Иммуноцитокины на основе il-15 и il-r[альфа] домена sushi
Иллюстрации
Показать всеИзобретение относится к области биотехнологии, конкретно к иммуноцитокинам, и может быть использовано в медицине для лечения рака. Получают иммуноцитокин, содержащий: конъюгат интерлейкина 15 и домена sushi IL-15Rα, ковалентно связанный с антителом или его фрагмент, направленным против антигена, имеющего отношение к неоваскуляризации опухоли или к внеклеточному матриксу опухоли, или опухолевого антигена. При этом аминокислотная последовательность конъюгата находится в С-концевом положении относительно аминокислотной последовательности антитела или его фрагмента. Изобретение обеспечивает получение суперагонистов IL-15, демонстрирующих повышенную активность (т.е. в 10-100 раз) по сравнению с RLI в отдельности, с высоким выходом в клетках СНО. 8 н. и 10 з.п. ф-лы, 12 ил.
Реферат
В настоящей заявке на международный патент испрашивается приоритет заявки на европейский патент 11358005.4, поданной 24 июня 2011, включенной сюда путем ссылки.
Область техники
Настоящее изобретение относится к новым иммуноцитокинам и их применению в качестве лекарственного препарата, в частности для лечения рака.
Предшествующий уровень техники
Иммунотерапия в медицине обозначает ряд подходов к лечению, в основе которых лежит принцип иммунной модуляции для достижения профилактических и/или терапевтических целей.
В последние несколько лет иммунотерапию использовали для лечения или предупреждения нескольких видов патологии, в частности, рака. С момента развития технологии клеточного слияния для получения моноклональных антител, исследователями получено большое количество моноклональных антител. С тех пор для создания моноклональных антител разработаны другие технологии, включая гибридомную технологию с использованием В-клеток и технологию получения человеческих моноклональных антител с использованием вируса Эпштейна-Барр (ВЭБ).
Можно создать моноклональные антитела (Mab), направленные практически против любого эпитопа. Свойство моноклональных антител специфически распознавать и связывать конкретные клетки/молекулы послужило толчком для их усовершенствования с целью использования в качестве реагентов для диагностики и лечения различных заболеваний. Технологии рекомбинантной ДНК использовали для продукции химерных или гуманизированных антител, адаптированных для введения человеку. В настоящее время коммерциализировано и доступно для лечения рака, инфекционных заболеваний, заболеваний иммунной системы и т.д., несколько моноклональных антител, таких как Ритуксан®, Герцептин®, Авастин®. Моноклональные антитела представляют собой молекулы направленного действия и способны локализоваться в определенных зонах (клетках, тканях), таких как опухолевые ткани. Это свойство позволило разработать моноклональные антитела, конъюгированные с различными веществами (целевой нагрузкой), способные нацеленно взаимодействовать со специфическими молекулами в участках локализации опухолей, называемых опухолевыми антигенами. Такие вещества (целевая нагрузка) могут быть токсинами, лекарствами, радионуклидами, предшественниками лекарственных средств. Многие из этих типов связей включают химическое конъюгирование реакционно-способного компонента (целевой нагрузки) с заданным препаратом антитела, этот процесс может быть трудоемким и подверженным вариациям (US 4,671,958).
Среди этих новых молекул иммуноцитокины представляют особоый интерес. Указанные иммуноцитокины соответствуют гибридным белкам, содержащим антитело и цитокин. Данные белки сохраняют как антигенсвязывающую способность, так и активность цитокинов.
Цитокины относятся к категории сигнальных белков и гликопротеинов, которые как гормоны и нейротрансмиттеры, активно используются в клеточной коммуникации. Если гормоны секретируются в кровь определенными органами, а нейротрансмиттеры имеют отношение к нейрональной активности, то цитокины представляют собой более разнообразный класс соединений в отношении происхождения и назначения. Их продуцирует широкий круг гемопоэтических и негемопоэтических клеток, и они могут оказывать влияние как на близлежащие клетки, так и на весь организм, иногда проявляя сильную зависимость от присутствия других химических соединений. Семейство цитокинов состоит в основном из небольших водорастворимых белков и гликопротеинов массой от 8 до 30 кДа. Цитокины играют ключевую роль в реализации врожденного и приобретенного иммунных ответов. Их часто секретируют клетки иммунной системы, которые встретили патоген, для активации и мобилизации большего количества клеток иммунной системы и усиления ответа иммунной системы на патоген. Однако, кроме своей роли в развитии и функционировании иммунной системы, цитокины также задействованы в нескольких процессах развития в ходе эмбриогенеза.
Среди цитокинов интерлейкин 15 (IL-15) является цитокином, обладающим структурным сходством с IL-2, секретирующимся мононуклеарными фагоцитами (и некоторыми другими клетками) в ответ на инфицирование вирусом(ами) или непрямую стимуляцию клетками, которые распознаются как "не свои" или ослабленные. Этот цитокин индуцирует пролиферацию естественных киллерных клеток; клеток, обеспечивающих врожденный иммунитет, основная роль которых заключается в уничтожении клеток, инфицированных вирусом. Белок, кодируемый этим геном, представляет собой цитокин, регулирующий активацию и пролиферацию Т клеток и естественных киллерных клеток.
Таким образом, создание иммуноцитокинов на основе IL-15 будет представлять особый интерес для сочетания полезных свойств опухоле-специфических антител, мишенями которых являются опухоли, с иммуномодулирующим действием интерлейкина 15. Уже было получено несколько иммуноцитокинов, в частности с использованием интерлейкина-2 (IL-2), которые продемонстрировали очень интересные и обнадеживающие результаты в клинических исследованиях 2 фазы в области онкологии. Некоторые примеры этих гибридных белков описаны в нескольких заявках на патенты (US 5,645,835, ЕР 0,305,967, WO 86/01533, EP 0,439,095 и WO 85/00974).
Так, иммуноцитокин на основе интерлейкина 15 был произведен в клетках НЕК-293 и описан в заявке на международный патент РСТ WO 2007/128563, а также KASPAR et at. (Cancer Research, vol.67(10), p:494O-4948, 2007).
Однако, авторы изобретения установили, что такие иммуноцитокины на основе интерлейкина 15 обладают очень ограниченной активностью интерлейкина 15, и что их продукция очень затруднена, в частности, в клетках яичников китайского хомячка (от англ. Chinese hamster ovary cells), и сопровождается низким выходом и контаминацией другими видами белков.
Таким образом, по-прежнему существует потребность в иммуноцитокинах на основе интерлейкина 15, которые можно было бы применять в иммунотерапии.
Сущность изобретения
Изобретение относится к иммуноцитокину, содержащему:
A) конъюгат и
B) антитело или его фрагмент, напрямую или опосредованно ковалентно связанный с указанным конъюгатом,
где указанный конъюгат содержит:
(i) полипептид, содержащий аминокислотную последовательность интерлейкина 15 или его производных и
(ii) полипептид, содержащий аминокислотную последовательность домена sushi IL-15Rα или его производных.
Во втором аспекте изобретение относится к нуклеиновой кислоте, кодирующей иммуноцитокин, описанный выше.
В третьем аспекте настоящего изобретения предложен вектор, содержащий нуклеиновую кислоту, описанную выше.
В четвертом аспекте настоящее изобретение относится к клетке-хозяину, генетически модифицированной с применением полинуклеотида или вектора, описанных ранее. Настоящее изобретение также относится к способу получения генетически модифицированной клетки-хозяина, экспрессирующей иммуноцитокин по изобретению, причем указанный способ включает этапы: (i) внедрения in vitro или ex vivo нуклеиновой кислоты или вектора, описанных выше, в клетку-хозяина, (ii) культивирования in vitro или ex vivo полученной рекомбинантной генетически модифицированной клетки-хозяина и (iii) возможно отбор клеток, экспрессирующих и/или секретирующих указанный иммуноцитокин.
В предпочтительном воплощении указанная генетически модифицированная клетка-хозяин является клеткой животного происхождения, предпочтительно клеткой яичников китайского хомячка (СНО).
В пятом аспекте настоящего изобретения предложена фармацевтическая композиция, содержащая иммуноцитокин, описанный выше, кодирующую его нуклеиновую кислоту или нуклеиновокислотный вектор, содержащий указанную нуклеиновую кислоту, возможно связанные с фармацевтически приемлемым носителем.
В предпочтительном воплощении указанная композиция содержит дополнительный терапевтический агент, который предпочтительно является противоопухолевым агентом.
В шестом аспекте настоящее изобретение относится к фармацевтической композиции, описанной ранее, для лечения рака у субъекта.
В седьмом аспекте настоящее изобретение относится к продуктам, содержащим:
(i) иммуноцитокин, описанный выше, последовательность нуклеиновой кислоты, кодирующую его, или вектор, содержащий такую последовательность нуклеиновой кислоты, и
(ii) терапевтический агент, предпочтительно противоопухолевый агент, в виде комбинированного препарата для одновременного, раздельного или последовательного применения для лечения рака у субъекта.
В восьмом аспекте настоящее изобретение относится к способу лечения рака у субъекта, включающему этап введения указанному субъекту фармацевтической композиции, описанной ранее.
В последнем аспекте настоящее изобретение относится к способу лечения рака, включающему этап одновременного, раздельного или последовательного введения нуждающемуся в этом субъекту терапевтически эффективного количества:
(i) иммуноцитокина, описанного выше, нуклеиновой кислоты, кодирующей его, или вектора, содержащего такую последовательность нуклеиновой кислоты, и
(ii) терапевтического агента, предпочтительно противоопухолевого агента.
Краткое описание графических материалов
На Фиг.1 показана активность иммуноцитокинов на основе IL15, направленных против CD20, в сравнении с IL15.
На Фиг.2 показана активность иммуноцитокина на основе IL15, направленного против O-ацетилированного GD2, в сравнении с IL15.
На Фиг.3 показана способность связывать CD20, O-ацетилированный GD2 и HER-2 у иммуноцитокинов на основе IL15, направленных против CD20, O-ацетилированного GD2 и HER2, соответственно.
На Фиг.4 показана способность связывать IL-15Rα у иммуноцитокина на основе IL15, направленного против CD20, в сравнении с антителом к CD20 (Rituximab).
На Фиг.5 показана способность связывать CD20, O-ацетилированный GD2 и HER-2 у иммуноцитокинов на основе IL15, направленных против CD20 и O-ацетилированного GD2, а также иммуноцитокина на основе RLI, направленного против HER2, соответственно.
На Фиг.6 показана способность связывать IL15Ra у иммуноцитокина на основе RLI, направленного против CD20, и иммуноцитокина на основе IL15, направленного против O-ацетилированного GD2.
На Фиг.7 показана активность иммуноцитокинов на основе RLI, направленных против CD20, в сравнении с IL15.
На Фиг.8 показана активность иммуноцитокинов на основе RLI, направленных против O-ацетилированного GD2, в сравнении с IL15.
На Фиг.9 показана антиметастатическая активность иммуноцитокина, направленного против O-ацетилированного GD2, в сравнении с антителом к O-ацетилированному GD2.
На Фиг.10 показана противоопухолевая активность иммуноцитокина, направленного против CD20, на модели с использованием клеток Raji.
На Фиг.11 показана активность иммуноцитокинов на основе IL-15, направленных против HER2, в сравнении с IL15.
На Фиг.12 показана активность иммуноцитокинов на основе RLI, направленных против HER2, в сравнении с IL15.
Сведения, подтверждающие возможность осуществления изобретения
Настоящее изобретение основано на обнаружении авторами изобретения, что продукция иммуноцитокина, содержащего интерлейкин 15, приводит к потере более чем 90% активности интерлейкина 15, продукция иммуноцитокинов на основе RLI приводит к получению 11-15-содержащих иммуноцитокинов нового типа, демонстрирующих выраженную биологическую активность в отношени и клеток иммунной системы, экспрессирующих IL-15Rαβγ и IL-15Rβγ, значительно превосходящую активность иммуноцитокинов на основе IL-15.
Неожиданно обнаружили, что иммуноцитокины на основе RLI, содержащие полноразмерное моноклональное IgG антитело, демонстрируют улучшенную биологическую эффективность в отношении клеток иммунной системы, экспрессирующих IL-15Rβγ, по сравнению с RLI в отдельности или с иммуноцитокинами, содержащими антитело, представляющее собой фрагмент scFv. Это неожиданное усиление активности в отношении клеток иммунной системы, экспрессирующих IL-15Rβγ, могло оказаться критическим в отношении активации/реактивации NK клеток и Т-лимфоцитов в иммуносуппресивном окружении.
Неожиданным оказался и факт, что тогда как иммуноцитокин на основе интерлейкина 15 для проявления активности нуждается в присутствии линкера между компонентами иммуноглобулина и интерлейкина 15, иммуноцитокин по изобретению, демонстрирует аналогичную активность интерлейкина 15, при наличии и при отсутствии какого-либо линкера между его соответствующими иммуноглобулиновыми и цитокиновыми частями. Такое необязательное наличие линкерного участка может оказаться значительным преимуществом в том, что касается иммуногенности гибридного белка, позволяя ограничить использование шарнирных участков, создающих новые антигенные эпитопы, являющихся источником иммуногенности, и в том, что касается получения продукта с ограниченным количеством расщепленных форм.
Также было неожиданным, что иммуноцитокины по изобретению являются суперагонистами IL-15, демонстрирующими повышенную активность (т.е. в 10-100 раз) по сравнению с RLI в отдельности.
Кроме того, авторы изобретения добились продукции с хорошим выходом иммуноцитокина по изобретению в клетках СНО, при этом выход составлял более 90%. Это было неожиданным, поскольку продукция в тех же самых клетках иммуноцитокина на основе интерлейкина 15 в клетках СНО была очень затруднена. Поскольку иммуноцитокины, как правило, имеют ограниченное время полужизни в сыворотке и поскольку опосредуемая иммуноцитокинами скорость определения местонахождения опухоли является критическим показателем в получении стойкого противоопухолевого эффекта, специфическая биологическая активность иммуноцитокинов на основе RLI, позволяющая активировать клетки иммунной системы при очень низких концентрациях, представляет собой важный изобретательский шаг в данной области и может улучшить эффективность таких биологических соединений у больных раком.
Наконец, выраженная активность иммуноцитокина по изобретению позволяет предусмотреть практически реализуемое терапевтическое применение этого иммуноцитокина, который можно будет вводить путем инъекции в дозе 2,5-1 мг/кг веса субъекта или менее, и даже в дозе 0,1 мг/кг или менее. Известно, что низкая активность иммуноцитокинов на основе интерлейкина 15, таких как описанные в заявке на международный патент WO 2007/128563, не обеспечивает практически реализуемого терапевтического применения (т.е. для достижения терапевтического эффекта требуется доза, превышающая 20 мкг иммуноцитокина при четырех инъекциях в день в модели на мышах, предполагающая необходимость введения дозы, превышающей 5 мг/кг иммуноцитокина для получения некоторого терапевтического эффекта).
Следовательно, один аспект настоящего изобретения относится к иммуноцитокину, содержащему:
A) конъюгат и
B) антитело или его фрагмент, напрямую или опосредованно связанный при помощи ковалентной связи с указанным конъюгатом, где указанный конъюгат содержит:
(i) полипептид, содержащий аминокислотную последовательность интерлейкина 15 или его производных, и
(ii) полипептид, содержащий аминокислотную последовательность домена sushi IL-15Rα или его производных.
Термин "иммуноцитокин" обозначает молекулу, содержащую антитело или его фрагменты, напрямую или опосредованно связанные при помощи ковалентной связи с цитокином или его производными. Указанное антитело и указанный цитокин могут быть связаны при помощи линкерного пептида.
Конъюгаты иммуноцитокинов по изобретению
Термин "интерлейкин 15" имеет общеупотребительное в области техники значение и обозначает цитокин, обладающий структурным сходством с IL-2 (GRABSTEIN et al., Science, vol.264 (5161), p:965-968, 1994). Этот цитокин также известен как IL-15, IL15 или MGC9721. Обнаружили, что данный цитокин и IL-2 имеют во многом схожую биологическую активность и связываются с общими субъединицами рецептора гемопоэтина. Таким образом, они могут конкурировать за один рецептор, отрицательно регулируя активность друг друга. Было установлено, что IL-15 регулирует активацию и пролиферацию Т-клеток и естественных киллерных клеток, и было показано, что количество CD8+клеток памяти контролируется балансом между этим цитокином и IL2. Активность IL-15 можно измерить путем определения его индуцирующего пролиферацию действия на клеточной линии kit225 (HORI et al., Blood, vol.70(4), p:1069-72, 1987), как описано в Примерах.
Активность указанного IL-15 или его производных составляет по меньшей мере 10% от активности человеческого интерлейкина-15 в отношении индукции пролиферации клеточной линии kit225, предпочтительно по меньшей мере 25% и более предпочтительно по меньшей мере 50%.
Указанный интерлейкин 15 представляет собой интерлейкин 15 млекопитающего, предпочтительно интерлейкин 15 примата, и более предпочтительно интерлейкин 15 человека.
Специалист в данной области техники может легко идентифицировать интерлейкин 15 млекопитающего. В качестве примера можно привести интерлейкин 15 Sus scrofa (Номер доступа ABF82250), Rattus norvegicus (Номер доступа NP_037261), Mus musculus (Номер доступа NP_032383), Bos Taurus (Номер доступа NP_776515), Oryctolagus cuniculus (Номер доступа NP_001075685), Ovies aries (Номер доступа NP_001009734), Fe//s catus (Номер доступа NP_001009207), Macaca fascicularis (Номер доступа ВАА19149), Homo sapiens (Номер доступа NP_000576), Macaca Mulatta (Номер доступа NP_001038196), Cavia porcellus (Номер доступа NP_001166300) или Chlorocebus sabaeus (Номер доступа ACI289). В данном документе термин "интерлейкин 15 млекопитающего" обозначает консенсусную последовательность SEQ ID NO:1.
Специалист в данной области техники может легко идентифицировать интерлейкин 15 примата. В качестве примера можно привести интерлейкин 15 Sus scrofa (Номер доступа ABF82250), Oryctolagus cuniculus (Номер доступа NP_001075685), Масаса fascicularis (Accession number BAA19149), Homo sapiens (Номер доступа NP_000576), Масаса Mulatta (Номер доступа NP_001038196) или Chlorocebus sabaeus (Номер доступа ACI289).
В данном документе термин "интерлейкин 15 примата" обозначает консенсусную последовательность SEQ ID NO:2.
Специалист в данной области техники может легко идентифицировать интерлейкин 15 человека, который обозначает аминокислотную последовательность SEQ ID NO:3.
В данном документе термин "производные интерлейкина 15" обозначает аминокислотную последовательность, у которой показатель идентичности с аминокислотной последовательностью, выбранной из группы, состоящей из SEQ ID NO::1, SEQ ID NO:2 и SEQ ID NO:3, составляет по меньшей мере 92,5% (т.е. соответствует приблизительно 10 аминокислотным заменам), предпочтительно по меньшей мере 96% (т.е. соответствует приблизительно 5 аминокислотным заменам), и более предпочтительно по меньшей мере 98,5% (т.е. соответствует приблизительно 2 аминокислотным заменам) или по меньшей мере 99% т.е. соответствует приблизительно 1 аминокислотной замене). Специалист в данной области техники может легко идентифицировать такие производные, основываясь на личных знаниях и на описании данной патентной заявки. В качестве примеров таких производных можно привести описанные в заявке на международный патент РСТ WO 2009/135031. Следует понимать, что природные аминокислоты можно заменить химически модифицированными аминокислотами. Как правило, такие химически модифицированные аминокислоты увеличивают время полужизни полипептида.
В данном документе "показатель идентичности" между двумя аминокислотными последовательностями означает процентное содержание идентичных аминокислот между двумя сравниваемыми последовательностями, полученный при наилучшем выравнивании указанных последовательностей, это процентное содержание является исключительно статистическим показателем, а различия между этими двумя последовательностями случайным образом распределены по аминокислотной последовательности. В данном документе "наилучшее выравнивание" или "оптимальное выравнивание" означает выравнивание, при котором рассчитываемый показатель идентичности (см. ниже) является наибольшим. Сравнение последовательностей двух аминокислот обычно проводится путем сравнения этих последовательностей, предварительно выровненных в соответствии с наилучшим выравниванием; такое сравнение выполняется в пределах сегмента сравнения для выявления и сравнения локальных участков, обладающих сходством. Наилучшее выравнивание последовательностей для проведения сравнения можно выполнить вручную, а также с помощью алгоритма поиска общей гомологии, разработанного SMITH and WATERMAN (Ad. App. Math., vol.2, p:482, 1981), с использованием алгоритма поиска локальной гомологии, разработанного NEDDLEMAN and WUNSCH (J. Mol. Biol., vol.48, p:443, 1970), с использованием метода поиска сходства, разработанного PEARSON and LIPMAN (Proc. Natl. Acd. Sci. USA, vol.85, p:2444, 1988), с применением компьютерных программ, использующих такие алгоритмы (GAP, BESTFIT, BLAST P, BLAST N, FASTA, TFASTA в пакете программ Wisconsin Genetics, Genetics Computer Group, 575 Science Dr., Madison, WI USA), с использованием алгоритмов множественного выравнивания MUSCLE (Edgar, Robert С., Nucleic Acids Research, vol.32, p:1792, 2004). Для достижения наилучшего локального выравнивания предпочтительно использовать программу BLAST с матрицей BLOSUM 62. Показатель идентичности между двумя последовательностями аминокислот определяется путем сравнения этих двух оптимально выровненных последовательностей, аминокислотные последовательности могут включать вставки или делеции относительно референсной последовательности для достижения оптимального выравнивания между этими двумя последовательностями. Показатель идентичности рассчитывается путем определения числа идентичных позиций между этими двумя последовательностями, деления этого числа на общее число сравниваемых позиций и умножения полученного результата на 100 для получения показателя идентичности между этими двумя последовательностями, выраженного в процентах. Предпочтительно, производные интерлейкина 15 представляют собой агонисты или суперагонисты IL-15. Специалист в данной области техники может легко идентифицировать агонист или суперагонист IL-15. В качестве примера агониста или суперагониста IL-15 можно привести описанные в заявке на международный патент WO 2005/085282 или описанные ZHU et al. (J. Immunol., vol.183 (6), p:3598-607, 2009). Предпочтительно, указанный агонист или суперагонист IL-15 выбран из группы, содержащей/состоящей из L45D, L45E, S51 D, L52D, N72D, N72E, N72A, N72S, N72Y и N72P (применительно к последовательности IL-15 человека, SEQ ID NO:3).
В данном документе термин "домен sushi IL-15Rα" имеет общеупотребительное в области техники значение и обозначает домен, начинающийся первым остатком цистеина (С1) после сигнального пептида IL-15Rα, и заканчивающийся четвертым остатком цистеина (С4) после указанного сигнального пептида. Указанный домен sushi соответствует части внеклеточного участка IL-15Rα, необходимого для его связывания с IL-15 (WEI et al., J. Immunol., vol. 167(1), p:277-282, 2001). Указанный домен "sushi" IL-15Rα или его производные обладают по меньшей мере 10% связывающей активности домена sushi IL-15Rα человека в отношении интерлейкина-15 человека, предпочтительно по меньшей мере 25% и более предпочтительно по меньшей мере 50%. Указанную связывающую активность можно легко определить согласно способу, описанному WEI et al. (abovementioned, 2001). Указанный домен sushi IL-15Rα представляет собой домен sushi IL-15Rα млекопитающего, предпочтительно домен sushi IL-15Rα примата и более предпочтительно, домен sushi IL-15Rα человека. Специалист в данной области техники может легко идентифицировать домен sushi IL-15Rα млекопитающего. В качестве примера можно привести домен sushi IL-15Rα Rattus norvegicus (Номер доступа ХР_002728555), Mus musculus (Номер доступа EDL08026), Bos Taurus (Номер доступа ХР_002692113), Oryctolagus cuniculus (Номер доступа ХР_002723298), Масаса fascicularis (Accession number ACI42785), Масаса nemestrina (Accession number ACI42783), Homo sapiens (Номер доступа СА141081), Масаса Mulatta (Номер доступа NP_001166315), Pongo abelii (Номер доступа XP_002820541), Cercocebus torquatus (Номер доступа ACI42784), Callithrix jacchus (Номер доступа ХР_002750073) или Cavia porcellus (Номер доступа NP_001166314). В данном документе термин "домен sushi" IL-15Rα млекопитающего" обозначает консенсусную последовательность SEQ ID NO:4.
Предпочтительно, полипептид, содержащий аминокислотную последовательность домена sushi IL-15Rα млекопитающего обозначает консенсусную последовательность SEQ ID NO:5.
Специалист в данной области техники может легко идентифицировать домен "sushi" IL-15Rα примата. В качестве примера можно привести домен "sushi" IL-15Rα Oryctolagus cuniculus, Macaca fascicularis, Macaca nemestrina, Homo sapiens, Macaca Mulatta, Pongo abelii, Cercocebus torquatus или Callithrix jacchus.
В данном документе термин "домен sushi IL-15Rα примата" обозначает консенсусную последовательность SEQ ID NO:6.
Предпочтительно полипептид, содержащий аминокислотную последовательность домена sushi IL-15Rα примата обозначает консенсусную последовательность SEQ ID NO:7.
Специалист в данной области техники может легко идентифицировать домен "sushi" IL-15Rα человека, который обозначает аминокислотную последовательность SEQ ID NO:8.
Предпочтительно, полипептид, содержащий аминокислотную последовательность домена sushi IL-15Rα человека, обозначает SEQ ID NO:9.
В данном документе термин "производные домена sushi IL-15Ra" обозначают аминокислотную последовательность, имеющую показатель идентичности с аминокислотной последовательностью, выбранной из группы, состоящей из SEQ ID NO::4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8 и SEQ ID NO:9, по меньшей мере 92% (т.е. соответствующий приблизительно 5 аминокислотным заменам), предпочтительно по меньшей мере 96% (т.е. соответствующий приблизительно 2 аминокислотным заменам), и более предпочтительно по меньшей мере 98% (т.е. соответствующий приблизительно 1 аминокислотной замене). Такие производные содержат четыре остатка цистеина домена sushi IL-15Rα и могут быть легко идентифицированы специалистом в данной области техники на основании общедоступных сведений и описания данной патентной заявки. Следует понимать, что природные аминокислоты можно заменить химически модифицированными аминокислотами. Как правило, такие химически модифицированные аминокислоты позволяют увеличить время полужизни полипептида.
Согласно предпочтительному воплощению конъюгат содержит (ii) полипептид, содержащий аминокислотную последовательность домена sushi и шарнирного домена IL-15Rα или его производных.
Шарнирный домен IL-15Rα определяется аминокислотной последовательностью, которая начинается первым аминокислотным остатком после домена sushi и заканчивается последним аминокислотным остатком перед первым потенциальным сайтом гликозилирования. Аминокислотная последовательность шарнирного участка IL-15Rα человека состоит из четырнадцати аминокислот, которые расположены после домена sushi этого IL-15Rальфа, в С-концевом положении относительно указанного домена sushi, т.е. указанный шарнирный участок IL-15Rальфа начинается первой аминокислотой после указанного остатка цистеина (С4) и заканчивается четырнадцатой аминокислотой (считая в стандартном направлении "от N-конца к С-концу").
Указанные домен sushi и шарнирный домен IL-15Rα представляют собой домен sushi и шарнирный домен IL-15Rα млекопитающего, предпочтительно домен sushi и шарнирный домен IL-15Rα примата и более предпочтительно домен sushi и шарнирный домен IL-15Rα человека.
Специалист в данной области техники может легко идентифицировать аминокислотную последовательность домена sushi и шарнирного домена IL-15Rα млекопитающего. В данном документе термин "домен sushi и шарнирный домен IL-15Rα млекопитающего" обозначает консенсусную последовательность SEQ ID NO:10.
Специалист в данной области техники может легко идентифицировать аминокислотную последовательность домена sushi и шарнирного домена IL-15Rα примата. В данном документе термин "домен sushi" и шарнирный домен IL-15Rα примата" обозначает консенсусную последовательность SEQ ID NO:11.
Специалист в данной области техники может легко идентифицировать аминокислотную последовательность домена sushi и шарнирного домена IL-15Rα человека. В данном документе термин "домен sushi" и шарнирный домен IL-15Rα человека" обозначает консенсусную последовательность SEQ ID NO:12.
В данном документе термин "производные домена sushi" и шарнирного домена IL-15Rα" обозначает аминокислотную последовательность, имеющую показатель идентичности с аминокислотной последовательностью, выбранной из группы, состоящей из SEQ ID NO::10, SEQ ID NO:11 и SEQ ID NO:12 по меньшей мере 93% (т.е. соответствующей приблизительно 5 аминокислотным заменам), предпочтительно по меньшей мере 97% (т.е. соответствующей приблизительно 2 аминокислотным заменам), и более предпочтительно по меньшей мере 98% (т.е. соответствующей приблизительно 1 аминокислотной замене). Такие производные содержат четыре остатка цистеина домена sushi IL-15Rα и могут быть легко идентифицированы специалистом в данной области техники на основании общедоступных сведений и описания данной патентной заявки. Следует понимать, что природные аминокислоты можно заменить химически модифицированными аминокислотами. Как правило, такие химически модифицированные аминокислоты позволяют увеличить время полужизни полипептида.
Оба полипептида i) и ii) конъюгата могут быть связаны нековалентно, как в комплексе, описанном в патенте США US 8,124,084 В2. Указанный конъюгат или комплекс могут быть легко получены при наличии надлежащего количества полипептида i), при наличии надлежащего количества полипептида ii), смешивании обоих полипептидов при надлежащих значениях рН и ионной силы на протяжении времени, достаточного для образования комплекса (т.е. конъюгата) и, возможно, концентрировании или очистки указанного комплекса. Полипептиды комплекса (т.е. конъюгата) можно создать, например, с применением синтезатора пептидов в соответствии со стандартными способами; при экспрессии каждого полипептида в отдельности в клетке или клеточном экстракте, с последующим выделением и очисткой полипептида. Возможно, используемый в терапевтических целях комплекс полипептида по изобретению можно создать при экспрессии обоих полипептидов i) и ii) в той же клетке или клеточном экстракте, с последующим выделением и очисткой комплексов, например, с применением хроматографических методов, таких как аффинная хроматография с антителами к лимфокиновой части, части лимфокинового рецептора или к комплексу.
Оба полипептида i) и ii) конъюгата могут также быть ковалентно связаны с помощью бифункциональных сшивающих агентов, обеспечивающих присоединение белков, или в составе гибридного белка.
Бифункциональные сшивающие агенты, обеспечивающие присоединение белков, хорошо известны специалистам в данной области, наряду со способами их применения, и включают, например, N-сукцинимидил (2-пиридилдитио) пропионат (SPDP), сукцинимидил (N-малеимидометил) циклогексан-1-карбоксилат, иминотиолан (IT), бифункциональные производные имидоэфиров (такие как диметил адипимидат HCL), активные эфиры (такие как дисукцинимидил суберат), альдегиды (такие как глутаральдегид), бис-азидо соединения (такие как бис-(р-азидобензоил) гександиамин), производные бис-диазония (такие как бис-(р-диазониумбензоил)-этилендиамин), диизоцианаты (такие как толуол-2,6-диизоцианат и соединения с 2 атомами активного фтора (такие как 1,5-дифлуоро-2,4-динитробензол).
Термин "гибридный белок" обозначает белок, созданный путем объединения двух или более генов, которые исходно кодировали отдельные белки. Он также известен под названием химерного белка. Трансляция такого объединенного гена дает в результате единый полипептид с функциональными свойствами, унаследованными от каждого исходного белка. Рекомбинантные гибридные белки создают искусственным образом при помощи технологии рекомбинантной ДНК для применения в биологических исследованиях или в терапии. Рекомбинантный гибридный белок представляет собой белок, полученный в результате создания объединенного гена методами генной инженерии. Как правило, они включают удаление стоп-кодона последовательности ДНК, кодирующей первый белок, и присоединение последовательности кДНК второго белка в рамке считывания при помощи лигирования или при помощи ПЦР с перекрывающимися праймерами. Эту последовательность ДНК затем экспрессируют в клетке в виде единого белка. Белок может быть создан таким образом, чтобы включать полную последовательность обоих исходных белков или только части каждого из них.
В предпочтительном воплощении конъюгат представляет собой гибридный белок. Аминокислотная последовательность интерлейкина 15 или его производных может находиться в С-концевом или N-концевом положении относительно аминокислотной последовательности домена sushi IL-15Rα или его производных. Предпочтительно, аминокислотная последовательность интерлейкина 15 или его производных находится в С-концевом положении относительно аминокислотной последовательности домена sushi IL-15Rα или его производных.
Аминокислотная последовательность интерлейкина 15 или его производных и аминокислотная последовательность домена sushi IL-15Rα или его производных может быть отделена первой линкерной аминокислотной последовательностью. Указанная первая линкерная аминокислотная последовательность может иметь длину, достаточную для того, чтобы гибридный белок приобретал надлежащую вторичную и третичную структуру.
Длина первой линкерной аминокислотной последовательности может варьировать без существенного влияния на биологическую активность гибридного белка. Как правило, первая линкерная аминокислотная последовательность содержит по меньшей мере один, но менее чем 30 аминокислот, например, линкер из 2-30 аминокислот, предпочтительно из 10-30 аминокислот, более предпочтительно из 15-30 аминокислот, еще более предпочтительно из 15-25 аминокислот, наиболее предпочтительно из 18-22 аминокислот.
Предпочтительными являются такие линкерные аминокислотные последовательности, которые позволяют конъюгату принимать надлежащую конформацию (т.е. конформацию, обеспечивающую надлежащую передачу сигнала во всем сигнальном пути IL-15Rбета/гамма).
Наиболее подходящие линкерные аминокислотные последовательности (1) будут иметь гибкую растянутую конформацию, (2) не будут демонстрировать склонность к образованию упорядоченных вторичных структур, которые могут взаимодействовать с функциональными доменами гибридных белков, и (3) будут обладать минимальной гидрофобностью или зарядом, которые могут способствовать взаимодействию с функциональными доменами белка.
Предпочтительно, первая линкерная аминокислотная последовательность содержит почти нейтральные аминокислоты, выбранные из группы, включающей Gly (G), Asn (N), Ser (S), Thr (T), Ala (A), Leu (L) и Gin (Q), наиболее предпочтительно из группы, включающей Gly (G), Asn (N) и Ser (S).
Примеры линкерных последовательностей описаны в патентах США US 5,073,627 и 5,108,910.
Приведенные в качестве примера гибкие линкеры, которые являются особенно подходящими для настоящего изобретения, включают такие, которые кодируются последовательностями SEQ ID NO:13 (SGGSGGGGSGGGSGGGGSLQ), SEQ ID NO:14 (SGGSGGGGSGGGSGGGGSGG) или SEQ ID NO:15 (SGGGSGGGGSGGGGSGGGSLQ).
Антитело иммуноцитокина по изобретению
Термин "антитело" обозначает молекулу иммуноглобулина, соответствующую тетрамеру, содержащему четыре полипептидных цепи, две идентичных тяжелых цепи (Н) (приблизительно 5O-70 кДа в случае полноразмерной цепи) и две идентичных легких цепи (L) (приблизительно 25 кДа в случае полноразмерной цепи), соединенные между собой дисульфидными связями. Легкие цепи подразделяются на каппа- и лямбда-цепи. Тяжелые цепи подразделяются на гамма, мю, альфа, дельта или эпсилон и определяют изотип антитела, такой как IgG, IgM, IgA, IgD и IgE, соответственно. Каждая тяжелая цепь содержит N-концевой вариабельный участок тяжелой цепи (сокращенно обозначенный здесь HCVR) и константный участок тяжелой цепи. Константный участок тяжелой цепи состоит из трех доменов (СН1, СН2 и СНЗ) в случае IgG, IgD и IgA; и 4 доменов (СН1, СН2, СН3 и СН4) в случае IgM и IgE. Каждая легкая цепь содержит N-концевой вариабельный участок легкой цепи (сокращенно обозначенный здесь LCVR) и константный участок легкой цепи. Константный участок легкой цепи состоит из одного домена, CL. Участки HCVR и LCVR можно подразделить на гипервариабельные участки, называемые участками, определяющими комплементарность (CDR), перемежающиеся с участками, которые являются более консервативными и обозначаются каркасными участками (FR). Каждый HCVR и LCVR состоит из трех CDR и четырех FR, расположенных от амино-конца к карбокси-концу в следующем порядке: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Принадлежность аминокислот каждому домену определяется в соответствии с общеизвестными правилами. Функциональная способность антитела связывать конкретный антиген определяется вариабельными участками каждой пары легкой/тяжелой цепей, и в большой степени определяется CDR.
Термин "антитело" в данном документе обозначает моноклональное антитело per se. Моноклональное ан