Модифицированный карбонизированный красный шлам

Иллюстрации

Показать все

Изобретение может быть использовано в производстве наполнителей, добавок к почве для выращивания растений, для утяжеления буровых растворов, защиты от радиоактивного и электромагнитного излучения. Модифицированный карбонизированный красный шлам имеет следующий минеральный состав, мас.%: от 10 до 50 соединений железа, от 12 до 35 соединений алюминия, от 5 до 17 соединений кремния, от 2 до 10 диоксида титана, от 0,5 до 6 соединений кальция. Массовое отношение карбоната железа (II) к оксидам железа составляет, по меньшей мере, 1. Изобретение позволяет модифицировать красный шлам - отход производства процесса Байера, чтобы получить вещество с воспроизводимыми характеристиками, пригодное для дальнейшего применения. 10 н. и 26 з.п. ф-лы, 10 ил., 8 табл., 5 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к модифицированному карбонизированному красному шламу (MKRS-HT), который можно применять в качестве замедлителя горения в высокотемпературном диапазоне, а также к модифицированному, карбонизированному и регидратированному красному шламу, который можно применять в качестве огнезащитного средства как в низкотемпературном диапазоне, так и в высокотемпературном диапазоне, а также относится к способам получения указанных продуктов.

Уровень техники

Красный шлам известен как побочный продукт, образующийся в процессе Байера для получения гидроксида алюминия (АТН) из боксита. В настоящем описании под красным шламом (КШ) понимается остаточное вещество процесса Байера, образующееся в ходе извлечения гидроксида алюминия из боксита.

Красный шлам (КШ), который в некотором смысле можно определить как боксит минус АТН, представляет собой крайне гетерогенную субстанцию с точки зрения химического и минерального состава, эндотермических свойств, значений рН и т.д. Эта гетерогенность иногда обусловлена различиями в составе используемых бокситов, но в первую очередь тем, какой тип выщелачивания используется при осуществлении процесса Байера: выщелачивание в автоклаве или выщелачивание в трубчатом реакторе. В случае автоклавного процесса выщелачивание осуществляется с использованием 30-35% раствора каустической соды в диапазоне температур 170-180°С, что обеспечивает давление от 6 до 8 бар. Процесс выщелачивания в трубчатом реакторе был разработан с целью сократить время реакции с 6-8 часов до менее 1 часа путем повышения температуры до 270°С. Однако при этой температуре давление водяного пара на конце реактора достигает 60 бар. Более высокие температуры выщелачивания в трубчатом реакторе также влияют на состав красного шлама. Например, в системе гидроксид железа/оксигидрат в процессе выщелачивания в трубчатом реакторе баланс сдвигается в сторону почти полного преобладания гематита (Fe2O3). Из-за гетерогенности красного шлама (КШ) возможности его экономически значимого применения ограничены, поэтому его приходится в основном утилизировать на полигонах.

В публикации WO 2012/126487 А1 описан так называемый «замедлитель горения с нулевым содержанием галогенов» (OHFR, БГЗГ - безгалогенный замедлитель горения) на основе модифицированного регидратированного красного шлама (MR2S), который можно применять в качестве экономичного БГЗГ для технических приложений, связанных с проводами и кабелями, или в области строительства и обработки пластиков. При помощи модифицированного регидратированного красного шлама, раскрытого в WO 2012/126487 А1, можно достичь эффекта замедления горения в диапазоне температур приблизительно 200°С-350°С. Эффект замедления горения обусловлен тем, что гидроксиды и гидроксиды оксидов алюминия и железа, такие как, например, гибсит, бемит или гетит, которые образуются при регидратации красного шлама, разлагаются на оксиды и воду. Такие продукты находят применение, например, в полимерных продуктах, таких как ПВХ (PVC) или ЭВА (EVA, РЕ (ПЭ)). Такие коммерческие продукты как АТН или АРР вступают в реакции при температуре от 180°С до 220°С и считаются низкотемпературными продуктами. При температуре между 220°С и 340°С применяются такие продукты как MDH и брусит, которые считаются высокотемпературными продуктами. Замедлители горения (MR2S), получаемые из КШ путем регидратации, вступают в реакцию при температуре приблизительно между 220°С и 350°С и, соответственно, в соответствии с принятым в настоящее время определением, охватывают как высокотемпературный, так и низкотемпературный диапазоны.

Краткое изложение сущности изобретения

Задача настоящего изобретения состоит в том, чтобы модифицировать красный шлам таким образом, чтобы получить пригодное для коммерческого применения и более экономичное базовое вещество с воспроизводимыми характеристиками и определенным химическим составом.

Восстановление красного шлама в кислой среде позволяет получать из соединений Fe(III), присутствующих в красном шламе, солевые растворы Fe(II), из которых можно осадить карбонат железа(II) (сидерит) путем добавления, например NaHCO3, Na2CO3 или СаСО3. Без намерения ограничиваться какой-либо теорией, авторы изобретения предполагают, что рекарбонизация красного шлама с образованием карбоната железа(II) позволяет получить высокотемпературное (НТ, ВТ) огнезащитное средство, которое проявляет свое эндотермическое действие за счет расщепления на оксид и CO2 при температурах выше 500°С. Действие эндотермической реакции дополняется тем, что высвобождаемый CO2 также действует как огнезащитное средство.

Соответственно, настоящее изобретение относится к модифицированному карбонизированному красному шламу (MKRS-HT) со следующим минеральным составом:

- от 10 до 50% по массе соединений железа,

- от 12 до 35% по массе соединений алюминия,

- от 5 до 17% по массе соединений кремния,

- 2 до 10% по массе диоксида титана,

- 0.5 до 6% по массе соединений кальция, и

- в соответствующих случаях неизбежные примеси,

причем массовое отношение карбоната Fe(II) к оксидам железа составляет по меньшей мере 1.

Поскольку этот продукт получают путем рекарбонизации, он был назван MKRS (немецкая аббревиатура от «модифицированный карбонизированный красный шлам»). Поскольку он может выступать в качестве высокотемпературного замедлителя горения, ему присвоили суффикс НТ (Hochtemperatur - высокая температура), и, соответственно его полное обозначение MKRS-HT.

Кроме того, настоящее изобретение относится к модифицированному, карбонизированному и регидратированому красному шламу со следующим минеральным составом:

- от 10 до 50% по массе соединений железа,

- от 12 до 35% по массе соединений алюминия,

- от 5 до 17% по массе соединений кремния,

- от 2 до 10% по массе диоксида титана,

- от 0.5 до 6% по массе соединений кальция, и

- в соответствующих случаях неизбежные примеси,

причем массовое отношение карбоната Fe(II) и массовое отношение суммы гидроксида железа и гидроксида оксида железа к оксидам железа составляют по меньшей мере 1.

При этом в дополнение к гидроксидам/гидроксидам оксидов железа и карбонату Fe(II) в предпочтительном варианте также присутствуют гидроксиды/гидроксиды оксидов алюминия, которые например, могут дополнительно усиливать эффект замедления горения благодаря своим эндотермическим свойствам. Кроме того, фазовые переходы в различных компонентах красного шлама могут происходить с эндотермическим эффектом. В целом, в полимерных материалах, включающих такие безгалогенные замедлители горения согласно настоящему изобретению, эндотермические реакции протекают в диапазоне температур от 180°С до 500°С и выше. Дополнительно выделяется замедляющий горение CO2.

Настоящее изобретение также относится к способу получения модифицированного карбонизированного красного шлама (MKRS-HT), включающему следующие этапы:

a) обеспечение наличия красного шлама,

b) восстановление соединений железа(III), содержащихся в красном шламе, в кислом растворе до соединений железа(II),

c) добавление карбоната к раствору, содержащему соединения железа(II), полученному на этапе b), в результате чего образуется карбонат железа(II) (сидерит).

Настоящее изобретение также относится к огнестойкому продукту, включающему горючий материал и модифицированный красный шлам согласно настоящему изобретению.

Настоящее изобретение также относится к применению модифицированного красного шлама согласно настоящему изобретению в качестве огнезащитного средства или замедлителя горения для горючих материалов, в частности горючих строительных материалов, резины, древесно-стружечного материала, пластмасс, в частности оболочек кабелей, изоляторов кабелей или заполнителей кабелей.

Настоящее изобретение также относится к способу получения огнестойкого продукта, включающему следующие этапы:

a) обеспечение наличия горючего материала,

b) покрытие указанного горючего материала красным шламом согласно настоящему изобретению или смешивание указанного горючего материала с красным шламом согласно настоящему изобретению, и в результате

c) получение огнестойкого продукта.

Кроме того, было обнаружено, что химически модифицированный, регидратированный и карбонизированный красный шлам, а также его смеси имеют плотность, равную приблизительно 3.8-3.9 103 кг/м3 и близки в этом отношении к BaSO4 (бариту), который обладает плотностью 4.43 103 кг/м3. Благодаря своему удельному весу BaSO4 используется, помимо прочего, в качестве тяжелого наполнителя в пластмассах. Согласно настоящему изобретению химически модифицированный красный шлам MR2S-LT или MKRS-HT, или их смеси могут применяться вместо барита.

Кроме того, химически модифицированный, регидратированный и карбонизированный красный шлам, а также его смеси в комбинации с матрицей-носителем демонстрируют шумоизолирующий эффект. Соответственно, если дополнить этими продуктами пластмассы или, например, строительные материалы, в дополнение к эффекту замедления горения возникает также шумоизоляционный эффект. Этот двойной эффект представляет особенный интерес при применении в автомобилестроении и строительной промышленности. Строительные материалы могут также представлять собой минеральные продукты, такие как стяжки, бетон, гипсокартон и т.д., которые при этом будут обладать соответствующей шумоизоляцией.

Подробное описание изобретения

Термины «огнезащитное средство», «средство, замедляющее горение», "замедлитель горения" и "БГЗГ средства", а также аббревиатура "FR" (от английского: замедлитель горения) следует в настоящем описании понимать как синонимы. В контексте настоящего изобретения их следует понимать как термины, включающие, в частности, нетоксичные, не содержащие галогенов (т.е. безгалогенные) неорганические огнезащитные агенты.

В настоящем описании под «низкотемпературным диапазоном» понимают диапазон температур между 220°С и 350°С.

В настоящем описании под «высокотемпературным диапазоном» понимают диапазон температур между 350°С и 500°С.

Под термином «огнестойкий продукт» понимают объект, в котором горючий материал находится в контакте с замедлителем горения, что обеспечивает предотвращение или замедление возгорания присутствующего в объекте горючего материала в результате пожара или нагревания. В частном случае, замедлитель горения находится в постоянном контакте с горючим материалом, например, в результате смешивания или нанесения в качестве покрытия.

Под «горючими материалами» или «воспламеняющимися материалами» понимают любые материалы, способные к горению или воспламенению, в частности полимеры и нелетучие углеводороды. Примерами являются акриловые дисперсии, акриловые смолы, эластомеры, эпоксидные смолы, латексные дисперсии, меламиновые смолы, полиамид (РА, ПА), полиэтилен (РЕ, ПЭ), сополимеры ПЭ, термопластичные сополимеры полиэтилена, поперечносшитые сополимеры полиэтилена, феноловые смолы, полиэфирные смолы (ПС), полиуретан, полипропилен (ПП), поливинилхлорид (ПВХ), содержащие ПВХ пластизоли, термопластичные эластомеры, такие как например, ТРЕ (термопластичный эластомер), полиамидный термопластичный эластомер (ТРА), уретановый термопластичный эластомер (TPU) и т.д., винилэфирные смолы и битум. «Горючий» и «воспламеняющийся» в настоящем тексте являются синонимами.

Под красным шламом (КШ) понимают побочный продукт процесса Байера, получаемый в ходе извлечения гидроксида алюминия из боксита. Дальнейшую информацию относительно красного шлама можно найти в публикации WO 2012/126487 А1, описание которой включено в настоящую заявку в качестве составной части. Модифицированный карбонизированный красный шлам (MKRS-HT) определяется как продукт, получаемый из красного шлама (КШ) путем рекарбонизации и необязательно, сушки, измельчения, смешивания с другими веществами, нанесения покрытия на поверхность и т.д. Модифицированный карбонизированный и регидратированный красный шлам определяется как продукт, получаемый из красного шлама (КШ) путем рекарбонизации и регидратации, и необязательно сушки, сушки, измельчения, смешивания с другими веществами, нанесения покрытия на поверхность и т.д.

Настоящее изобретение относится к неорганическому, не содержащему галогенов огнезащитному средству из модифицированного карбонизированного красного шлама (MKRS-HT) со следующим минеральным составом:

- от 10 до 50% по массе соединений железа,

- от 12 до 35% по массе соединений алюминия,

- от 5 до 17% по массе соединений кремния,

- от 2 до 10% по массе диоксида титана,

- от 0.5 до 6% по массе соединений кальция, и

- в соответствующих случаях неизбежные примеси,

причем массовое отношение карбоната Fe(II) к оксидам железа составляет по меньшей мере 1.

В неорганическом, не содержащем галогенов огнезащитном средстве из модифицированного, рекарбонизированного красного шлама (MKRS-HT), массовое отношение карбоната Fe(II) к оксидам железа составляет предпочтительно по меньшей мере 1, более предпочтительно по меньшей мере 2, более предпочтительно по меньшей мере 3, более предпочтительно по меньшей мере 4, более предпочтительно по меньшей мере 5, более предпочтительно по меньшей мере 7, более предпочтительно по меньшей мере 9, более предпочтительно по меньшей мере 19. Чтобы было понятнее: если например, массовое отношение карбоната Fe(II) к оксидам железа составляет 19, и исходя из того, что все соединения железа присутствуют либо в виде карбоната Fe(II), либо в виде оксидов железа, 95% по массе соединений железа присутствуют в виде карбоната Fe(II), а 5% по массе соединений железа присутствуют в виде оксидов железа.

Настоящее изобретение также относится к неорганическому, не содержащему галогенов огнезащитному средству из модифицированного, карбонизированного и регидратированного красного шлама (MKRS-HT/MR2S-NT) со следующим минеральным составом:

- от 10 до 50% по массе соединений железа,

- от 12 до 35% по массе соединений алюминия,

- от 5 до 17% по массе соединений кремния,

- от 2 до 10% по массе диоксида титана,

- от 0.5 до 6% по массе соединений кальция, и

- в соответствующих случаях неизбежные примеси,

причем массовое отношение карбоната Fe(II) и массовое отношение суммы гидроксида железа и гидроксида оксида железа к оксидам железа составляют по меньшей мере 1.

В неорганическом, не содержащем галогенов огнезащитном средстве из модифицированного, карбонизированного и регидратированного красного шлама массовое отношение карбоната Fe(II) и гидроксида железа/гидроксидов оксидов к оксидам железа составляет предпочтительно по меньшей мере 1, более предпочтительно по меньшей мере 2, более предпочтительно по меньшей мере 3, более предпочтительно по меньшей мере 4, более предпочтительно по меньшей мере 5, более предпочтительно по меньшей мере 7, более предпочтительно по меньшей мере 9, более предпочтительно по меньшей мере 19.

Чтобы было понятнее: если, например, массовое отношение карбоната Fe(II) к оксидам железа составляет 2, и массовое отношение суммы гидроксида железа и гидроксида оксида железа к оксидам железа также составляет 2, и исходя из того, что все соединения железа присутствуют в виде карбоната Fe(II), гидроксида железа, гидроксида оксида железа или оксидов железа, 40% по массе соединений железа присутствуют в виде карбоната Fe(II), 40% по массе соединений железа присутствуют в виде гидроксида железа или гидроксида оксида железа, и 20% по массе соединений железа присутствуют в виде оксидов железа.

В неорганическом, не содержащем галогенов огнезащитном средстве из модифицированного, карбонизированного и регидратированного красного шлама, в дополнение к гидроксидам/гидроксидам оксидов железа и карбонату Fe(II) предпочтительно также присутствуют гидроксиды/гидроксиды оксидов алюминия, которые могут дополнительно усиливать эффект замедления горения благодаря своим эндотермическим свойствам. В этом случае массовое отношение суммы гидроксида алюминия и гидроксида оксида алюминия к оксиду алюминия составляет предпочтительно по меньшей мере 1, более предпочтительно по меньшей мере 1.5, более предпочтительно по меньшей мере 2, более предпочтительно по меньшей мере 3, более предпочтительно по меньшей мере 4, более предпочтительно по меньшей мере 5, более предпочтительно по меньшей мере 7, более предпочтительно по меньшей мере 9, более предпочтительно по меньшей мере 19.

Если в явном виде не указано иное, приведенные ниже сведения относятся как к неорганическим, не содержащим галогенов огнезащитным средствам из модифицированного, карбонизированного красного шлама (MKRS-HT), так и к неорганическим, не содержащим галогенов огнезащитным средствам из модифицированного, карбонизированного и регидратированного красного шлама (MKRS-HT/MR2S-NT), которые вместе называются ниже просто "модифицированный красный шлам" или "огнезащитное средство (согласно настоящему изобретению)".

Минеральный состав модифицированного красного шлама включает:

- от 10 до 50% по массе соединений железа,

- от 12 до 35% по массе соединений алюминия,

- от 5 до 17% по массе соединений кремния,

- от 2 до 10% по массе диоксида титана,

- от 0.5 до 6% по массе соединений кальция, и

- в соответствующих случаях неизбежные примеси,

При этом минеральный состав модифицированного красного шлама может включать от 10 до 45, от 30 до 50 или от 20 до 40% по массе соединений железа.

При этом минеральный состав может включать от 12 до 30, от 20 до 35 или от 15 до 25% по массе соединений алюминия.

При этом минеральный состав может включать от 5 до 15, от 8 до 17 или от 7 до 16% по массе соединений кремния, в частности SiO2.

При этом минеральный состав может включать от 4 до 10, от 2 до 8 или от 3 до 9% по массе диоксида титана (TiO2).

При этом минеральный состав может включать от 1 до 6, от 0.5 до 2.5 или от 0.6 до 1.5% по массе соединений кальция, в частности СаО.

Также возможны комбинации всех указанных диапазонов.

Под «неизбежными примесями» понимают составляющие, которые присутствуют в виде примесей в исходных материалах, например в боксите, используемом в процессе Байера, или примеси, образование которых в продукте или введение в продукт допускается в процессе производства. В частности, упоминавшаяся во введении гетерогенность красного шлама делает присутствие таких примесей неизбежным. Однако они не оказывают существенного влияния на эффект замедления горения модифицированного красного шлама.

В одной из модификаций настоящего изобретения доля водорастворимых соединений натрия, выраженная в массовой доле Na2O, в модифицированном красном шламе составляет не более 0.03, предпочтительно от 0.003 до 0.03% по массе.

В дальнейшей модификации настоящего изобретения средний размер частиц (d50) в модифицированном красном шламе составляет не более 50 мкм, предпочтительно от 0.5 до 10 мкм, или от 1 до 5 мкм (модифицированный красный шлам микромасштаба), или 100 до 900 нм, или 200 до 750 нм (модифицированный красный шлам наномасштаба). В некоторых вариантах реализации размер частиц модифицированного красного шлама меньше 10 мм, в частности, лежит в диапазоне от 10 нм до 6 мм

В другой модификации настоящего изобретения остаточная влажность модифицированного красного шлама составляет не более 0.4% по массе, предпочтительно не более 0.3% по массе, предпочтительно не более 0.2% по массе.

Химический состав красного шлама приведен в таблице 1. Химический состав MKRS-HT представлен в Таблице 2, а химический состав модифицированного, карбонизированного и регидратированного красного шлама представлен в Таблице 3 (MKRSHT/MR2S-NT).

Кроме того, в предпочтительном варианте поверхность модифицированного красного шлама модифицирована по меньшей мере одним веществом, которое улучшает совместимость частиц модифицированного красного шлама с полимерной матрицей. Это может позволить облегчить включение модифицированного красного шлама в горючий материал, который необходимо защитить, обычно включающий полимерную матрицу, а также улучшить связывание компонентов. Этот подход также позволяет направленно контролировать профиль характеристик полимерного вещества.

При этом оказалось полезным, когда указанное вещество представляет собой модификатор поверхности, выбранный из группы, состоящей из органосиланов, органосоединений титана, органоциркониевых алюминатов, производных карбоновых кислот, умягчителей, прекурсоров олигомеров и полимеров, иономеров, борной кислоты и ее солей с металлами и производных, станнатов цинка, гидроксистаннатов цинка или их комбинаций.

В другом предпочтительном варианте реализации огнезащитное средство присутствует в комбинации со вспомогательными веществами, в частности органоглинами (наноглинами), соединениями олова и боратами.

Также предпочтительно чтобы огнезащитное средство дополнительно содержало по меньшей мере одну задерживающую горение добавку в отношении до 70% по массе, предпочтительно от 5 до 60% по массе, более предпочтительно от 10 до 50% по массе, более предпочтительно от 15 до 40% по массе.

Особенно предпочтительная дополнительная задерживающая горение добавка представляет собой вещество, поддерживающее эндотермическую реакцию предпочтительно, в частности, вещество, поддерживающее эндотермическую реакцию, выбранное из группы, состоящей из гидроксида алюминия, бемита, гибсита, гетита, гидроксида магния, гантита, брусита или их смесей.

Настоящее изобретение также относится к применению огнезащитного средства согласно настоящему изобретению в качестве замедлителя горения для горючих материалов, в частности горючих строительных материалов, резины, древесно-стружечного материала, пластмасс, в частности оболочек кабелей, изоляторов кабелей или заполнителей кабелей.

Кроме того, настоящее изобретение относится к огнестойкому продукту, включающему горючий материал и огнезащитное средство согласно настоящему изобретению.

Горючий материал может представлять собой, в частности, строительный материал, резиновый продукт, древесно-стружечную плиту, облицовочный материал или пластмассовый продукт, в частности оболочку кабеля, материал изоляции кабеля или заполнитель кабеля.

Огнестойкий продукт содержит огнезащитное средство, предпочтительно в отношении от 3 до 95% по массе, более предпочтительно от 5 до 90% по массе, более предпочтительно от 10 до 80% по массе, более предпочтительно от 20 до 75% по массе, более предпочтительно от 25 до 70% по массе, в частности от 30 до 60% по массе.

В одной из модификаций огнезащитное средство, применяемое в огнестойких продуктах, предпочтительно содержит модифицированный красный шлам согласно настоящему изобретению в отношении от 30 до 100% по массе, более предпочтительно от 40 до 95% по массе, более предпочтительно от 50 до 90% по массе, более предпочтительно от 60 до 85% по массе, а соответствующая оставшаяся доля, равная от 0 до 70% по массе, предпочтительно от 5 до 60% по массе, более предпочтительно, от 10 до 50% по массе, более предпочтительно, от 15 до 40% по массе, приходится на дополнительную замедляющую горение композицию. В этом случае предпочтительно чтобы дополнительная замедляющая горение композиция содержала органическое нетоксичное поддерживающие эндотермическую реакцию вещество, такое как АРР, МС, MIC и т.д., и/или вспомогательное вещество. В этом случае также предпочтительно чтобы дополнительная замедляющая горение композиция содержала гидраты солей, гидроксиды, гидроксиды оксидов и карбонаты, оксикарбонаты, а также гидроксикарбонаты.

Настоящее изобретение также относится к способу получения огнестойкого продукта, включающего следующие этапы:

a) обеспечение наличия горючего материала,

b) покрытие указанного горючего материала огнезащитным средством согласно настоящему изобретению или смешивание указанного горючего материала с огнезащитным средством согласно настоящему изобретению, и в результате

c) получение огнестойкого продукта.

При этом полезно, если перед нанесением или смешиванием на этапе b) огнезащитное средство подвергают физической обработке, в частности измельчают или дезинтегрируют, предпочтительно вместе со вспомогательными веществами, в частности органоглинами (наноглинами), соединениями олова и боратами, и/или по меньшей мере одной дополнительной замедляющей горение добавкой.

Огнезащитное средство, указанное в этапе b), предпочтительно подвергают модификации поверхности. В предпочтительном варианте ее осуществляют перед нанесением на горючий материал или смешиванием с ним.

Модификация поверхности огнезащитного средства предпочтительно включает модификацию поверхности огнезащитного средства модификатором поверхности, который выбран из группы, состоящей из органосиланов, органосоединений титана, органоциркониевых алюминатов, производных карбоновых кислот, умягчителей, прекурсоров олигомеров и полимеров, иономеров, борной кислоты и ее солей с металлами и производных, станнатов цинка, гидроксистаннатов цинка или их комбинаций.

Также полезно, особенно в случае применения огнезащитного средства согласно настоящему изобретению в эластомерных, термопластичных и термоусадочных продуктах, если в ходе обработки вспомогательные вещества добавляют в форме так называемых «мастер-смесей» (концентратов активных субстанций) в форме жидкости, пасты или гранулята.

Способ получения модифицированного карбонизированного красного шлама (MKRS-HT) согласно настоящему изобретению включает следующие этапы:

a) обеспечение наличия красного шлама,

b) восстановление соединений железа(III), содержащихся в красном шламе, в кислом растворе до соединений железа(II),

c) добавление карбоната к раствору, содержащему соединения железа(II), полученному на этапе b), в результате чего образуется карбонат железа(II) (сидерит).

Предпочтительными восстанавливающими агентами, которые можно применять на этапе b), являются серосодержащие восстанавливающие агенты, в частности (Na2S2O4) и диоксид серы (SO2).

Восстановление соединений железа(III), содержащихся в красном шламе, до соединений железа(II) в соответствии с этапом b) предпочтительно осуществляют в слабокислом растворе, например, при значении рН от 4 до 6, в частности при значении рН от 4.5 до 5.5.

Предпочтительными карбонатами для применения на этапе с) являются карбонаты щелочных металлов, гидрокарбонаты щелочных металлов и карбонаты щелочноземельных металлов, в частности карбонат натрия (Na2CO3), гидрокарбонат натрия (NaHCO3) и карбонат кальция (СаСО3). Как будет понятно специалисту на основе специальных знаний, значение рН содержащего соединения железа(II) кислого раствора, полученного на этапе b), следует в случае необходимости соответствующим образом отрегулировать путем добавления карбоната перед этапом с) для получения карбоната железа(II) (сидерита).

Настоящее изобретение также относится к способу получения модифицированного красного шлама, включающему следующие этапы:

a) обеспечение наличия красного шлама (КШ),

b) отдельно получение карбоната железа(II) из доступных исходных веществ;

c) смешивание КШ и карбоната железа(II);

d) получение модифицированного карбонизированного красного шлама (MKRS-HT).

При этом подходе карбонат железа(II) можно легко модифицировать физическими и/или химическими методами для достижения определенных необходимых для данного приложения характеристик.

Модифицированный, карбонизированный и регидратированный красный шлам может быть получен способом, в котором модифицированный карбонизированный красный шлам (MKRS-HT), такой как, например, описанный выше шлам, и модифицированный, регидратированный красный шлам (MR2S-NT), такой как описан, например, в публикации WO 2012/126487 А1, полное описание которой включено в настоящий текст, получают отдельно друг от друга и смешивают вместе с получением модифицированного, карбонизированного и регидратированного красного шлама.

Однако соответствующее проведение реакций позволяет также осуществлять и регидратацию, и рекарбонизацию красного шлама с получением модифицированного, карбонизированного и регидратированного красного шлама. Для направленного управления модификацией, чтобы она протекала в том или ином направлении, можно применять подходящие технические средства, такие как, например, проведение реакции в инертном (окислительном) техническом газе, специальная сушка, сразу за которой следует модификация («запечатывание») поверхности для предпочтительной модификации в направлении сидерита. С другой стороны, если необходимо получать в основном гетит, реакцию проводят в атмосферном кислороде или, в качестве альтернативы, в озоне, которые окисляют соли Fe(II) до солей Fe(III). При повышении значений рН также образуется гетит, который также можно высушить и подвергнуть запечатыванию поверхности.

Кроме того, модификация/запечатывание поверхности обеспечивает оптимальное связывание молекул полимера на границе с безгалогенным замедлителем горения. В этом случае обеспечивается возможность направленного контроля характеристик вещества.

Направленное управление процессом в атмосфере инертного газа, сушка и модификация поверхности позволяют получать красный шлам, адаптированный в соответствии с его назначением.

Так называемый инертный технический газ/защитный газ должен быть полностью свободен от окисляющих компонентов, особенно (атмосферного) кислорода. В частности, можно использовать технический газ, состоящий из равных частей азота и аргона (Достаточно качества TIG - для вольфрамо-дуговой сварки в газовой среде), который рециркулируется.

Ниже описаны примеры, эксперименты и дополнительные варианты реализации, которые, однако, не ограничивают настоящее изобретение. Напротив, они служат для разъяснения сущности настоящего изобретения и его преимуществ.

Получение модифицированного красного шлама:

Примеры

Пример 1

4 г красного шлама с содержанием Fe2O3, равным 40% (1.6 г Fe2O3 = 0.01 моль), смешивали в стакане с 60 мл концентрированной соляной кислоты (0.6 моль) и перемешивали в течение 24 ч при комнатной температуре.

После этого периода времени можно было отделить 3.2 г осадка, т.е. растворилось 0.8 г Fe2O3 (50%). Относительно долгое перемешивание и более высокие температуры позволяют растворить дополнительное количество Fe2O3.

Значение рН жидкого фильтрата доводили до 4.5 разбавленным NaOH (0.5 моль NaOH в 100 мл воды). Затем добавляли 0.05 моль Na2SO3 × 7 H2O (1.3 г) в 50 мл H2O. Через несколько часов желтый раствор становился почти бесцветным. Из этого раствора путем добавления 0.8 г Na2CO3 получали 1.2 г преципитата. Согласно результатом порошковой рентгеновской дифрактометрии этот продукт содержал по 50% сидерита и гетита. Через относительно продолжительный промежуток времени осажденный продукт приобретает сначала зеленоватую, а затем коричневую окраску, т.е. карбонат Fe(II) окисляется на воздухе до соединений Fe(III). С другой стороны, если присутствие кислорода исключено, осаждается преимущественно сидерит, который сохраняет стабильность в течение долгого времени.

Таким образом, видно, что инертные условия приводят к осаждению сидерита, а окислительные условия - гетита. Промежуточные стадии, содержащие и сидерит, и гетит, могут быть выделены в любой момент, после чего их можно высушить и подвергнуть запечатыванию поверхности.

Пример 2

Используемое оборудование обычно представляет собой оборудованную соответствующим образом распылительную башню (NIRO Atomizer, Копенгаген). В этом случае высушенный и при необходимости подвергнутый поверхностной модификации материал получают, например, в соответствии с процедурой поверхностной модификации "А" (см. ниже) в микромасштабе. Если причины, связанные с конкретным приложением, требуют продукта в наномасштабе, после сушки с использованием устройства Swirl Fluidizer может быть осуществлено нанесение покрытия на поверхность в присоединенном за ним жидкостном смесителе/скоростном смесителе.

Распылительная башня:

Сушку, регулировку кривой распределения размеров частиц (ограничение сверху; d90, d50 и d10) и, необязательно, модификацию поверхности материала в предпочтительном варианте осуществляют в распылительной башне.

В описанном здесь случае, т.е с модификацией поверхности "А", используемую суспензию твердого вещества, содержание которого может варьировать в широких пределах, например составлять 50%, добавляли к соответствующему количеству аминопроплитриэтоксисилана (1% по массе силана АМЕО производства Evonik/Degussa в пересчете на содержание твердого вещества; см. раздел «Модификации поверхности») при интенсивном перемешивании. В результате гидролитической реакции этот органосилан превращается в олиго-органосиланол, который абсорбируется на поверхности высушиваемого материала и закрепляется там, образуя ковалентные связи (см. Edwin S. Plueddeman, Silane Technology, Elsevier, NY, USA - Нью-Йорк, США).

Дополнительно к суспензии добавляют 0.3% по массе (в пересчете на содержание твердого вещества) добавки DISPEX А 80 в качестве диспергирующего агента и разжижителя, который главным образом обеспечивает перекачиваемость смеси.

Размер вторичных частиц (т.е. необходимую степень агломерации) задают путем варьирования температуры на входе (обычно от 500°С до 300°С) и температуры на выходе (обычно от 120°С до 60°С) технического газа, скорости вращения распылительного диска, числа и геометрии отверстий форсунок, количества смеси, перерабатываемого в час, в диапазоне даже выше концентрации суспензии (содержание твердых веществ).

В случае использования распылительной башни в отсутствие модификации поверхности аминосиланами, получают MR2S-NT или MKRS-HT в микромасштабе с оптимизированным содержанием гетита или сидерита (в зависимости от желаемой оптимизации, в соответствии с описанным выше способом управления процессом).

Можно (необязательно) осуществить «деагломерацию» в дополнительно подсоединенной стержневой мельнице (Фирма Alpine), при этом задаваемый средний размер частиц лежит в диапазоне от 1 до 1.5 мкм (d50).

Кривая распределения размеров частиц приблизительно соответствует кривой тонкоизмельченного гидроксида алюминия, такого как, например, MARTINAL OL 104 (Martinswerk / Albemarle) или SUPERFINE SF4ESD (Alcan Ltd.), или кривой синтетического гидроксида магния, такого как, например, MAGNIFIN Н5 (Magnesit Prod. Gesellschaft).

Такая кривая распределения частиц обеспечивает практически оптимальное включение в большинство термопластичных и термоусадочных полимерных продуктов, а также в резиновые продукты. Это справедливо также для всех продуктов, включающих термопластические эластомеры (ТРЕ, ТПЭ).

Устройство Swirl Fluidizer:

В устройстве Swirl Fluidizer осуществляют сушку и подготовку наномасштабного продукта.

Оптимальную поверхностную модификацию осуществляют в дополнительно подсоединенном жидкостном смесителе (скоростном смесителе).

В этом случае можно использовать различные модификаторы поверхности твердой, жидкой или пастообразной консистенции. Возможна in situ полимеризация на поверхности безгалогенных замедлителей горения, таких как MR2S-NT или MKRS-HT.

В устройстве Swirl Fluidizer в атмосфере того же технического газа, что и в распылительной башне, материал согласно настоящему изобретению подается частотно-управляемым моношнеком в реакционную камеру. Устройство соответствующей конфигурации измельчает материал, который высушивается в техническом газе; при этом в основном образуются частицы наномасштаба.

Направленное управление этим процессом для получения наномасштабного продукта осуществляется за счет варьирования количества обрабатываемого материала в час, температуры технического газа на входе и выходе и выбора остаточного содержания влаги в материале согласно настоящему изобретению в качестве регулируемого параметра, а также конфигурации и скорости вращения устройства.

Если предстоит осуществить поверхностную