Устройства и способы определения положения в подземном пласте

Иллюстрации

Показать все

Изобретение относится области проведения измерений в связи с нефтегазопоисковыми работами. Способ определения положения приемника включает следующие этапы: прием сигналов от приемника в подземном пласте в ответ на сигналы, поступающие из трех передающих источников, и обработку принимаемых сигналов с помощью процесса инверсии на основании сигналов, поступающих из трех или более передающих источников, с целью определения положения приемника. При этом каждый из трех передающих источников находится в известном положении, а передающий источник отделен от и расположен в местоположении, отличном от местоположения по меньшей мере одного другого передающего источника из трех или более передающих источников. Технический результат заключается в повышении точности определения положения приемника. 9 н. и 88 з.п. ф-лы, 23 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Данное изобретение относится, в целом, к устройству и способу проведения измерений в связи с нефтегазопоисковыми работами.

УРОВЕНЬ ТЕХНИКИ

При бурении скважин с целью проведения нефтегазопоисковых работ понимание структуры и характеристик связанной с этим геологической формации предоставляет информацию для помощи в таких поисковых работах. Данные для предоставления информации можно получать с помощью датчиков, расположенных в подземном пласте на больших расстояниях от поверхности. Сведения о положении этих датчиков в подземном пласте можно применять с целью составления информации для поисковых работ. Системы и методы определения положения датчиков в подземном пласте могут улучшать процесс анализа, связанный с буровыми работами.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Фиг.1 иллюстрирует типовое размещение передатчиков и приемника, размещение которых может быть применено для определения положения приемника, в соответствии с различными вариантами реализации изобретения.

Фиг.2 иллюстрирует настройку имитационного моделирования для анализа влияния частоты, в соответствии с различными вариантами реализации изобретения.

Фиг.3А-B иллюстрируют глубину в зависимости от уровней напряжения принимаемых сигналов для различных частот с целью настройки имитационного моделирования, проиллюстрированной на Фиг.2, в соответствии с различными вариантами реализации изобретения.

Фиг.4A-B иллюстрируют глубину, в зависимости от уровней напряжения принимаемых сигналов, для различных удельных электрических сопротивлений пласта при фиксированной рабочей частоте для настройки имитационного моделирования, проиллюстрированной на Фиг.2, в соответствии с различными вариантами реализации изобретения.

Фиг.5А-B иллюстрируют глубину, в зависимости от уровней напряжения принимаемых сигналов, для различных удельных электрических сопротивлений пласта при другой фиксированной рабочей частоте для настройки имитационного моделирования, проиллюстрированной на Фиг.2, в соответствии с различными вариантами реализации изобретения.

Фиг.6 иллюстрирует особенности типового алгоритма инверсии для определения положения приемника в подземном пласте, в соответствии с различными вариантами реализации изобретения.

Фиг.7 иллюстрирует особенности типового ограниченного алгоритма инверсии для определения положения приемника в подземном пласте, в соответствии с различными вариантами реализации изобретения.

Фиг.8 иллюстрирует особенности моделирования для проверки алгоритма инверсии и для анализа точности, достигнутой при определении положения одного или более датчиков для различных конфигураций системы, в соответствии с различными вариантами реализации изобретения.

Фиг.9 иллюстрирует геометрию моделирования для системы позиционирования с двумя х-направленными передатчиками на поверхности, в соответствии с различными вариантами реализации изобретения.

Фиг.10А-Е иллюстрируют результаты моделирования методом Монте-Карло в отношении геометрии моделирования, проиллюстрированной на Фиг.9, в соответствии с различными вариантами реализации изобретения.

Фиг.11А-Е иллюстрируют результаты моделирования методом Монте-Карло для системы позиционирования, проиллюстрированной на Фиг.9, положение которой ограничено относительно первого приемника, в соответствии с различными вариантами реализации изобретения.

Фиг.12 иллюстрирует геометрию моделирования для системы позиционирования двух передатчиков, при которой один из передатчиков находится под землей, в соответствии с различными вариантами реализации изобретения.

Фиг.13А-Е иллюстрируют результаты моделирования методом Монте-Карло для системы позиционирования, проиллюстрированной на Фиг.12, в соответствии с различными вариантами реализации изобретения.

Фиг.14 иллюстрирует геометрию моделирования для системы позиционирования с четырьмя передатчиками триадного типа, в соответствии с различными вариантами реализации изобретения.

Фиг.15А-Е иллюстрируют результаты моделирования методом Монте-Карло для системы позиционирования, проиллюстрированной на Фиг.14, в соответствии с различными вариантами реализации изобретения.

Фиг.16 иллюстрирует двумерный пример с передатчиками на поверхности и приемником под землей с целью проиллюстрировать способ определения положения приемника относительно источников от известных ориентаций источников, в соответствии с различными вариантами реализации изобретения.

Фиг.17 иллюстрирует двумерный пример с передатчиками на поверхности и приемником под землей, в котором приемник имеет направление профиля, в соответствии с различными вариантами реализации изобретения.

Фиг.18 иллюстрирует трехмерный пример с передатчиками на поверхности и приемником под землей, в котором приемник имеет направление профиля, в соответствии с различными вариантами реализации изобретения.

Фиг.19A-B иллюстрируют результаты моделирования методом Монте-Карло с применением полуаналитического решения для системы позиционирования, проиллюстрированной на Фиг.9, в соответствии с различными вариантами реализации изобретения.

Фиг.20 иллюстрирует электрическое поле на приемнике, вследствие магнитного диполя, являющегося перпендикулярным плоскости, в которой расположены приемник и передатчик, в соответствии с различными вариантами реализации изобретения.

Фиг.21 иллюстрирует моделированную систему для электрического поля на основании системы позиционирования, в соответствии с различными вариантами реализации изобретения.

Фиг.22А-С иллюстрируют результаты моделирования методом Монте-Карло с применением электрического поля на основании системы позиционирования, проиллюстрированной на Фиг.21, в соответствии с различными вариантами реализации изобретения.

Фиг.23 иллюстрирует блок-схему устройств типовой системы для определения положения в подземном пласте, в соответствии с различными вариантами реализации изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Следующее подробное описание ссылается на прилагаемые графические материалы, иллюстрирующие в качестве иллюстрации, а не ограничивающие различные варианты реализации изобретения, в которых изобретение может быть реализовано. Эти варианты реализации изобретения описаны достаточно подробно, чтобы обеспечить специалистам в данной области техники возможность реализовать эти и другие варианты реализации изобретения. Могут быть применены и другие варианты реализации изобретения, а также могут быть сделаны изменения в структурных, логических и электрических особенностях этих вариантов реализации изобретения. Различные варианты реализации изобретения не обязательно являются взаимоисключающими, так как некоторые варианты реализации изобретения могут быть объединены с одним или более других вариантов реализации изобретения для создания новых вариантов реализации изобретения. Следовательно, следующее подробное описание не стоит воспринимать как обладающее ограничительным характером.

В различных вариантах реализации изобретения системы и способы определения положения подземного приемника могут включать поиск положения приемника, или приемников, по измерениям, полученным приемниками, и известных положений источников, которые генерируют сигналы для данных измерений. Могут применять источники, размещенные в известных положениях либо на поверхности, либо под поверхностью земли с приемником или приемниками, расположенными под землей. Могут определять положение подземного(ных) приемника(ов) по измерениям сигналов, генерируемых множественными передающими источниками, положения которых точно известны.

Могут применять передающие источники электромагнитного типа и приемники в системах для определения положения под землей. Такие передающие источники могут включать, среди прочего, дипольные передатчики, источники, генерирующие большое распределение тока на поверхности или вблизи поверхности земли, создающие электромагнитные поля под землей, где электромагнитные поля, измеряемые в приемнике, или другие источники могут генерировать сигнал, измеряемый в приемнике глубоко в подземной формации. Диполи источников могут быть ориентированы в направлении, перпендикулярном исследуемой области, причем исследуемая область включает приемный источник, который необходимо определить. Эта ориентация может учитывать нулевую точку вдоль направления диполя. Передающие источники могут быть реализованы с помощью одного или более триадных передатчиков. Триадный передатчик представляет собой устройство, содержащее три передающих источника в одном и том же месте, а положение или ориентация трех передающих источников являются различными. Три передающих источника триады могут быть установлены на одном и том же устройстве в конкретном месте. Передающими источниками на поверхности или вблизи поверхности земли можно управлять для генерирования сигналов, имеющих низкую частоту для проникновения глубоко под землю таким образом, что такие сигналы измеряют в подземной массе, простирающейся на расстояние от сотни футов до тысяч футов в глубину и от сотни футов до тысяч футов поперек глубины. В качестве альтернативы, другие типы передатчиков, применяемые в индустрии исследований нефтяных месторождений, такие как, среди прочего, акустические датчики и сейсмические датчики, могут применять в системах для определения положения под землей. Количество передающих источников может включать три или более передающих источников. В варианте реализации изобретения три передающих источника могут быть реализованы посредством единого триадного передатчика.

Приемником или приемниками можно управлять с помощью электронных устройств, расположенных под землей. Кроме того, блок обработки может быть расположен в глубине скважины для анализа сигналов, получаемых приемником. Блок обработки может быть реализован при помощи электронных устройств, интегрированных с приемником, при этом информация об известных положениях передающих датчиков хранится на электронных устройствах вместе с инструкциями для обработки сигналов. Блок обработки может быть реализован при помощи электронных устройств, размещенных на устройстве, на котором размещен приемник, и отделен от приемника. Блок обработки и контроллер приемника, расположенные в глубине скважины, могут обеспечивать автоматизированное направленное бурение. В качестве альтернативы, блок обработки может располагаться на поверхности, отвечая на прием сигналов или данных относительно сигналов от приемника.

Фиг.1 иллюстрирует типовой вариант реализации размещения передатчиков и приемника, размещение которых может быть применено для определения положения приемника. На Фиг.1 проиллюстрированы три передатчика, обозначенные как Tx1, Tx2 и Tx3, например, в разных положениях относительно приемного датчика, Rх1. Tx1 и Tx2 находятся на поверхности 104, в то время как Tx3 находится под землей внутри скважины, отличной от той, в которой находится Rx1. Эта фигура представляет собой двумерную (2D) фигуру, предоставленную с целью иллюстрации, в которой передатчики расположены в одной и той же плоскости. В различных вариантах реализации изобретения передающие источники, применяемые для определения положения приемного датчика, лежат в плоскости, общей для не более чем двух передатчиков и датчика приемника. При наличии передающих датчиков, соответствующих этому условию, можно достигать лучшей разрешающей способности принимаемых сигналов в процессе измерения. Кроме того, количество передатчиков, количество приемников или количество передатчиков и приемников может быть увеличено для улучшения разрешающей способности.

Количество передатчиков и положения передатчиков также могут быть оптимизированы посредством применения известных методов оптимизации, в зависимости от применения. Тем не менее, при обсуждении вариантов реализации изобретения анализируют воздействия количества передатчиков и их положения при помощи результатов численного моделирования. Датчики приемника и передатчики были выбраны в качестве триадных антенн, как проиллюстрировано на Фиг.1, в имитационных моделированиях для повышения точности инверсии, хотя это не является необходимым для действия вариантов реализации способов, относящихся к определению положения в подземном пласте. Как проиллюстрировано на Фиг.1, передающие источники Tx1, Tx2 и Tx3, сконструированные в виде трех триад, могут обеспечить 9 передающих источников в трех местах 9 положениями или ориентациями. Приемный датчик Rх1 также может быть сконструирован в виде триадного приемного датчика, содержащего три приемника в одном месте с тремя положениями или ориентациями.

Увеличение количества передающих источников на каждый передающий источник в известном месте может увеличить объем информации, применяемой для определения положения приемника или приемников в подземных пластах. К тому же, передающие источники не ограничены применением одного и того же типа передающего источника. Например, схемы расположения могут включать два триадных передатчика среди трех или более передатчиков, распределенных по довольно обширной области. Другие схемы расположения могут включать передающий источник, сконструированный в виде цепи, распределенной по довольно большой области на поверхности или вблизи поверхности земли. Цепь может включать замкнутый контур, содержащий токонесущий провод, при этом токонесущий провод находится в известном положении и токонесущий провод расположен вдоль прямолинейной траектории таким образом, что сигналы, принимаемые в приемнике из замкнутого контура, которые поступают из частей замкнутого контура, следующих траектории, отличной от прямолинейных траекторий, не принимаются в расчет. Сигнал на приемник может, преимущественно, посылать этот одиночный токонесущий провод с остальными частями цепи, которые замыкают контур, расположенный на таких расстояниях от приемника, что сигналы от этих других частей, в сущности, затухают перед поступлением на приемник. В качестве альтернативы, передающий источник может быть структурирован в виде цепи, содержащей замкнутый контур с множеством токонесущих проводов, при этом каждый токонесущий провод находится в известном положении и расположен вдоль прямолинейной траектории таким образом, что сигналы, принимаемые в приемнике из замкнутого контура, которые поступают из частей замкнутого контура, следующих траектории, отличной от прямолинейных траекторий, не принимаются в расчет. Принимаемые приемником сигналы могут быть обработаны на основании модели множества токонесущих проводов и их соответствующих прямолинейных траекторий.

Низкочастотные электромагнитные волны могут проникать глубоко под поверхность земли. С помощью низкочастотных источников (f<10 Гц) создаваемые источниками поля будут поддаваться измерению при положениях глубоко под землей. В одном варианте реализации изобретения можно применять низкочастотные источники, обладающие частотой, меньшей или равной 50 Гц. Приемник, размещенный в стволе скважины под поверхностью, может измерять сигналы, генерируемые данными источниками. Эти сигналы от каждого из источников могут быть обработаны для определения расстояния, ориентации или и расстояния, и ориентации. В различных вариантах реализации изобретения определение положения можно выполнять на глубинах вплоть до 10000 метров.

Первый фактор включает влияние частоты на сигналы, которые проникают вглубь пласта. По мере того как частота усиливается, затухание под землей увеличивается таким образом, что на более высоких частотах затухание является более ощутимым и может ослаблять сигналы ниже уровня помех. Еще одним немаловажным фактором является то, что более высокие частоты являются также более чувствительными по отношению к пласту, что может существенно влиять на принимаемый сигнал. Это означает, что на более высоких частотах решение по поводу положения приемника(ов) в определенной степени зависит от параметров соединения и от в большинстве случаев точно не известной информации о пласте. Типовые варианты реализации способов определения положения под землей могут быть реализованы при работе в одночастотном режиме. Однако в других вариантах реализации изобретения особенности способов, относящихся к определению положения под землей, могут быть реализованы при работе во многочастотном режиме.

Фиг.2 иллюстрирует настройку имитационного моделирования для анализа влияния частоты. С целью анализа влияния частоты вычисляют изменение с глубиной уровня сигнала в качестве функции частоты при наличии индивидуального передатчика. Передатчик и приемный датчик были смоделированы как катушечные антенны с нормалью, параллельной радиальному направлению земли. В дальнейшем ось, перпендикулярная поверхности земли, будет обозначаться как ось z. При такой методике моделируемый случай иллюстрирует ZZ-соединение. Другие ортогональные компоненты (XX-соединение и YY-соединение) обладают аналогичными характеристиками и не проиллюстрированы.

В этом имитационном моделировании приемный датчик Rx находится непосредственно под передатчиком Тх. С целью иллюстрации, каждый из приемника и рамочных антенн передатчика, как полагают, имеет единичную площадь с 400 витками, а передатчик, как полагают, проводит ток в 25 А. Проектные параметры могут отличаться, в зависимости от заданий технического проектирования для конкретного применения. Однако, чтобы иметь способность передавать сигнал на такие большие глубины, уровень передаваемой мощности должен быть высоким и приемный датчик должен быть структурирован как высокочувствительный приемник. Ввиду вопроса об уровне мощности может быть также более практичным установить передатчики на поверхности 204, по сравнению со случаями, когда некоторые или все передатчики находятся под землей. Характеристики пласта, применяемые в имитационном моделировании, также проиллюстрированы на Фиг.2. Учитывали определенный сценарий по наихудшему варианту с проводящим пластом, имеющим удельное электрическое сопротивление, Rf, равное 1 Ом/м. Относительная диэлектрическая проницаемость (εr) и магнитная проницаемость (μr) были выбраны как 5 и 1, соответственно.

Фиг.3А-B иллюстрируют глубину в зависимости от уровней напряжения принимаемых сигналов в случае различных частот для настройки имитационного моделирования на Фиг.2. Фиг.3А иллюстрирует изменение абсолютного значения напряжения в зависимости от глубины для четырех различных частот, а Фиг.3B иллюстрирует изменение фазы напряжения в зависимости от глубины для четырех различных частот. Кривые 342, 344, 346 и 348 иллюстрируют глубину как функцию абсолютного значения напряжения на частотах 0,01 Гц, 0,1 Гц, 1 Гц и 10 Гц, соответственно. Кривые 352, 354, 356 и 358 иллюстрируют глубину как функцию фазы напряжения на частотах 0,01 Гц, 0,1 Гц, 1 Гц и 10 Гц, соответственно. На 1 Гц и 10 Гц сигнал быстро затухает. Можно также наблюдать зацикливание в фазе, что может усложнять процесс инверсии. Для сравнения, когда частота понижается, затухание сигнала вызывает меньше затруднений. Однако в случае таких низких частот начальная мощность сигнала уже низкая. Таким образом, даже для 0,01 Гц и 0,1 Гц уровень напряжения доходит до 10 фемтовольт на 10000 м для моделируемых конфигураций передатчика и приемника. Результаты позволяют предположить, что в случае применяемых параметров имеется лишь незначительное улучшение в затухании для частот ниже 0,1 Гц. Таким образом, в других описываемых в данном документе имитационных моделированиях предполагаемая частота режима работы составляла 0,1 Гц.

Фиг.4A-B иллюстрируют глубину в зависимости от уровней напряжения принимаемых сигналов для различных удельных электрических сопротивлений при фиксированной рабочей частоте. С целью анализа воздействия удельного электрического сопротивления пласта ту же конфигурацию, что была проиллюстрирована на Фиг.2, применяли с частотой, установленной на постоянной величине 0,1 Гц, а удельное электрическое сопротивление пласта варьировало от 0,1 Ом/м до 100 Ом/м. Кривые 442, 444, 446 и 448 иллюстрируют глубину как функцию абсолютного значения напряжения при значениях удельного электрического сопротивления пласта 0,1 Ом/м, 1 Ом/м, 10 Ом/м и 100 Ом/м, соответственно. Кривые 452, 454, 456 и 458 иллюстрируют глубину как функцию фазы напряжения при значениях удельного электрического сопротивления пласта 0,1 Ом/м, 1 Ом/м, 10 Ом/м и 100 Ом/м, соответственно. Воздействие удельного электрического сопротивления пласта на принимаемый сигнал можно рассматривать как незначительное, за исключением чрезвычайно проводящих пластов. Соответственно, этим воздействием можно пренебречь или его можно устранить при помощи основной корректирующей схемы. Тем не менее, предполагали, что в случае описанных в данном документе примеров удельное электрическое сопротивление пласта было точно известно.

Фиг.5A-B иллюстрируют глубину в зависимости от уровней напряжения принимаемых сигналов для различных удельных электрических сопротивлений пласта при другой фиксированной рабочей частоте, в соответствии с различными вариантами реализации изобретения. Ту же конфигурацию, проиллюстрированную на Фиг.2, применяли с частотой, установленной на постоянной величине 0,01 Гц, а удельное электрическое сопротивление пласта варьировало от 0,1 Ом/м до 100 Ом/м. Кривые 542, 544, 546 и 548 иллюстрируют глубину, как функцию абсолютного значения напряжения при значениях удельного электрического сопротивления пласта 0,1 Ом/м, 1 Ом/м, 10 Ом/м и 100 Ом/м, соответственно. Кривые 546 и 548 накладываются таким образом, что расхождения не заметны в шкалах Фиг.5А. Кривые 552, 554, 556 и 558 иллюстрируют глубину, как функцию фазы напряжения при значениях удельного электрического сопротивления пласта 0,1 Ом/м, 1 Ом/м, 10 Ом/м и 100 Ом/м, соответственно. Результаты в отношении 0,01 Гц, проиллюстрированные на Фиг.5, демонстрируют очень небольшую зависимость от удельного электрического сопротивления пласта для рассматриваемого диапазона глубин. Тем не менее, такая низкая частота может создавать трудности при реализации аппаратного обеспечения системы.

Фиг.6 иллюстрирует особенности типового алгоритма инверсии для определения положения приемника в подземном пласте. Этот алгоритм инверсии показывает, как положение принимающего датчика может быть определено с помощью множества передатчиков, расположенных в ранее известных местах. В блоке 610 осуществляют измерение сигналов, обусловленных различными N-передатчиками, на приемнике. Эти сигналы объединяются в вектор-столбец, обозначенный как V в блоке 620. Хотя индивидуальный приемник относительно N-передатчиков указан в блоках 610 и 620, более сложные измерения могут быть рассмотрены аналогичным или идентичным образом. Например, если приемники или передатчики являются многокомпонентными, каждые из отдельно вводимых данных (VTxRx) становятся вектором с отдельными компонентами в качестве элемента указанного вектора. Примеры таких приемников и передатчиков включают триадные приемники и триадные передатчики. Если в наличии имеются множественные частоты, результаты этих измерений могут быть добавлены к вектору измерения и так далее. Как только получают это напряжение, его можно дополнительно обрабатывать в зависимости от применения. Например, если сигнал от одного из передатчиков является слишком мощным по сравнению с остальными, амплитуды принимаемого сигнала от различных передатчиков могут быть нормализованы для удостоверения в том, что весовое значение каждого передатчика в инверсии такое же.

В алгоритме инверсии определение положения и направления принимающего(щих) датчика(ов) является интересующим объектом. Таким образом, интересующие параметры обозначают, как положение датчика приемника (х, у, z), его азимут (θ) и его угол возвышения (ϕ). В блоке 630 сделана исходная приближенная оценка в отношении параметров положения и направляющих параметров (x’, y’, z’, θ’, ϕ’). Сигнал, соответствующий исходной приближенной оценке в отношении параметров положения и направляющих параметров (x’, y’, z’, θ’, ϕ’), моделируют с помощью прямой модели, которая обозначена как V’ в блоке 640. Как и в любом алгоритме инверсии, в этом способе реализации изобретения применяют точную прямую модель, относящуюся к параметрам, которые необходимо инвертировать в измеряемый сигнал.

В блоке 650 норму разности между V и V’ сопоставляют с пороговым значением. Если норма разности между V и V’ ниже заданного порогового значения, то процесс обработки могут прекратить и обрабатываемые параметры (x’, y’, z’, θ’, ϕ’) могут считать точными приближениями к истинным параметрам (x, y, z, θ, ϕ) в блоке 660. На этом этапе можно применять и другой критерий сходимости.

Если сходимость не является удовлетворяющей, число итераций может быть увеличено на один в блоке 670. Чтобы предотвратить, например, бесконечные имитационные моделирования для случаев, когда возможно решение ниже порогового значения, как, например, в условиях чрезвычайно высокого уровня помех, или чтобы ограничить время имитационного моделирования, число итераций могут сопоставить с ранее установленным максимальным числом итераций в блоке 680. Если максимальное число итераций достигнуто, обработку можно прекратить на последней приближенной оценке или предшествующей приближенной оценке, которая минимизирует погрешность, возвращенную в качестве ответа, в блоке 685. В противном случае, вектор приближенной оценки параметра обновляют в блоке 690, V’ снова моделируют в блоке 640 на основании данной приближенной оценки и могут повторить вышеуказанный процесс сопоставления технологического сигнала с измеряемым сигналом и последующих сопоставлений. Обновление вектора приближенной оценки может быть основано на вычислении величины уклона, что минимизирует погрешность.

Альтернативные алгоритмы инверсии могут быть применены с аналогичным успехом. Такие алгоритмы инверсии могут включать применение таблицы подстановки. Другой альтернативный алгоритм инверсии может включать применение метода перебора, который подставляет большое число возможных входных комбинаций и выбирает комбинацию, сводящую к минимуму погрешность между измеренными данными и прямой моделью. Альтернативные алгоритмы инверсии не ограничиваются этими альтернативами, а могут включать другие альтернативные алгоритмы инверсии или их комбинации.

Фиг.7 иллюстрирует особенности типового ограниченного алгоритма инверсии для определения положения приемника в подземном пласте, в соответствии с различными вариантами реализации изобретения. Ограничение может быть применено как один из ряда различных методов, используемых для уменьшения погрешности в инверсии. Одним из таких методов является добавление второго датчика, положение которого относительно первого датчика точно известно. Хотя эти два датчика должны быть расположены близко друг другу в электрическом плане, тем самым обеспечивая мало независимую информацию, тот факт, что искажения в отдельных датчиках должны быть, в основном, независимы, позволит повысить точность инверсии. Инверсия в данном случае может быть аналогичной инверсии с помощью индивидуального приемника, проиллюстрированного на Фиг.6.

В блоке 710 осуществляют измерение сигналов, обусловленных различными N-передатчиками, на двух приемниках. Эти сигналы объединяют в вектор-столбец, обозначенный как V в блоке 720, обеспечивая в два раза больше компонентов в качестве измеряемого сигнала в способах, относящихся к Фиг.6. Эти измеряемые сигналы могут быть приняты и обработаны способом, аналогичным вариантам обработки измеряемых сигналов, в соответствии с Фиг.6.

В алгоритме инверсии определение положения и направления принимающего(щих) датчика(ов) является интересующим объектом. Таким образом, интересующие параметры обозначают как положение датчика приемника (х, у, z), его азимут (θ) и его угол возвышения (ϕ). В блоке 730 сделана исходная приближенная оценка в отношении параметров положения и направляющих параметров (x’, y’, z’, θ’, ϕ’) одного из датчиков. Поскольку точное положение второго датчика по отношению к первому датчику известно, приближенная оценка его положения и ориентации могут быть рассчитаны на основании первой приближенной оценки в блоке 735. Сигнал, соответствующий исходной приближенной оценке положения и направляющих параметров обоих приемников, моделируют с помощью прямой модели, которая обозначена как V’ в блоке 740. Точная прямая модель, которая относится к параметрам, которые необходимо инвертировать в измеряемый сигнал, может быть применена в этом способе.

В блоке 750 норму разности между V и V’ для обоих приемников сопоставляют с пороговым значением. Если норма разности между V и V’ ниже заданного порогового значения, то процесс обработки могут прекратить и обрабатываемые параметры (x’, y’, z’, θ’, ϕ’) могут считать точными приближениями к истинным параметрам (x, y, z, θ, ϕ) в блоке 760. На этом этапе можно применять и другой критерий сходимости.

Если сходимость не является удовлетворяющей, число итераций может быть увеличено на один в блоке 770. Чтобы предотвратить, например, бесконечные имитационные моделирования для случаев, когда возможно решение ниже порогового значения, как, например, в условиях чрезвычайно высокого уровня помех, или чтобы ограничить время имитационного моделирования, число итераций могут сопоставить с ранее установленным максимальным числом итераций в блоке 780. Если максимальное число итераций достигнуто, обработку можно прекратить на последней приближенной оценке или предшествующей приближенной оценке, которая минимизирует погрешность, возвращенную в качестве ответа, в блоке 785. В противном случае, вектор приближенной оценки параметра обновляют в блоке 790 посредством параметров для другого обновленного приемника, поскольку точное положение второго датчика относительно первого датчика известно. V’ снова моделируют в блоке 740 на основании данных приближенных оценок и могут повторить вышеуказанный процесс сопоставления технологического сигнала с измеряемым сигналом и последующих сопоставлений. Обновление вектора приближенной оценки может быть основано на вычислении величины уклона, что минимизирует погрешность.

Фиг.8 иллюстрирует особенности имитационного моделирования для проверки алгоритма инверсии и для анализа точности, достигнутой при определении положения одного или более датчиков для различных конфигураций системы. Эти имитационные моделирования были проведены как моделирования методом Монте-Карло. В блоке 810 процесс начинается с вектора истинного положения/ориентации (x, y, z, θ, ϕ). В моделированиях методом Монте-Карло находят идеальный сигнал в блоке 820, с применением прямой модели, соответствующей вектору положения/ориентации (x, y, z, θ, ϕ). Для имитационного моделирования искажений окружающей среды и системы и других погрешностей измерений, могут добавить случайные искажения, ηi, к идеальному сигналу, Videal, чтобы создать "измеряемый" сигнал 610 в соответствии с Фиг.6 и 710 в соответствии с Фиг.7. Искажения, добавленные к каждой строке Vi, то есть каждому каналу, выбирают таким образом, чтобы они были независимыми друг от друга. В этом случае нижний индекс i представляет собой число итераций по моделированию методом Монте-Карло. Равномерное распределение между (-0,5 и 0,5) применяют для образования случайного искажения. Затем амплитуду такого случайного искажения масштабируют и добавляют мультипликативным способом к исходному сигналу следующим образом:

(1)

В уравнении (1) j представляет собой индекс строк векторов Vi и Videal, u(-0,5,0,5) представляет собой равномерное случайное искажение, имеющее значения в диапазоне от -0,5 до 0,5, и SNR представляет собой масштабный коэффициент, представляющий отношение измеренной величины сигнала к фону искажений. В имитационных моделях было определено, что SNR будет составлять 50. Затем Vi инвертируют для образования приближенной оценки (xi, yi, zi, θi, ϕi) для итерации I, сохраняемой в блоке 840. Описанный выше процесс повторяют N раз, применяя счетчик в блоке 850, чтобы быть в состоянии точно анализировать осуществление инверсии для изменяющихся искажений. Выбранное число итераций (N) составляет 100 в имитационных моделях.

Фиг.9 иллюстрирует геометрию моделирования для системы позиционирования с двумя х-направленными передатчиками на поверхности. Эталонная система координат в выражении (х, z), на которой z находится в направлении от поверхности 904, проиллюстрирована на Фиг.9 с началом координат (0, 0) на проиллюстрированных оси x и оси z. Система позиционирования в данном примере состоит из двух одинаковых передатчиков, Tx1 и Tx2, которые являются x-направленными магнитными диполями. Эти передатчики расположены в положениях (х, у, z)=(1000, 0, 0) метров и (3000, 0, 0) метров по отношению к началу координат, при этом x, y и z представляют собой положения в x-направлении, y-направлении и z-направлении по отношению к эталонной системе координат. Приемник Rx представляет собой триаду магнитных диполей. Его выбранное положение составляет (2300, 0, zrec), при этом zrec представляет собой фактическую вертикальную глубину (TVD) и изменяется от 100 м до 10000 м с интервалом 100 м с целью имитационного моделирования спуска приемника в грунт. Rx, как предполагают, имеет угол возвышения 70° и азимутальный угол 50°. Пласт, как предполагают, имеет удельное электрическое сопротивление Rf=1 Ом/м, относительную диэлектрическую проницаемость εr=5 и относительную магнитную проницаемость μr=1. Хотя Rх, Tx1 и Tx2 лежат в одной плоскости в этом конкретном примере, инверсия не включает эту информацию. Иными словами, предполагают, что Rx может располагаться где угодно в 3-мерном пространстве. Кроме того, буровая установка 902, Tx1 и Tx2 находятся на поверхности 904 в иллюстративных целях, и пласт 901, как предполагают, является однородным.

Напряжение, полученное Rx датчиком для этой системы, является вектором с шестью компонентами. С целью решить положение и ориентацию Rx имеется пять неизвестных величин в задаче. Таким образом, решение переопределено. Придерживаясь аналогичных рассуждений, можно заметить, что даже с индивидуальным передатчиком и индивидуальным триадным приемником позиционирование возможно в случае, если ориентация датчика известна с помощью других средств. Например, ориентация Rx может быть определена с применением инклинометров.

Фиг.10А-Е иллюстрируют результаты моделирования методом Монте-Карло в отношении геометрии моделирования, проиллюстрированной на Фиг.9. Такие результаты получены со 100 повторениями в каждой глубинной точке, zrec, Rx. Кривые 1042, 1052, 1062, 1072 и 1082 показывают среднюю погрешность между положением датчика и имитационными моделями. Кривые 1044, 1054, 1064, 1074 и 1084 показывают плюс одно среднеквадратичное отклонение погрешности от среднего значения. Кривые 1046, 1056, 1066, 1076 и 1086 показывают минус одно среднеквадратичное отклонение погрешности от среднего значения. В моделировании методом Монте-Карло, если рассогласование между измеренным напряжением и напряжением, полученным с применением инвертированных параметров, выше порогового значения, такую конкретную инверсию отбрасывают. Это похоже на ситуацию в режиме реального времени, в которой инверсия считалась бы бесполезной, если бы напряжение, рассчитанное по инвертированным параметрам, имело большую разность в отношении измеряемого напряжения. По этим результатам можно увидеть, что ориентация датчика может быть точно определена даже на больших глубинах. Определение положения менее точно, но средняя погрешность, как правило, остается в пределах 5 метров по каждому компоненту положения.

Фиг.11А-Е иллюстрируют результаты моделирования методом Монте-Карло для системы позиционирования, проиллюстрированной на Фиг.9, при котором применяют второй приемник, п