Автоматизированное устройство для охлаждения образцов при усталостных испытаниях на изгиб
Иллюстрации
Показать всеИзобретение относится к области усталостных испытаний материалов на изгиб и предназначено для охлаждения образцов в процессе подготовки и проведения усталостных испытаний на изгиб. Предложено автоматизированное устройство для охлаждения образцов при усталостных испытаниях на изгиб при пониженных температурах, согласно которому процесс охлаждения осуществляется комбинированно, как за счет передачи холода по хладопроводу, так и за счет подачи охлажденного воздуха в криокамеру. При этом процессы, описанные выше, полностью автоматизированы за счет регулирования температуры посредством открытия/закрытия заслонки камеры и нагревания до необходимой (устойчивой) температуры зажима хладопровода. Кроме этого, дополнительно непосредственно на образце устанавливается датчик акустической эмиссии, а на приводное устройство - счетчик количества циклов с выходом на ЭВМ для оценки степени разрушения образца в ходе испытаний и выявления зависимостей количества циклов испытания от напряжения, возникающего в опасном сечении образца. Технический результат - ускорение и автоматизация процесса охлаждения образцов в процессе проведения испытаний на усталость и процесса построения диаграмм изменения параметров акустической эмиссии в зависимости от количества циклов нагружения. 1 ил.
Реферат
Решение относится к области усталостных испытаний материалов на изгиб и предназначено для охлаждения образцов в процессе подготовки и проведения усталостных испытаний на изгиб.
Известно устройство для усталостных испытаний образцов при температуре до 20 К [Вологжанина С.А., Иголкин А.Ф. Хладостойкие материалы. Лабораторные работы: Учеб.-метод. пособие. – СПб.: Университет ИТМО, 2015. – 42 с.]. Нагружение здесь производится по схеме поперечного изгиба консольно-закрепленных вращающихся образцов круглого сечения с помощью пневматического устройства. Процесс охлаждения осуществляется средой жидкого водорода, в которой и находится образец в процессе испытания. Также автоматически осуществляется регистрация и запись деформации образца. Температура образца измеряется термопарами. Количество циклов нагружения регистрируется механическим счетчиком, соединенным приводом с электродвигателем.
Недостатком данного устройства является невозможность оценки степени разрушения образца в ходе испытаний. Невозможно регулировать температуру испытания, отличную от температуры хладагента, вследствие того что сам образец находится в его среде. Взрыво – и пожароопасность вследствие применения в качестве хладагента жидкого водорода, вследствие чего необходимо применение сложных систем контроля в процессе испытания.
Известно также установка для испытаний материалов на усталость в вакууме при низких температурах [Авторское свидетельство СССР № 510665, кл. G01N3/18, 1972 г.]. Испытания образцом и их охлаждение осуществляется следующим образом: в камере размещены емкость для хладагента, захваты для крепления образца, гибкие хладопроводы, активная и пассивная тяги с набором сетчатых дисков. Пары хладагента, сообщающиеся в верхней части емкости, поступают в полые тяги, одна из которых (активная) соединена с нагружающим устройством и захватом, а другая (пассивная) - с динамометром и захватом. Пары охлаждают тяги и компенсируют теплоприток по ним к образцу. После охлаждения образца до требуемой температуры активная тяга жестко закрепляется в нагружающем устройстве и образец подвергается циклическому растяжению - сжатию. Усилие при этом измеряется рабочим динамометром.
Недостатком данного устройства является отсутствие контроля устойчивости процесса проведения испытания, дополнительного оснащения, такого как датчиков температуры непосредственно на образце для более точного контроля температуры в зоне разрушения, а также отсутствие контроля процесса разрушения.
Наиболее близким является «Автоматизированное устройство для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах» [RU 2457460]. Здесь процесс охлаждения осуществляется за счет того, что образец помещается в одну из двух частей камеры, связанную с другой частью камеры, в которой находится хладагент. Средство подачи охлаждающей среды в виде холодного воздуха из отсека с хладагентом в отсек с испытуемым образцом выполнено в виде принудительного нагнетателя воздуха, размещенного в отсеке с хладагентом, а система контроля температуры в отсеке камеры с образцом представляет собой размещенные в упомянутом отсеке датчики температуры, связанные с внешним управляющим компьютером, которым оснащено устройство.
Недостатком данного способа является невозможность установления температуры испытания ниже -50°С вследствие охлаждения воздушной средой и применения в качестве хладагента твердой углекислоты. Также недостатком, как и для устройств, представленных выше, является невозможность оценки степени разрушения образца в ходе испытаний.
Для расширения области использования устройства и исключения выявленных недостатков в качестве хладагента предлагается использовать жидкий азот и автоматизировать процесс охлаждения и поддержания необходимой температуры в процессе испытания и предусмотреть контроль параметров акустической эмиссии в процессе испытания с целью оценки степени разрушения образца в ходе испытаний.
Задача – обеспечение контроля процесса охлаждения образцов для проведения испытаний на усталость при пониженных температурах, поддержание постоянной температуры в процессе всего времени испытания, а также автоматизация процесса регистрации сигнала АЭ и определение его параметров в зависимости от количества циклов нагружения.
Технический результат заключается в ускорении и автоматизации процесса охлаждения образцов в процессе проведений испытаний на усталость и процесса построения диаграмм изменения параметров акустической эмиссии в зависимости от количества циклов нагружения.
Технический результат достигается тем, что процесс охлаждения осуществляется комбинированно как за счет передачи холода по хладопроводу, так и за счет подачи охлажденного воздуха в криокамеру. При этом процессы, описанные выше, полностью автоматизированы за счет регулирования температуры посредством открытия/закрытия заслонки камеры и нагревания до необходимой (устойчивой) температуры зажима хладопровода. Кроме этого, дополнительно непосредственно на образце устанавливается датчик акустической эмиссии, а на приводное устройство - счетчик количества циклов с выходом на ЭВМ для оценки степени разрушения образца в ходе испытаний и выявления зависимостей количества циклов испытания от напряжения, возникающего в опасном сечение образца.
Схема устройства для охлаждения образцов при усталостных испытаниях на изгиб показана на фиг 1.
Принцип работы устройства следующий. В теплоизолированную камеру 1 заливается в установленных пределах хладагент из сосуда Дьюара посредством регулируемого клапана 2. Эта камера связана с камерой 3, которая с целью уменьшения потерь холода изготовлена из материала с низким коэффициентом теплопроводности и дополнительной изоляцией. Соединительное отверстие 4 обеспечивает приток холодного воздуха от камеры 1 в камеру 3, при этом интенсивность потока холодного воздуха (паров азота) регулируется открытием/закрытием регулировочной заслонки 5. Образец 6 закрепляется с использованием механизма закрепления 7, который представляет из себя нижнюю регулируемую по высоте платформу с пазом, в который устанавливается медный зажим 8, выполняющий две функции: передачу холода от хладопровода 9 непосредственно на образец, а также закрепления образца в процессе испытания. С целью уменьшения потерь холода медный зажим 9 заизолирован от механизма закрепления дополнительными вставками. Для регулирования рабочей температуры на медный зажим 8 установлен резистор 10, который нагревает зажим до определенной, постоянной в процессе охлаждения, температуры. Резистор 10, в свою очередь, управляется через блок контроля рабочей температуры на ЭВМ 11 и связан с источником постоянного тока 12. Для оценки степени разрушения образца и контроля рабочей температуры в процессе испытания на образец устанавливают датчик температуры 13 и датчик акустической эмиссии 14, а на приводе установки для усталостных испытаний устанавливается счетчик количества циклов 15. Сигналы с датчиков поступают на блок обработки сигнала на ЭВМ 16 и обрабатываются специальным программным обеспечением. Кроме этого, сигнал с датчика температуры поступает на блок 11 и после обработки подает сигнал на открытие/закрытие регулируемого клапана 2, в случае достижения охлаждаемой жидкостью датчиков уровня минимум (min) и максимум (max) и заслонки 5.
Таким образом, за счет применения двухпоточного охлаждения удается снизить время на охлаждение образца и добиться более равномерного его охлаждения. Применения блоков 11 и 16 позволяет значительно снизить время на установление рабочей температуры, обеспечить ее контроль в процессе испытания, а также оценить степень разрушения образца с использованием сигнала с датчика акустической эмиссии и счетчика количества циклов нагружения образца.
Автоматизированное устройство для охлаждения образцов при усталостных испытаниях на изгиб при пониженных температурах, с использованием которого осуществляется поддержание заданной температуры в течение определенного времени, при этом образец помещается в одну из двух частей камеры, связанную с другой частью камеры, в которой находится хладагент, и охлаждается парами азота, отличающееся тем, что дополнительно к медным зажимам образца подводится гибкий хладопровод, связанный с емкостью с азотом, а температура регулируется за счет нагрева зажима образца до определенной равновесной температуры, причем для оценки степени разрушения образца и автоматизированного установления рабочей температуры на образец устанавливается датчик температуры и датчик акустической эмиссии, а на приводе установки для усталостных испытаний устанавливается счетчик количества циклов с выходом на ЭВМ, при этом сигнал с датчиков температуры и акустической эмиссии обрабатывается в блоке обработки ЭВМ, а нагрев зажима образца регулируется посредством блока контроля рабочей температуры ЭВМ.