Осциллятор для бурильной колонны

Иллюстрации

Показать все

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, в частности к осцилляторам для бурильной колонны, предназначенным для создания гидромеханических импульсов, воздействующих на бурильную колонну. Осциллятор содержит героторный винтовой гидравлический двигатель и клапан, а также плунжерный модуль, трансмиссионный вал и генератор гидромеханических импульсов, пружинный модуль, упорную втулку, кольцевой поршень, уплотнения и камеру для рабочей жидкости – масла. Первый клапанный элемент, скрепленный с ротором, снабжен трубчатым хвостовиком, направленным к клапану и внутренняя полость которого выполнена с возможностью сообщения с потоком текучей среды на выходе из героторного винтового гидравлического двигателя и образования проточного канала через внутреннюю полость трубчатого хвостовика к клапану. Плунжерный модуль содержит закрепленную внутри него обкладку из эластомера и установлен на трубчатом хвостовике с возможностью вращения и продольного перемещения относительно него. Первая клапанная пластина выполнена в виде скрепленной с плунжерным модулем дроссельной втулки с проточным каналом, внутренний профиль которого выполнен конфузорным вниз по потоку. Максимальное смещение центральной продольной оси проточного канала дроссельной втулки относительно центральной продольной оси обкладки из эластомера в статоре равно удвоенной величине эксцентриситета центральной продольной оси ротора относительно центральной продольной оси обкладки из эластомера в статоре. Максимальное смещение центральной продольной оси проточного канала второй неподвижной втулки относительно центральной продольной оси обкладки из эластомера в статоре равно величине эксцентриситета центральной продольной оси ротора относительно центральной продольной оси обкладки из эластомера в статоре. Повышается ресурс и надежность осциллятора, расширяется диапазон энергетических характеристик пульсирующего давления текучей среды и механической мощности генератора гидромеханических импульсов при меньшем уровне потерь давления, снижаются силы трения бурильной колонны о стенки скважины, уменьшаются крутильные напряжения в бурильной колонне при бурении горизонтальных скважин, снижается вероятность прихвата бурильной колонны, повышается ресурс долота и скорость проходки скважины. 4 з.п. ф-лы, 12 ил., 1 табл.

Реферат

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, в частности к осцилляторам для бурильной колонны, предназначенным для создания гидромеханических импульсов, воздействующих на бурильную колонну.

Известен забойный инструмент для очистки обсаженного участка скважины, содержащий корпус, входное отверстие для флюида, через которое флюид может войти в корпус, и множество выходных отверстий, через которые флюид может выйти из корпуса и воздействовать на материал стенки скважины, а также компоновку клапанов для избирательного регулирования объема флюида, направленного из выходного отверстия между по меньшей мере одним из выходных отверстий и по меньшей мере еще одним другим выходным отверстием, при этом с компоновкой клапанов в первой конфигурации больший объем флюида направляется от входного отверстия в указанное по меньшей мере одно из выходных отверстий, и меньший объем флюида направляется от входного отверстия в указанное по меньшей мере еще одно другое выходное отверстие, и с компоновкой клапанов во второй конфигурации меньший объем флюида направляется из внутренней полости в указанное по меньшей мере одно из выходных отверстий и больший объем флюида направляется от входного отверстия в указанное по меньшей мере еще одно другое выходное отверстие (US 8251144 B2, 28.08.2012).

Недостатком известной конструкции является неполная возможность ее использования в компоновке низа бурильной колонны (КНБК) для создания гидромеханических импульсов с заданной частотой и амплитудой колебаний для снижения сил трения бурильной колонны о стенки скважины, уменьшения крутильных напряжений в бурильной колонне при роторном бурении (с вращением бурильной колонны) горизонтальных скважин винтовым героторным гидравлическим двигателем, а также для предотвращения прихвата бурильной колонны, возникающего под действием перепада давления, что объясняется отсутствием выходной проточной части, необходимой для подачи бурового раствора под давлением в КНБК для привода ротора винтового героторного гидравлического двигателя с долотом.

Недостатком известной конструкции является также размещение на входе упора с отверстиями в поперечной стенке, при этом твердые абразивные частицы бурового раствора, например, до 2% песка с размерами 0,15÷0,95 мм и до 5% нефтепродуктов полимер-глинистого бурового раствора плотностью 1,16÷4,26 г/см3, прокачиваемого при гидростатическом давлении, например, 25÷35 МПа, вызывают шламование и увеличивают потери давления при прохождении бурового раствора через упор с отверстиями в поперечной стенке, вследствие этого не обеспечивается требуемая механическая мощность ударного инструмента и амплитуда колебаний бурильной колонны.

Недостатком известной конструкции является также жесткое закрепление колеблющейся пластины 34 из твердого сплава (карбида вольфрама) в клапанном элементе 22, который определяет главную продольную ось 20, и жестко скреплен резьбой с ротором 52, вследствие этого не обеспечивается ресурс пластин из твердого сплава, основные дефекты известной конструкции - выкрашивания, сколы и разрушения скользящих контактных прямоугольных торцов колеблющейся клапанной пластины 34 и неподвижной клапанной пластины 24, также выполненной из твердого сплава, изображено на фиг. 2.

Известно забойное импульсное устройство в сочетании с бурильной колонной, включающей насосно-компрессорные трубы, буровой двигатель, состоящий из статора, подсоединенного к насосно-компрессорным трубам, и ротора, зафиксированного в статоре таким образом, чтобы вращаться относительно статора и насосно-компрессорных труб под влиянием потока бурового флюида под давлением в насосно-компрессорных трубах, буровое долото, присоединенное к нижнему концу ротора бурового двигателя таким образом, чтобы вращаться с ротором бурового двигателя, и фиксатор ротора, забойное импульсное устройство, включающее трубчатый корпус, соединенный с насосно-компрессорными трубами, корпусом, имеющим осевое отверстие, простирающееся вдоль оси, чтобы сделать возможным проход через него бурового флюида, клапан, размещенный в отверстии трубчатого корпуса и определяющий размер сечения для потока бурового флюида, клапан, состоящий из неподвижной части, неподвижно расположенный относительного трубчатого корпуса, и вращающейся частью, подвижно расположенной в трубчатом корпусе таким образом, чтобы варьировать площадь проходного сечения за счет вращения вращающейся части относительно неподвижной части, а также приводное звено, расположенное между вращающейся частью клапана и ротором бурового двигателя, так чтобы вращать вращающуюся часть клапана относительно насосно-компрессорных труб вместе с ротором бурового двигателя, при этом фиксатор ротора включает кольцевой стопорный элемент, монтированный последовательно с насосно-компрессорными трубами между корпусом статора бурового двигателя и трубчатым корпусом импульсного устройства и фиксирующий элемент, проходящий через стопорный элемент таким образом, чтобы подсоединяться между ротором бурового двигателя и приводным звеном, а также фиксирующий элемент, включающий часть увеличенного размера над стопорным элементом, который не может проходить через кольцевой стопорный элемент (US 8181719 В2, 22.05.2012).

Недостатком известной конструкции является увеличивающийся при работе продольный люфт плунжера 80, а также необходимость настройки расходного сечения 64 в положении, когда перекрываются каналы 70 плунжера 80 при помощи резьбовой втулки 48 и винтов 52, при этом плунжер 80 удерживается в продольном направлении карданным валом 72, переходником 32, ротором 20 винтового героторного двигателя, шпиндельным узлом, скрепленным с долотом 22, и определяет величину продольного люфта плунжера 80, щелевого конического канала 64 и расход бурового раствора через сечения 64, изображено на фиг. 4, 6, 8.

Вследствие этого, по мере наработки известного забойного импульсного устройства в компоновке бурильной колонны, снижаются энергетические характеристики импульсов давления текучей среды, направленных против потока в сторону ударного инструмента, а также не обеспечивается механическая мощность ударного инструмента, необходимого для уменьшения сил трения бурильной колонны о стенки скважины, уменьшения крутильных напряжений в бурильной колонне при бурении горизонтальных скважин, а также для предотвращения прихвата бурильной колонны, возникающего под действием перепада давления.

Другим недостатком известной конструкции является увеличение вероятности гидроабразивного размыва щелевого конического канала 64, что объясняется тем, что твердые абразивные частицы бурового раствора, например, до 2% песка с размерами 0,15÷0,95 мм и до 5% нефтепродуктов полимер - глинистого бурового раствора плотностью 1,16÷1,26 г/см3, прокачиваемого при гидростатическом давлении, например, 25÷40 МПа, при воздействии на плунжер 80 усилия от долота 22, направленного от забоя скважины на забойное импульсное устройство, передающегося через ротор 20 объемного двигателя, переходник 32, и карданный вал 72, увеличивают износ соединений и продольный люфт плунжера 80, вследствие этого уменьшается проходное сечение щелевого конического канала 64, скорость течения бурового раствора через щелевой конический канал 64 возрастает, не обеспечивается требуемая механическая мощность ударного инструмента и амплитуда колебаний бурильной колонны для снижения сил трения бурильной колонны о стенки скважины.

Известно импульсное устройство потока для обеспечения ударного эффекта, содержащее корпус для установки в колонне, на корпусе имеется сквозное отверстие для обеспечения прохождения жидкости через него, клапан, расположенный в отверстии, для обеспечения прохода потока, включающий компонент клапана, который является подвижным для того, чтобы изменять площадь прохождения текучей среды, предназначенный для изменения потока текучей среды, проходящей через него, а также гидравлический забойный двигатель с гидравлическим приводом, функционально связанный с клапаном для привода компонента клапана и устройство, чувствительное к давлению, которое расширяется или сужается в ответ на изменение давления жидкости, создающееся посредством изменения потока жидкости, при этом сужение и расширение устройства, чувствительного к давлению, обеспечивает ударный эффект (US 6279670 B1, 28.08.2001).

Недостатком известной конструкции является ее сложность и высокая стоимость, а также то, что импульсная сила используется преимущественно для создания эффекта ударного бурения на долоте, вследствие этого снижаются технологические возможности использования в компоновке низа бурильной колонны (КНБК) для создания гидромеханических импульсов с заданной частотой и амплитудой колебаний, воздействующих на колонну для снижения сил трения вращающейся бурильной колонны о стенки скважины, уменьшения крутильных напряжений в бурильной колонне при бурении горизонтальных скважин, а также для предотвращения прихвата бурильной колонны, возникающего под действием перепада давления.

Недостатком известной конструкции является также размещение на входе в двигатель расходной вставки 14 (изображено на фиг. 2), при этом твердые абразивные частицы бурового раствора, например, до 2% песка с размерами 0,15÷0,95 мм и до 5% нефтепродуктов полимер - глинистого бурового раствора плотностью 1,16÷1,26 г/см3, прокачиваемого при гидростатическом давлении, например, 25÷35 МПа, приводят к шламованию бурового раствора в расходной вставке 14, которая перекрывает траекторию потока бурового раствора, а также к потерям давления при прохождении через отверстия вставки 14, вследствие этого в бурильной колонне возникают гидравлические удары, не обеспечиваются энергетические характеристики пульсирующего давления текучей среды, направленного в сторону ударного инструмента 3 (US 6588518 В2, Jul. 8,2003), чувствительного к давлению для создания импульсной силы на участок бурильной колонны, где импульсная сила используется только для создания эффекта ударного бурения на долоте.

Известно ударно-вращательное устройство, содержащее корпус, приспособленный для монтажа на опорном элементе, объемный двигатель, имеющий статор и ротор, в котором при эксплуатации ротор колеблется, вращаясь и перемещаясь в поперечном направлении внутри статора, и клапан, включающий колеблющийся первый клапанный элемент и неподвижный второй клапанный элемент, причем каждый клапанный элемент образует клапанное отверстие и имеет основную продольную ось, первый клапанный элемент соединен с ротором и имеет возможность перемещения относительно второго клапанного элемента, при этом при эксплуатации клапанные элементы взаимодействуют, совместно образуя переменное проходное сечение через клапан, и по меньшей мере одно из отверстий клапанных элементов смещено от соответствующей основной продольной оси (RU 2362866 C2, 27.07.2009).

При работе перепад давления бурового раствора через винтовой героторный гидравлический двигатель 19 сдвигает в сторону клапанного устройства 30 ротор 24, этой силе препятствует клапанное устройство 30, управляемое (вращаемое) ротором 24 двигателя 19, при этом перепад давления может быть через двигатель 19 в противоположном направлении и может сдвигать ротор 24 в сторону упора 32 с поперечной стенкой, расположенного на входе в двигатель, вследствие этого ротор 24 сам является источником знакопеременных осевых ударных нагрузок.

Недостатком известной конструкции является жесткое закрепление колеблющейся пластины 34 из твердого сплава (карбида вольфрама) в клапанном элементе 38, который определяет главную продольную ось А, и жестко скреплен резьбой 42 с ротором 24, вследствие этого не обеспечивается ресурс, при этом основные дефекты известной конструкции - выкрашивания, сколы и разрушения скользящих контактных прямоугольных торцов колеблющейся пластины 34 и неподвижной клапанной пластины 36, также из твердого сплава, изображено на фиг. 3, 5.

Другим недостатком известной конструкции является размещение на входе в двигатель упора 32 с отверстиями 19 в поперечной стенке, при этом твердые абразивные частицы бурового раствора, например, до 2% песка с размерами 0,15÷0,95 мм и до 5% нефтепродуктов полимер - глинистого бурового раствора плотностью 1,16÷1,26 г/см3, прокачиваемого при гидростатическом давлении, например, 25÷35 МПа, приводят к шламованию бурового раствора на поперечной стенке упора 32, который перекрывает траекторию потока бурового раствора, а также к потерям давления при прохождении через отверстия упора 32, вследствие этого в бурильной колонне возникают гидравлические удары, не обеспечивается требуемая механическая мощность ударного инструмента и амплитуда колебаний бурильной колонны для снижения сил трения бурильной колонны о стенки скважины, уменьшения крутильных напряжений в бурильной колонне при бурении горизонтальных скважин, а также для предотвращения прихвата бурильной колонны, возникающего под действием перепада давления.

Наиболее близким к заявляемому изобретению является осциллятор для бурильной колонны, содержащий героторный винтовой гидравлический двигатель, включающий статор с закрепленной в нем обкладкой из эластомера с внутренними винтовыми зубьями и расположенный внутри статора ротор с наружными винтовыми зубьями, вращение ротора осуществляется насосной подачей текучей среды, число зубьев ротора на единицу меньше числа зубьев обкладки из эластомера, ходы винтовых зубьев обкладки из эластомера и ротора пропорциональны их числам зубьев, центральные продольные оси ротора и обкладки из эластомера смещены между собой на величину эксцентриситета, и клапан, включающий первый клапанный элемент и неподвижный второй клапанный элемент, первый клапанный элемент снабжен первой клапанной пластиной, второй клапанный элемент снабжен установленной в нем второй клапанной пластиной, причем второй клапанный элемент с установленной в нем второй клапанной пластиной образует клапанное отверстие и имеет основную продольную ось, первый клапанный элемент скреплен с ротором и имеет возможность перемещения относительно второго клапанного элемента, при этом при эксплуатации клапанные элементы взаимодействуют, совместно образуя переменное проходное сечение для текучей среды через клапан, при этом осциллятор содержит плунжерный модуль, скрепленный с первым клапанным элементом, первая клапанная пластина размещена внутри плунжерного модуля с возможностью продольного перемещения, а плунжерный модуль снабжен пружинным устройством, нагружающим первую клапанную пластину для постоянного контакта со второй клапанной пластиной, размещенной во втором клапанном элементе, при этом первая клапанная пластина, размещенная в плунжерном модуле, имеет сплошной торец для контакта со второй клапанной пластиной, установленной во втором клапанном элементе и образующей клапанное отверстие, а также содержит трансмиссионный вал, скрепленный с входной частью ротора, радиально-упорную опору вращения, включающую полый вал, установленный в указанной радиально-упорной опоре вращения с возможностью вращения и скрепленный с трансмиссионным валом, и генератор гидромеханических импульсов, расположенный выше по потоку от радиально-упорной опоры вращения, содержащий корпус, выполненный из наружных трубчатых элементов, размещенную внутри корпуса оправку, выполненную из внутренних трубчатых элементов, телескопически соединенных между собой, элементы для передачи крутящего момента между корпусом и оправкой при продольном перемещении относительно друг друга, указанные трубчатые элементы оснащены резьбами, а также содержащий пружинный модуль между корпусом и оправкой, упорную втулку между верхним упорным торцом корпуса и пружинным модулем, указанные наружные трубчатые элементы, имеющие расположенные вдоль верхний и нижний упорные торцы на противоположных краях пружинного модуля, верхний упорный торец первого трубчатого элемента и нижний торец второго трубчатого элемента, одновременно зацепляющие и нагружающие пружинный модуль при продольном сжатии указанных трубчатых элементов относительно друг друга, верхний упорный торец второго трубчатого элемента и нижний упорный торец первого трубчатого элемента, одновременно зацепляющие и нагружающие пружинный модуль при растяжении указанных трубчатых элементов относительно друг друга, кольцевой поршень с уплотнениями на наружной и внутренней поверхностях, установленный между внутренней поверхностью корпуса и наружной поверхностью оправки, реагирующий на давление текучей среды, а также содержащий уплотнения в верхней части между корпусом и оправкой и камеру для рабочей жидкости - масла, ограниченную уплотнениями в верхней части корпуса и уплотнениями кольцевого поршня между корпусом и оправкой, и упорное кольцо, установленное на внутреннем трубчатом элементе, составляющем нижнюю часть оправки, при этом вращательный привод для передачи момента между оправкой и корпусом при продольном перемещении относительно друг друга снабжен ударным кольцом, установленным в оправке с возможностью продольного перемещения оправки с ударным кольцом внутри упорной втулки (RU 2565316 С1, 20.10.2015).

Недостатком известной конструкции является неполная возможность увеличения ресурса и надежности вследствие высокой активности кавитационных процессов потока гидроабразивной среды, например, полимер - глинистого бурового раствора, плотностью 1,16÷1,26 г/см3, содержащего до 2% песка с размерами 0,15÷0,95 мм и до 10% нефтепродуктов, прокачиваемого при гидростатическом давлении, например, 20÷35 МПа, что объясняется интенсивным абразивным и эрозионным износом (размывом) плунжерного модуля 23, жестко скрепленного с первым клапанным элементом 14 при помощи общей резьбы 24, а также первой клапанной пластины 16 из твердого сплава, размещенной в плунжере 27, установленном в отверстии 28 плунжерного модуля 23 с возможностью телескопического перемещения вдоль собственной центральной продольной оси 29, а также шламованием и прихватом пружинного устройства 30, зафиксированного гайкой 31, нагружающего плунжер 27 с размещенной в ней первой клапанной пластиной 16, имеющей сплошной торец 33 для контакта с торцом 34 второй клапанной пластины 17, установленной во втором клапанном элементе 15 и образующей клапанное отверстие 18, совместно образуя переменное проходное сечение 22 для текучей среды 7 - бурового раствора через клапан 13.

В известной конструкции поток текучей среды 7 - бурового раствора направляется через колонну бурильных труб, в которой содержится осциллятор, в клапан 13 снаружи, из полости внутри осциллятора, охватывающей плунжерный модуль 23, в промежуток между торцом 33 первой клапанной пластины 16 и торцом 34 второй клапанной пластины 17, причем первая клапанная пластина 16, размещенная в плунжере 27 внутри плунжерного модуле 23, имеет сплошной торец 33 для контакта с торцом 34 второй клапанной пластины 17, установленной во втором клапанном элементе 15 и образующей клапанное отверстие 18, совместно образуя переменное проходное сечение 22 для текучей среды 7 - бурового раствора через клапан 13, вследствие этого известная конструкция имеет недостаток: металлические частицы (стружка и окалина), прошедшие сквозь фильтр бурильной колонны, тормозятся и зашламовываются на торце неподвижного клапанного элемента 15 и на торце 34 второй клапанной пластины 17, установленной во втором клапанном элементе 15, вследствие этого не предотвращается возможность попадания металлической стружки, прошедшей через фильтр бурильной колонны, между контактирующими торцами 33 и 34 клапанных пластин 16, 17, что нарушает работу осциллятора в скважине.

Технической задачей, на решение которой направлено изобретение, является повышение ресурса и надежности осциллятора для бурильной колонны, снижение сил трения бурильной колонны о стенки скважины, уменьшение крутильных напряжений в бурильной колонне, повышение ресурса долота и увеличение скорости проходки при бурении горизонтальных скважин за счет повышения энергетических характеристик пульсирующего давления текучей среды, повышения механической мощности генератора гидромеханических импульсов, увеличения усталостной выносливости и прочности клапанных втулок в клапанных элементах за счет обеспечения гидрокомпенсации механизма привода клапана.

Другой технической задачей заявляемого изобретения является расширение диапазона энергетических характеристик пульсирующего давления текучей среды и механической мощности генератора гидромеханических импульсов при меньшем уровне потерь давления.

Сущность технического решения заключается в том, что в осцилляторе для бурильной колонны, содержащем героторный винтовой гидравлический двигатель, включающий трубчатый статор с закрепленной в нем обкладкой из эластомера с внутренними винтовыми зубьями и расположенный внутри статора ротор с наружными винтовыми зубьями, вращение ротора осуществляется насосной подачей текучей среды, число зубьев ротора на единицу меньше числа зубьев обкладки из эластомера, ходы винтовых зубьев обкладки из эластомера и ротора пропорциональны их числам зубьев, центральные продольные оси ротора и обкладки из эластомера в статоре смещены между собой на величину эксцентриситета, и клапан, включающий первый клапанный элемент и неподвижный второй клапанный элемент, первый клапанный элемент снабжен установленной в нем первой клапанной пластиной, второй клапанный элемент снабжен установленной в нем второй клапанной пластиной, причем второй клапанный элемент с установленной в нем второй клапанной пластиной образует клапанное отверстие и имеет основную продольную ось, первый клапанный элемент скреплен с ротором и имеет возможность перемещения относительно второго клапанного элемента, а при эксплуатации клапанные элементы взаимодействуют, совместно образуя переменное проходное сечение для текучей среды через клапан, а также содержащем плунжерный модуль, размещенный между первым клапанным элементом и клапанной парой, а также содержащем трансмиссионный вал, скрепленный с входной частью ротора, радиально-упорную опору вращения, включающую полый вал, установленный в упомянутой радиально-упорной опоре вращения с возможностью вращения и скрепленный с трансмиссионным валом, и генератор гидромеханических импульсов, расположенный выше по потоку от радиально-упорной опоры вращения, содержащий корпус, выполненный из наружных трубчатых элементов, размещенную внутри корпуса оправку, выполненную из внутренних трубчатых элементов, телескопически соединенных между собой, элементы для передачи крутящего момента между корпусом и оправкой при продольном перемещении относительно друг друга, указанные трубчатые элементы оснащены резьбами, а также содержащий пружинный модуль между корпусом и оправкой, упорную втулку между верхним упорным торцом корпуса и пружинным модулем, указанные наружные трубчатые элементы, имеющие расположенные вдоль верхний и нижний упорные торцы на противоположных краях пружинного модуля, верхний упорный торец первого трубчатого элемента и нижний торец второго трубчатого элемента, одновременно зацепляющие и нагружающие пружинный модуль при продольном сжатии указанных трубчатых элементов относительно друг друга, верхний упорный торец второго трубчатого элемента и нижний упорный торец первого трубчатого элемента, одновременно зацепляющие и нагружающие пружинный модуль при растяжении указанных трубчатых элементов относительно друг друга, кольцевой поршень с уплотнениями на наружной и внутренней поверхностях, установленный между внутренней поверхностью корпуса и наружной поверхностью оправки, реагирующий на давление текучей среды, а также содержащий уплотнения в верхней части между корпусом и оправкой и камеру для рабочей жидкости - масла, ограниченную уплотнениями в верхней части корпуса и уплотнениями кольцевого поршня между корпусом и оправкой, и упорное кольцо, установленное на внутреннем трубчатом элементе, составляющем нижнюю часть оправки, при этом вращательный привод для передачи момента между оправкой и корпусом при продольном перемещении относительно друг друга снабжен ударным кольцом, установленным в оправке с возможностью продольного перемещения оправки с ударным кольцом внутри упорной втулки, согласно изобретению первый клапанный элемент, скрепленный с ротором, снабжен трубчатым хвостовиком, направленным к клапану, внутренняя полость трубчатого хвостовика первого клапанного элемента выполнена с возможностью сообщения с потоком текучей среды на выходе из героторного винтового гидравлического двигателя и образования проточного канала через внутреннюю полость трубчатого хвостовика к клапану, а плунжерный модуль содержит закрепленную внутри него обкладку из эластомера и установлен на трубчатом хвостовике первого клапанного элемента с возможностью вращения и продольного перемещения относительно упомянутого трубчатого хвостовика первого клапанного элемента, при этом первая клапанная пластина выполнена в виде скрепленной с плунжерным модулем дроссельной втулки с проточным каналом, внутренний профиль которого выполнен конфузорным вниз по потоку, максимальное смещение центральной продольной оси проточного канала дроссельной втулки относительно центральной продольной оси обкладки из эластомера в статоре равно удвоенной величине эксцентриситета центральной продольной оси ротора относительно центральной продольной оси обкладки из эластомера в статоре, а максимальное смещение центральной продольной оси проточного канала второй, неподвижной втулки относительно центральной продольной оси обкладки из эластомера в статоре равно величине эксцентриситета центральной продольной оси ротора относительно центральной продольной оси обкладки из эластомера в статоре.

Площадь F минимального проходного сечения для текучей среды через клапан, образованного взаимодействующими клапанными элементами, и площадь К критического сечения проточного канала скрепленной с плунжерным модулем дроссельной втулки связаны соотношением: F=(0,33÷0,44)K.

Площадь К критического сечения проточного канала скрепленной с плунжерным модулем дроссельной втулки и площадь S входного сечения проточного канала дроссельной втулки связаны соотношением: K=(0,33÷0,44)S.

Обкладка из эластомера, закрепленная внутри плунжерного модуля, выполнена с продольными сквозными пазами на внутренней поверхности обкладки с возможностью сообщения потока текучей среды на выходе из героторного гидравлического двигателя с потоком текучей среды через внутреннюю полость трубчатого хвостовика первого клапанного элемента.

Максимальный зазор (люфт) между торцом скрепленной с плунжерным модулем дроссельной втулки и торцом второй, неподвижной втулки равен величине эксцентриситета центральной продольной оси трубчатого хвостовика первого клапанного элемента относительно центральной продольной оси ротора.

Выполнение осциллятора для бурильной колонны таким образом, что первый клапанный элемент, скрепленный с ротором, снабжен трубчатым хвостовиком, направленным к клапану, внутренняя полость трубчатого хвостовика первого клапанного элемента выполнена с возможностью сообщения с потоком текучей среды на выходе из героторного винтового гидравлического двигателя и образования проточного канала через внутреннюю полость трубчатого хвостовика к клапану, а плунжерный модуль содержит закрепленную внутри него обкладку из эластомера и установлен на трубчатом хвостовике первого клапанного элемента с возможностью вращения и продольного перемещения относительно упомянутого трубчатого хвостовика первого клапанного элемента, при этом первая клапанная пластина выполнена в виде скрепленной с плунжерным модулем дроссельной втулки с проточным каналом, внутренний профиль которого выполнен конфузорным вниз по потоку, максимальное смещение центральной продольной оси проточного канала дроссельной втулки относительно центральной продольной оси обкладки из эластомера в статоре равно удвоенной величине эксцентриситета центральной продольной оси ротора относительно центральной продольной оси обкладки из эластомера в статоре, а максимальное смещение центральной продольной оси проточного канала второй, неподвижной втулки относительно центральной продольной оси обкладки из эластомера в статоре равно величине эксцентриситета центральной продольной оси ротора относительно центральной продольной оси обкладки из эластомера в статоре, обеспечивает повышение ресурса и надежности осциллятора для бурильной колонны при бурении горизонтальных скважин, увеличение энергетических характеристик пульсирующего давления текучей среды и механической мощности генератора гидромеханических импульсов при меньшем уровне потерь давления за счет выполнения плунжерного модуля с возможностью вращения и продольного перемещения на трубчатом хвостовике первого клапанного элемента и обеспечения гидрокомпенсации механизма привода клапанов, повышения усталостной выносливости и прочности клапанных втулок в клапанных элементах, при этом предотвращается возможность попадания металлической стружки, прошедшей через фильтр бурильной колонны, между торцами дроссельной и неподвижной втулок.

Такое выполнение осциллятора для бурильной колонны, при котором обеспечивается определенное смещение центральной продольной оси проточного канала дроссельной втулки относительно центральной продольной оси обкладки из эластомера в статоре, а также определенное смещение центральной продольной оси проточного канала второй, неподвижной втулки относительно центральной продольной оси обкладки из эластомера в статоре относительно центральной продольной оси обкладки из эластомера в статоре, обеспечивает расчетные перепады давления в клапанной паре и энергетические характеристики пульсирующего давления текучей среды при меньшем уровне потерь давления, обеспечивает расчетную механическую мощность генератора гидромеханических импульсов и рабочий диапазон частоты колебаний бурильной колонны при меньшем уровне потерь давления, а также снижает вероятность попадания металлической стружки и окалины между торцами клапанной пары.

Выполнение осциллятора для бурильной колонны таким образом, что площадь F минимального проходного сечения для текучей среды через клапан, образованного взаимодействующими клапанными элементами, и площадь K критического сечения проточного канала скрепленной с плунжерным модулем дроссельной втулки связаны соотношением: F=(0,33÷0,44)K, при этом площадь K критического сечения проточного канала скрепленной с плунжерным модулем дроссельной втулки и площадь S входного сечения проточного канала дроссельной втулки связаны соотношением: K=(0,33÷0,44)S, обеспечивает расширение диапазона энергетических характеристик пульсирующего давления текучей среды и механической мощности генератора гидромеханических импульсов при меньшем уровне потерь давления.

Выполнение осциллятора для бурильной колонны таким образом, что обкладка из эластомера, закрепленная внутри плунжерного модуля, выполнена с продольными сквозными пазами на внутренней поверхности обкладки с возможностью сообщения потока текучей среды на выходе из гидравлического двигателя с потоком текучей среды через внутреннюю полость трубчатого хвостовика первого клапанного элемента, при этом максимальный зазор между торцом скрепленной с плунжерным модулем дроссельной втулки и торцом второй, неподвижной втулки равен величине эксцентриситета центральной продольной оси трубчатого хвостовика первого клапанного элемента относительно центральной продольной оси ротора, обеспечивает гидрокомпенсацию клапанных втулок потоком текучей среды, по существу образует защитный слой текучей среды (бурового раствора) между торцами клапанных втулок, вследствие этого предотвращаются ударные нагрузки на торцы клапанных втулок из твердого сплава, повышается усталостная выносливость и прочность клапанных втулок в клапанных элементах, обеспечивается "мягкая" и бесшумная работа клапанной пары.

Гидрокомпенсация механизма привода клапанов обеспечивается тем, что первая клапанная пластина выполнена в виде жестко скрепленной с плунжерным модулем дроссельной втулки с проточным каналом, внутренний профиль которого выполнен конфузорным вниз по потоку, с критическим сечением, при протекании потока текучей среды через конфузорный канал дроссельной втулки с критическим сечением создается перепад давления, на выходе из канала скорость потока увеличивается, вследствие этого давление текучей среды падает, на выходе дроссельной втулки образуется зона пониженного давления, создается перепад давления на дроссельной втулке, который действует на плунжерный модуль и скрепленную с ним дроссельную втулку и стремится переместить плунжерный модуль и скрепленную с ним дроссельную втулку в направлении к торцу неподвижной втулки.

При этом действие потока текучей среды, протекающего из дроссельной втулки с проточным каналом, внутренний профиль которого выполнен конфузорным вниз по потоку, с критическим сечением, на торцовые части неподвижной втулки, установленной во втором клапанном элементе, в частично перекрытом положении расходного сечения клапана, направлено в противоположном направлении - против потока текучей среды (ротор неподвижно удерживается в продольном направлении трансмиссионным валом и радиально-упорной опорой вращения), и стремится переместить плунжерный модуль и скрепленную с ним дроссельную втулку в направлении против потока, при планетарном вращении ротора двигателя, скрепленного с ним плунжерного модуля и дроссельной втулки эти процессы циклически повторяются, а в промежутке между торцами клапанных втулок создается слой пульсирующей текучей среды, предохраняющий торцы клапанных втулок от ударов и износа, при этом для каждой КНБК с осциллятором в зависимости от расхода и перепада давления текучей среды задается определенный зазор между торцом скрепленной с плунжерным модулем дроссельной втулки и торцом неподвижной втулки.

Ниже представлен осциллятор ОС-172РС.800 для бурильной колонны, предназначенный для создания гидромеханических импульсов, воздействующих на бурильную колонну.

На фиг. 1 изображен осциллятор, предназначенной для создания гидромеханических импульсов, воздействующих на бурильную колонну в скважине.

На фиг. 2 изображен элемент I на фиг. 1 плунжерного модуля и клапана, ось проточного канала дроссельной втулки смещена относительно оси обкладки из эластомера в статоре, максимальный зазор в клапанной паре, соосное расположение осей проточного канала неподвижной втулки и обкладки из эластомера в статоре.

На фиг. 3 изображен элемент I на фиг. 1 плунжерного модуля и клапана, ось проточного канала дроссельной втулки смещена относительно оси обкладки из эластомера в статоре, соосное расположение осей проточного канала неподвижной втулки и обкладки из эластомера в статоре, уменьшенное проходное сечение клапана.

На фиг. 4 изображен элемент I на фиг. 1 плунжерного модуля и клапана, соосное расположение осей проточного канала дроссельной и неподвижной втулок, максимальное проходное сечение клапана.

На фиг. 5 изображен элемент I на фиг. 1 плунжерного модуля и клапанного механизма, оси проточных каналов дроссельной и неподвижной втулок смещены относительно центральной продольной оси обкладки из эластомера в статоре, минимальное проходное сечение клапана.

На фиг. 6 изображен разрез А-А на фиг. 3 поперек плунжерного модуля внутри корпуса осциллятора.

На фиг. 7 изображен героторный винтовой гидравлический двигатель, приводящий клапанный механизм осциллятора.

На фиг. 8 изображен поперечный разрез Б-Б на фиг. 5 героторного винтового гидравлического двигателя.

На фиг. 9 изображен элемент II на фиг. 1: радиально-упорная опора вращения.

На фиг. 10 изображен генератор гидромеханических импульсов.

На фиг. 11 изображен разрез В-В на фиг. 6 поперек шлице