл группы 8; X1 и X2 являются идентичными или разными и представляют собой два лиганда, предпочтительно анионных лиганда; R1-R6 являются идентичными или разными и выбраны из водорода, С14алкила, циклогексила, С14алкокси, метилфенила, диметилфенила, метоксифенила, фторфенила, нафтила, за исключением того, что R2 не является фенилом; где в качестве альтернативы R6 необязательно соединен мостиком с L2; L1 и L2 являются идентичными или разными лигандами, предпочтительно представляющими собой нейтральные доноры электронов. Также предложен вариант катализатора, способ получения катализаторов и их применение. Предложенные катализаторы могут применяться в различных способах метатезиса олефинов. 4 н. и 15 з.п. ф-лы, 5 ил., 23 пр., 1 табл.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к метатезису олефинов, более конкретно, к катализирующим метатезис соединениям, к их синтезу и способам их применения в реакции метатезиса.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Метатезис олефинов является каталитическим процессом, предусматривающим в качестве ключевой стадии реакцию между первым олефином и первым алкилиденовым комплексом переходного металла с получением таким образом нестабильного промежуточного металлциклобутанового кольца, которое затем подвергается превращению во второй олефин и второй алкилиденовый комплекс переходного металла согласно нижеприведенному уравнению (1). Реакции этого вида являются обратимыми и конкурирующими друг с другом так, что общий результат в значительной степени зависит от их соответствующих скоростей, и, если происходит образование летучих или нерастворимых продуктов, равновесие смещается.

Реакции метатезиса широко применяются в области химических реакций, например, метатезис с замыканием кольца (RCM), кросс-метатезис (СМ), метатезис с раскрытием кольца (ROM), метатезисная полимеризация с раскрытием кольца (ROMP), метатезис ациклических диенов (ADMET), самометатезис, превращение олефинов с алкинами (ениновый метатезис), полимеризация алкинов и т.д.

Типичными применениями метатезиса олефинов являются без ограничения реакционное инжекционное формование (RIM) дициклопентадиена (DCPD), которое является примером метатезисной полимеризации с раскрытием кольца; ROMP норборненовых производных; этенолиз, химический процесс, при котором внутренние олефины разрушаются при применении этилена в качестве реагента. Реакция является примером перекрестного метатезиса; СМ этена с 2-бутеном; деполимеризации ненасыщенных полимеров.

Потенциально больший интерес по сравнению с гомо-сочетанием (уравнение 3а) представляет кросс-сочетание двух различных терминальных олефинов (уравнение 3b). Реакции сочетания, вовлекающие диены, дают линейные и циклические димеры, олигомеры и, прежде всего, линейные или циклические полимеры (уравнение 6). Как правило, последнюю реакцию предпочтительно осуществлять в высококонцентрированных растворах или в объеме, тогда как циклизацию предпочтительно осуществлять при низких концентрациях. Если происходит внутримолекулярное сочетание диена с получением циклического алкена, то процесс называется метатезисом с замыканием кольца (уравнение 2). Циклические олефины могут быть открыты и олигомеризованы или полимеризованы (метатезисная полимеризация с раскрытием кольца, показанная в уравнении 5). Если алкилиденовый катализатор быстрее реагирует с циклическим олефином (например, норборненом или циклобутеном) чем с двойной связью углерод-углерод в растущей полимерной цепи, то может происходить "живая метатезисная полимеризация с раскрытием кольца", т.е. имеет место небольшое ограничение до или после реакции полимеризации. Деформированные кольца могут быть открыты с использованием алкилиденового катализатора со вторым алкеном согласно механизмам кросс-метатезиса. Движущей силой является облегчение деформирования кольца. Поскольку продукты содержат концевые винильные группы, может происходить множество дополнительных реакций кросс-метатезиса. Поэтому, условия реакции (время, концентрации, и.д.) должны быть оптимизированы для обеспечения желаемого продукта (уравнение 4). Ениновый метатезис представляет собой катализируемую металлкарбеном реакцию перегруппировки связи между алкинами и алкенами с получением 1,3-диенов. Межмолекулярный процесс называют перекрестным ениновым метатезисом (7), тогда как внутримолекулярные реакции называют ениновым метатезисом с замыканием кольца (RCEYM).

Большое коммерческое значение имеет кросс-метатезис двух реактантных олефинов, при этом каждый реактантный олефин содержит по меньшей мере один ненасыщенный участок, для получения новых олефинов, которые отличаются от реактантных олефинов. Один или несколько каталитических металлов, обычно один или несколько переходных металлов, как правило, катализируют реакцию кросс-метатезиса.

Одним таким коммерчески значимым применением является кросс-метатезис этилена и внутренних олефинов с получением альфа-олефинов, который обычно называют этенолиз. Более конкретно, кросс-метатезис этилена и внутреннего олефина с получением линейных α-олефинов представляет особую коммерческую ценность. Линейные α-олефины применимы в качестве мономеров или сомономеров в некоторых (со)полимерных поли-α-олефинах и/или в качестве промежуточных соединений при получении эпоксидов, аминов, оксоспиртов, синтетических смазок, синтетических жирных кислот и алкилированных ароматических соединений. Olefins Conversion Technology™, основанный на процессе "Триолефин" от Phillips (Phillips Triolefin Process), является примером реакции этенолиза, с превращением этилена и 2-бутена в пропилен. В этих процессах применяют гетерогенные катализаторы на основе вольфрама и оксидов рения, которые не зарекомендовали себя как эффективные для внутренних олефинов, содержащих функциональные группы, такие как цис-метилолеат, сложный метиловый эфир жирной кислоты.

1-Децен является побочным продуктом, как правило, полученным при кросс-метатезисе этилена и метилолеата. Алкилолеаты представляют собой сложные эфиры жирной кислоты, которые могут быть главными компонентами биодизеля, полученного переэтерификацией спирта и растительных масел. Растительные масла, содержащие по меньшей мере один участок ненасыщенности, включают в себя каноловое, соевое, пальмовое, арахисовое, горчичное, подсолнечное, тунговое, талловое, перилловое, масло виноградных косточек, рапсовое, льняное, сафлоровое, тыквенное, кукурузное и многие другие масла, экстрагированные из семян растений. Подобным образом, алкилэрукаты являются сложными эфирами жирной кислоты, которые могут быть главными компонентами в биодизеле. Применимыми биодизельными композициями являются те, которые, как правило, характеризуются высокими концентрациями олеата и сложных эфиров эруката. Такие сложные эфиры жирной кислоты предпочтительно характеризуются одним участком ненасыщенности так, что кросс-метатезис с этиленом дает 1-децен в качестве побочного продукта.

Растительные масла, используемые в приготовлении пищи (жарки мяса, овощей, и т.д.), могут быть рекуперированы, а после очищения, превращены с применением, например, этенолиза в применимые продукты, используемые в биодизеле.

Биодизель представляет собой топливо, полученное из возобновляемых источников, таких как растительные масла или животные жиры. Для получения биодизеля триацилглицериды, основные соединения растительных масел и животных жиров, превращают в алкиловые сложные эфиры жирной кислоты (т.е. биодизель) и глицерин путем реакции со спиртом в присутствии основного, кислотного или ферментативного катализатора. Биодизельное топливо может быть использовано в дизельных двигателях, либо отдельно, либо в смеси с дизелем на нефтяной основе, или может быть дополнительно модифицировано для получения других химических продуктов.

Известны некоторые металл-карбеновые комплексы для метатезиса олефинов, однако, различие между этими структурами может заключаться в карбеновой части. Патентные документы WO-A-96/04289 и WO-A-97/06185 являются примерами катализаторов метатезиса с общей структурой,

где

М представляет собой Os или Ru, R и R1 представляют собой органические части из карбенового фрагмента, который характеризуется большой структурной вариабельностью, X и X1 представляют собой анионные лиганды, a L и L1 представляют собой нейтральные доноры электронов. "Анионные лиганды" согласно литературе из области катализаторов метатезиса олефинов представляют собой лиганды, которые отрицательно заряжены и, таким образом, несут полную электронную оболочку, когда отделяются от металлического центра.

Хорошо известным примером этого класса соединений являются катализаторы Граббса 1-го поколения.

Другим хорошо известным примером этого класса соединений является катализатор Граббса 2-го поколения, который описан в WO-A-0071554, и гекса-координированный катализатор Граббса 3-го поколения, который описан в WO-А03/011455.

Существуют некоторые другие хорошо известные катализаторы, описанные в литературных источниках, которые особенно применимы в области метатезиса олефинов и которые служат общей информацией для такого применения. Такие катализаторы описываются в US 2002/0107138 А1 и WO-A-2004/035596 и известны, соответственно, как "катализаторы Ховейды" и "катализатор Грела".

Кроме того, известны другие катализаторы, в которых оба атома углерода карбенового фрагмента соединены мостиком, и некоторые из них представлены.

Мостиковый карбеновый фрагмент был впервые синтезирован Hill et al. (K.J. Harlow, A.F. Hill, J.D.E.T. Wilton-Ety, J. Chem. Soc. Dalton Trans. 1999, 285-291), однако, структура была описана неверно. Furstner et al. откорректировали это несоответствие (J. Org. Chem. 1999, 64, 8275-8280) и описали полную характеристику. Следовательно, происходит реорганизация, в результате чего атомы углерода карбенового фрагмента соединяются мостиком, и в этом конкретном случае образуется "3-фенил-инденилиденкарбен" (Chem. Eur. J. 2001, 7, No 22, 4811-4820). Аналоги этого катализатора, несущие один NHC-лиганд и один фосфиновый лиганд, были описаны Nolan в WO-A-00/15339. Эти типы соединений не только являются катализаторами метатезиса олефинов; но они также могут быть использованы как исходный продукт при получении других рутений-карбеновых соединений путем кросс-метатезиса (WO-A-2004/112951).

Более того, в US-A-2003/0100776 на странице 8, абзац [0087], описаны катализаторы, в которых атомы углерода карбеновой части соединены мостиком, и тем самым вновь образованная циклическая группа может быть алифатической или ароматической и может нести заместители или гетероатомы. Кроме того, указывается, что образовавшаяся кольцевая структура состоит из 4-12, а предпочтительно содержит 5-8 атомов. Однако не описываются или не приводятся точные кольцевые структуры или примеры.

В PCT/US 2010/059703 (WO 2011/100022 А2) описывается инденилиденовый катализатор, в котором один фосфиновый лиганд замещен нейтральным донорным лигандом, который связан с инденилиденкарбеном. Полученный в результате катализатор представляет собой 3-фенилинденилиденовый аналог катализатора Ховейды.

В PCT/US 2011/029690 (WO 2011/119778 А2) заявляется гекса-координированный катализатор, однако, в этом документе не были выделены катализаторы, раскрывается способ синтеза in-situ поколения катализаторов метатезиса олефинов, поскольку согласно Schrodi синтез таких комплексов является относительно трудоемким. Синтез, как правило, предусматривает более чем одну стадию и требует выделения катализаторов для удаления ингибирующих катализатор побочных продуктов, таких как выделившиеся фосфины. Все полученные in-situ образовавшиеся катализаторы являются фенилинденилиденовыми аналогами катализатора Ховейды.

До сих пор не известны другие катализаторы, характеризующиеся инденилиденовой структурой, в которых атомы углерода карбеновой части соединены мостиком.

Несмотря на успехи, достигнутые в получении и разработке катализаторов метатезиса олефинов, сохраняется потребность в новых улучшенных способах синтеза и в новых катализаторах. Особенный интерес представляют способы, которые обеспечивают получение новых катализаторов, которые могут быть легко получены в промышленном масштабе.

Кроме того, катализирующие метатезис соединения в соответствии с настоящим изобретением обеспечивают как мягкий и коммерчески экономичный, так и "атом-экономичный" путь для требуемых олефинов, которые в свою очередь могут быть применимыми в получении линейных альфа-олефинов, ненасыщенных полимеров, циклических олефинов и т.д.

Синтез RuCl2(РСу3)2(3-фенилинденилен) оказался применимым в обеспечении легкого пути получения рутений-алкилиденов, который позволяет избежать затратного получения диазосоединений (Platinum Metals Rev. 2005, 49, 33).

Для получения экономически конкурентного процесса в производстве линейных α-олефинов (например, 1-децена) путем кросс-метатезиса этилена и биодизеля (такого как животные или растительные масла), должны быть разработаны более высокоактивные катализаторы или более стабильные катализаторы. Более того, сохраняется потребность в разработке катализаторов с эквивалентными или более высокими эксплуатационными характеристиками, но синтезируемых непосредственно из менее дорогих и легко доступных исходных материалов.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение направлено на решение одной или нескольких из вышеупомянутых проблем. Настоящее изобретение основывается на неожиданном открытии того, что улучшенные катализаторы метатезиса олефинов с общей структурой формулы (I) могут быть получены путем модификации алкилиденовой части катализаторов группы 8 из уровня техники. Настоящее изобретение также основано на неожиданном открытии того, что время синтеза металлорганических соединений формулы (I) может быть уменьшено до одного часа или менее при сохранении высоких выходов.

Металлорганическое каталитическое соединение в соответствии с настоящим изобретением может быть получено путем контакта содержащего металл группы 8 соединения-предшественника с ацетиленовым соединением, которое, в качестве альтернативы, может нести хелатирующий фрагмент,

где

М представляет собой металл группы 8, предпочтительно рутений или осмий,

R1-R6 являются идентичными или разными и выбраны из гидрокарбила, замещенного гидрокарбила, содержащего гетероатом гидрокарбила, замещенного содержащего гетероатом гидрокарбила и функциональных групп,

где, в качестве альтернативы, в каждом случае два непосредственно смежных радикала из группы R1-R6, в том числе атомы углерода в кольце, к которым они присоединены посредством циклической образующей мостик группы, образуют одну или несколько циклических структур, в том числе ароматических структур,

где, в качестве альтернативы, R6 необязательно соединен мостиком с другим лигандом катализатора на основе комплекса металл-карбен,

X1 и X2 являются идентичными или разными и представляют собой два лиганда, предпочтительно анионных лиганда.

L1 и X1 могут быть соединены с образованием мультидентатной моноанионной группы и могут формировать отдельное кольцо, содержащее до 30 отличных от водорода атомов, или многоядерную кольцевую систему, содержащую до 30 отличных от водорода атомов;

L1 и L2 являются идентичными или разными лигандами, предпочтительно представляющими собой нейтральные доноры электронов, где L2 может быть соединен мостиком, в качестве альтернативы, посредством радикала R6.

В другом аспекте настоящее изобретение относится к новым металл органическим соединениям вышеприведенной структуры.

В следующем аспекте в настоящем изобретении предусматривают способ синтеза указанного катализатора с карбеновым лигандом, предусматривающий обеспечение контакта соединения-предшественника формулы (X1X2ML3) или (X1X2ML4) с ацетиленовым соединением, необязательно содержащим хелатирующий фрагмент, где для соединения-предшественника

М представляет собой переходный металл группы 8;

X1 и X2 являются идентичными или разными и представляют собой два лиганда, предпочтительно анионных лиганда; и

L представляет собой нейтральные лиганды-доноры электронов.

В еще одном аспекте в настоящем изобретении указанный способ включает: смешивание соединения-предшественника формулы (X1X2ML3) или (X1X2ML4) с ацетиленовым соединением в растворе кислотного/полярного растворителя; нагревание раствора от 40°С до 200°С, предпочтительно от 50°С до 150°С, более предпочтительно от 60°С до 100°С, при этом раствор нагревали менее 10 часов, предпочтительно менее 8 часов, более предпочтительно менее 5 часов, наиболее предпочтительно менее 3 часов; удаление полярного растворителя и добавление неполярного растворителя; фильтрование и промывку полученной в результате суспензии с использованием того же неполярного растворителя; где молярное отношение соединения-предшественника к ацетиленовому соединению составляет 0,66.

В еще одном аспекте настоящее изобретение относится к применению указанного катализатора в реакциях метатезиса олефинов, в частности, метатезиса с замыканием кольца (RCM), кросс-метатезиса (СМ), метатезиса с раскрытием кольца (ROM), метатезисной полимеризации с раскрытием кольца (ROMP), метатезиса ациклических диенов (ADMET), самометатезиса, реакции алкенов с алкинами (ениновых реакциях), полимеризации алкинов и олефинирования карбонилов.

В контексте настоящего изобретения все вышеупомянутые и нижеупомянутые определения, параметры или пояснения в общих или предпочтительных диапазонах по отношению друг к другу, а также в соответствующих диапазонах и предпочтительных диапазонах могут быть комбинированы любым способом.

В контексте настоящего изобретения в отношении различных типов метатезисных катализаторов термин "замещенный" означает, что атом водорода или атом замещен определенной группой или атомом, и валентность указанного атома не превышается, и замещение приводит к стабильному соединению.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

На фигуре 1 представлена кристаллическая структура (PPh3)2Cl2Ru(3-2-метилфенил-5-метилинден-1-илидена) (1D).

На фигуре 2 представлена кристаллическая структура (РСу3)2Cl2Ru(3-2-метилфенил-5-метилинден-1-илидена) (8).

На фигуре 3 представлен RCM диэтил-2-аллил-2-(2-метилаллил)малоната с использованием катализаторов F и 8 (0,25-1 мол. %) в CH2Cl2 при 38°С.

На фигуре 4 представлен RCM диэтил-2-аллил-2-(2-метилаллил)малоната с использованием 0,15 мол. % катализаторов F, 8, 11, 13 и 17.

На фигуре 5 представлен ROMP цикло-октадиена с использованием катализаторов (PCy3)2Cl2Ru(3-2-метилфенил-5-метилинден-1-илидена (8) и (PCy3)(SIMes)Cl2Ru(фенилинден-1-илидена) (N).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Терминология и определения

Если не упоминается иное, настоящее изобретение не ограничивается специфическими реагентами, заместителями, катализаторами, условиями реакции, или подобным, которые по сути могут варьировать. Также следует понимать, что терминология используется в настоящем документе исключительно с целью описания конкретных вариантов осуществления и не предназначена для ограничения.

В настоящем описании и в следующей формуле изобретения упоминается ряд терминов, которые определяются следующими значениями.

Используемый в настоящем документе термин "алкил" относится к линейной, разветвленной или циклической насыщенной углеводородной группе, как правило, хотя не обязательно, содержащей от 1 до приблизительно 24 атомов углерода, предпочтительно от 1 до приблизительно 12 атомов углерода, такой как метил, этил, н-пропил, изопропил, н-бутил, изобутил, трет-бутил, октил, децил и т.д., а также циклоалкильным группам, таким как циклопентил, циклогексил и т.д. Как правило, хотя опять таки не обязательно, алкильные группы в настоящем документе содержат от 1 до приблизительно 12 атомов углерода. Термин "С16-алкил" означает алкильную группу из 1-6 атомов углерода, а специальный термин "циклоалкил" означает циклическую алкильную группу, как правило, содержащую 3-8 атомов углерода.

Термин "замещенный алкил" относится к алкилу, замещенному одной или несколькими группами-заместителями, а термины "содержащий гетероатом алкил" и "гетероалкил" относятся к алкилу, у которого по меньшей мере один атом углерода замещен гетероатомом. Если не указано иное, термин "алкил" включает в себя линейный, разветвленный, циклический, незамещенный, замещенный и/или содержащий гетероатом алкил.

Используемый в настоящем документе термин "алкилен" относится к бифункциональной линейной, разветвленной или циклической алкильной группе, при этом "алкил" определен выше.

Используемый в настоящем документе термин "алкенил" относится к линейной, разветвленной или циклической углеводородной группе, содержащей от 2 до приблизительно 24 атомов углерода, содержащей по меньшей мере одну двойную связь, такой как этенил, н-пропенил, изопропенил, н-бутенил, изобутенил, октенил, деценил, тетрадеценил, гексадеценил, эйкозенил и т.д. Предпочтительные алкенильные группы по настоящему документу содержат от 2 до приблизительно 12 атомов углерода. Термин "циклоалкенил" означает циклическую алкенильную группу, предпочтительно содержащую 5-8 атомов углерода. Термин "замещенный алкенил" относится к алкенилу, замещенному одной или несколькими группами-заместителями, а термины "содержащий гетероатом алкенил" и "гетероалкенил" относятся к алкенилу, в котором по меньшей мере один атом углерода замещен гетероатомом. Если не указано иное, термин "алкенил" включает в себя линейный, разветвленный, циклический, незамещенный, замещенный и/или содержащий гетероатом алкенил.

Используемый в настоящем документе термин "алкенилен" относится к бифункциональной линейной, разветвленной или циклической алкенильной группе, при этом "алкенил" определен выше.

Используемый в настоящем документе термин "алкинил" относится к линейной или разветвленной углеводородной группе, содержащей от 2 до приблизительно 24 атомов углерода и содержащей по меньшей мере одну тройную связь, такой как этинил, н-пропинил и т.д. Предпочтительные алкинильные группы по настоящему документу содержат от 2 до приблизительно 12 атомов углерода. Термин "замещенный алкинил" относится к алкинилу, замещенному одной или несколькими группами-заместителями, а термины "содержащий гетероатом алкинил" и "гетероалкинил" относятся к алкинилу, в котором по меньшей мере один атом углерода замещен гетероатомом. Если не указано иное, термин "алкинил" включает в себя линейный, разветвленный, незамещенный, замещенный и/или содержащий гетероатом алкинил, соответственно.

Используемый в настоящем документе термин "алкокси" означает алкильную группу, соединенную с помощью одинарной концевой эфирной связи; то есть "алкокси"-группа может быть представлена как -О-алкил, где алкил определен выше. Аналогичным образом, "алкенилокси" относится к алкенильной группе, соединенной с помощью одинарной концевой эфирной связи, а "алкинилокси" относится к алкинильной группе, соединенной с помощью одинарной концевой эфирной связи.

Используемый в настоящем документе термин "арил", если не указано иное, относится к ароматическому заместителю, содержащему отдельное ароматическое кольцо или несколько ароматических колец, которые конденсированы вместе, непосредственно связаны или опосредованно связаны (так, что разные ароматические кольца связаны с общей группой, такой как метиленовый или этиленовый фрагмент). Предпочтительные арильные группы содержат 5-24 атомов углерода, а особенно предпочтительные арильные группы содержат 5-14 атомов углерода. Иллюстративные арильные группы содержат одно ароматическое кольцо или два конденсированных или связанных ароматических кольца, например, фенил, нафтил, бифенил, дифениловый эфир, дифениламин, бензофенон и т.д. "Замещенный арил" относится к арильному фрагменту, замещенному одной или несколькими группами-заместителями, а термины "содержащий гетероатом арил" и "гетероарил" относятся к арильным заместителям, у которых по меньшей мере один атом углерода замещен гетероатомом, как будет более подробно описано infra.

Используемый в настоящем документе термин "арилокси" относится к арильной группе, соединенной с помощью одинарной концевой эфирной связи, где "арил" определен выше. Группа "арилокси" может быть представлена как -О-арил, где арил определен выше. Предпочтительные арилоксигруппы содержат 5-24 атомов углерода, а особенно предпочтительные арилоксигруппы содержат 5-14 атомов углерода. Примеры арилоксигрупп включают в себя без ограничения фенокси, о-галоген-фенокси, м-галоген-фенокси, п-галоген-фенокси, о-метокси-фенокси, м-метокси-фенокси, п-метокси-фенокси, 2,4-диметокси-фенокси, 3,4,5-триметокси-фенокси и т.д.

Термин "алкарил" относится к арильной группе с алкильным заместителем, а термин "аралкил" относится к алкильной группе с арильным заместителем, где "арил" и "алкил" определены выше. Предпочтительные алкарильные и аралкильные группы содержат 6-24 атомов углерода. Алкарильные группы включают в себя без ограничения, например, п-метилфенил, 2,4-диметилфенил, п-циклогексилфенил, 2,7-диметилнафтил, 7-циклооктилнафтил, 3-этил-циклопента-1,4-диен и т.д. Примеры аралкильных групп включают в себя без ограничения бензил, 2-фенил-этил, 3-фенил-пропил, 4-фенил-бутил, 5-фенил-пентил, 4-фенилциклогексил, 4-бензилциклогексил, 4-фенилциклогексилметил, 4-бензилциклогексилметил и т.д. Термины "алкарилокси" и "аралкилокси" относятся к заместителям формулы -OR, где R представляет собой алкарил или аралкил, соответственно, как уже определено.

Термин "ацил" относится к заместителям формулы -(СО)-алкил, -(СО)-арил или -(СО)-аралкил, а термин "ацилокси" относится к заместителям формулы -О(СО)-алкил, -O(СО)арил или -O(СО)-аралкил, где "алкил", "арил" и "аралкил" определены выше.

Термины "циклическая" и "кольцевая" относятся к алициклическим или ароматическим группам, которые могут быть или могут не быть замещены и/или содержат гетероатом и которые могут быть моноциклическими, бициклическими или полициклическими. Используемый в традиционном смысле термин "алициклический" относится к алифатическому циклическому фрагменту, в противоположность ароматическому циклическому фрагменту, и может быть моноциклическим, бициклическим или полициклическим.

Используемый в традиционном смысле термины "галоген" и "галогеновый" относятся к заместителю хлору, брому, фтору или йоду.

"Гидрокарбил" относится к одновалентным гидрокарбильным радикалам, содержащим от 1 до приблизительно 30 атомов углерода, предпочтительно от 1 до приблизительно 24 атомов углерода, наиболее предпочтительно от 1 до приблизительно 12 атомов углерода, в том числе линейные, разветвленные, циклические, насыщенные и ненасыщенные части молекулы, такие как алкильные группы, алкенильные группы, арильные группы и т.д. Термин "гидрокарбилен" означает двухвалентный гидрокарбильный фрагмент, содержащий от 1 до приблизительно 30 атомов углерода, предпочтительно от 1 до приблизительно 24 атомов углерода, наиболее предпочтительно от 1 до приблизительно 12 атомов углерода, в том числе линейные, разветвленные, циклические, насыщенные и ненасыщенные части молекулы. "Замещенный гидрокарбил" относится к гидрокарбилу, замещенному одной или несколькими группами-заместителями, а термины "содержащий гетероатом гидрокарбил" и "гетерогидрокарбил" относятся к гидрокарбилу, в котором по меньшей мере один атом углерода замещен гетероатомом. Подобным образом, "замещенный гидрокарбилен" относится к гидрокарбилену, замещенному одной или несколькими группами-заместителями, а термины "содержащий гетероатом гидрокарбилен" и "гетерогидрокарбилен" относятся к гидрокарбилену, в котором по меньшей мере один атом углерода замещен гетероатомом. Если не указано иное, термины "гидрокарбил" и "гидрокарбилен" следует понимать как замещенные и/или содержащие гетероатом гидрокарбильные и гидрокарбиленовые фрагменты, соответственно.

Термин "содержащий гетероатом" как в "содержащей гетероатом гидрокарбильной группе" относится к углеводородной молекуле или к гидрокарбильному молекулярному фрагменту, в котором один или несколько атомов углерода замещены атомом, отличным от углерода, например, азотом, кислородом, серой, фосфором или кремнием, как правило, азотом, кислородом или серой. Подобным образом, термин "гетероалкил" относится к алкильному заместителю, который содержит гетероатом, термин "гетероциклический" относится к циклическому заместителю, который содержит гетероатом, термины "гетероарил" и "гетероароматический", соответственно относятся к "арильным" и "ароматическим" заместителям, которые содержат гетероатом и т.д. Следует отметить, что "гетероциклические" группа или соединение могут быть или могут не быть ароматическими, а также что "гетероциклы" могут быть моноциклическими, бициклическими или полициклическими, как описано выше в отношении термина "арил." Примеры гетероалкильных групп включают в себя алкоксиалкил, замещенный алкилсульфанилом алкил, н-алкилированный аминоалкил и т.д. Примеры гетероарильных заместителей включают в себя пирролил, пирролидинил, пиридинил, хинолинил, индолил, пиримидинил, имидазолил, 1,2,4-триазолил, тетразолил и т.д., а примерами содержащих гетероатом алициклических групп являются пирролидино, морфолино, пиперазино, пиперидино и т.д.

"Замещенный" как в "замещенном гидрокарбиле", "замещенном алкиле", "замещенном ариле" и т.д., как указано в некоторых вышеупомянутых определениях, означает, что в гидрокарбиле, алкиле, ариле или другом фрагменте по меньшей мере один атом водорода, связанный с атомом углерода (или другим), замещен одним или несколькими отличными от водорода заместителями. Примеры таких заместителей включают в себя без ограничения функциональные группы, такие как галоген, гидроксил, сульфгидрил, С124алкокси, С224алкенилокси, С224алкинилокси, С524арилокси, С624аралкилокси, С624алкарилокси, ацил (в том числе С224алкилкарбонил (-СО-алкил) и С624арилкарбонил (-СО-арил)), ацилокси (-О-ацил, в том числе С224алкилкарбонилокси (-О-СО-алкил) и С624арилкарбонилокси (-O-СО-арил)), С224алкоксикарбонил (-(СО)-О-алкил), С624арилоксикарбонил (-(СО)-О-арил), галогенкарбонил (-СО)Х, где X представляет собой галоген), С224алкилкарбонато (-О-(СО)-О-алкил), С624арилкарбонато (-О-(СО)-О-арил), карбокси (-СООН), карбоксилато (-СОО-), карбамоил (-(CO)-NH2), моно-(С124алкил)замещенный карбамоил (-(СО)-NH(С124алкил)), ди-(С124алкил)-замещенный карбамоил (-(СО)N(С124алкил)2), моно-(С524арил)-замещенный карбамоил (-(СО)-NH-арил), ди-(С524арил)-замещенный карбамоил (-(СО)-N(C524арил)2), N((С124алкил)(С524арил))-замещенный карбамоил, тиокарбамоил(-(CS)-NH2), моно-(С124алкил)-замещенный тиокарбамоил (-(CS)NH(С124алкил)), ди-(С124алкил)-замещенный тиокарбамоил (-(CS)-N(С1С24алкил)2), моно-(С524арил)-замещенный тиокарбамоил (-(CS)-NH-арил), ди-(С524арил)-замещенный тиокарбамоил ((CS)-N(С524арил)2), N-(C124алкил) N-(С524арил)-замещенный тиокарбамоил, карбамидо (NH-(CO)-NH2), циано (-C=N), цианато (-O-C=N), тиоцианато (-S-C=N), формил (-(СО)-Н), тиоформил (-(CS)-H), амино (-NH2), моно-(С124алкил)-замещенный амино, ди-(С124алкил)-замещенный амино, моно-(С524арил)-замещенный амино, ди-(С524арил)-замещенный амино, С224алкиламидо (-NH-(СО)-алкил), С624ариламидо (-NH-(СО)-арил), имино (-CR=NH, где R = водород, С124алкил, С524арил, С624алкарил, С624аралкил и т.д.), С220алкилимино (-CR=N(алкил), где R = водород, С124алкил, С524арил, С624алкарил, С624аралкил и т.д.), арилимино (-CR=N(арил), где R = водород, С120алкил, С524арил, С624алкарил, С624аралкил и т.д.), нитро (-NO2), нитрозо (-NO), сульфо (-SO2-OH), сульфонато (-SO2-O-), С124алкилсульфанил (-S-алкил; также называемый "алкилтио"), С524арилсульфанил (-S-арил; также называемый "арилтио"), С124алкилсульфинил (-(SO)-алкил), С524арилсульфинил (-(SO)-арил), С124алкилсульфонил (-SO2-алкил), С524арилсульфонил (-SO2-арил), борил (-ВН2), бороно (-В(ОН)2), боронато (-B(OR)2), где R представляет собой алкил или другой гидрокарбил), фосфоно (-Р(O)(ОН)2), фосфонато (-Р(O)(O-)2), фосфинато (-Р(O)(O-)), фосфо (-PO2) и фосфино (-РН2); и гидрокарбильные фрагменты: С124алкил (предпочтительно С112алкил, более предпочтительно С16алкил), С224алкенил (предпочтительно С212алкенил, более предпочтительно С26алкенил), С224алкинил (предпочтительно С212алкинил, более предпочтительно С26алкинил), С524арил (предпочтительно С524арил), С624алкарил (предпочтительно С616алкарил) и С624аралкил (предпочтительно С616аралкил).

"Функционализированный", например, "функционализированный гидрокарбил", "функционализированный алкил", "функционализированный олефин", "функционализированный циклический олефин" и т.д., означает, что в гидрокарбиле, алкиле, олефине, циклическом олефине или в другом фрагменте по меньшей мере один атом водорода, связанный с атомом углерода (или другим), замещен одной или несколькими функциональными группами, такими как описанные выше.

Кроме того, вышеупомянутые функциональные группы, если позволяет конкретная группа, могут быть дополнительно замещены одной или несколькими дополнительными функциональными группами или одним или несколькими гидрокарбильными фрагментами, такими как специально приведенные выше. Аналогичным образом, вышеупомянутые гидрокарбильные фрагменты могут быть дополнительно замещены одной или несколькими функциональными группами или дополнительными гидрокарбильными фрагментами, такими как специально упомянутые.

Настоящее изобретение предусматривает новое семейство катализирующих метатезис соединений, применимых для различных типов реакций метатезиса олефинов, в том числе без ограничения метатезиса с замыканием кольца (RCM), кросс-метатезиса (СМ), метатезиса с раскрытием кольца (ROM), метатезисной полимеризации с раскрытием кольца (ROMP), метатезиса ациклических диенов (ADMET), самометатезиса, превращения олефинов с алкинами (енинового метатезиса), полимеризации алкинов, этиленового кросс-метатезиса и т.д.,

и где

М представляет собой металл группы 8, предпочтительно рутений или осмий,

R1-R6 являются идентичными или разными и представляют собой водород, галоген, гидроксил, альдегид, кето, тиол, CF3, нитро, нитрозо, циано, тиоциано, изоцианаты, карбодиимид, карбамат, тиокарбамат, дитиокарбамат, амино, амидо, имино, аммоний, силил, сульфонат (-SO3-), -OSO3-, -РО3- или -ОРО3-, ацил, ацилокси или представляют собой алкил, циклоалкил, алкенил, циклоалкенил, замещенный алкенил, гетероалкенил, содержащий гетероатом алкинил, алкенилен, алкинил, замещенный алкинил, арил, замещенный арил, гетероарил, карбоксилат, алкокси, алкенилокси, алкинилокси, арилокси, алкарил, аралкил, алкарилокси, аралкилокси, алкоксикарбонил, алкиламино-, алкилтио-, арилтио, алкилсульфонил, алкилсульфинил, диалкиламино, алкиламмоний, алкилсилил или алкоксисилил, при этом каждый из этих радикалов необязательно м