Детектирующая матрица

Иллюстрации

Показать все

Изобретение относится к средствам получения рентгеновских изображений путем конвертирования рентгеновского излучения в оптический диапазон и последующего преобразования в электрические сигналы. Детектирующая матрица содержит набор фоточувствительных элементов и набор оптических волокон с рентгенолюминесцирующей добавкой, которые помещены в защитную оболочку и находятся в оптическом контакте с набором фоточувствительных элементов, при этом защитная оболочка выполнена из материала, основная рентгенолюминесцентная линия которого удовлетворяет условию EK<EL<1,5EK, где EK - энергия скачка фотопоглощения рентгенолюминесцирующего элемента в оптическом волокне, EL - энергия основной рентгенолюминесцентной линии материала оболочки оптического волокна. Технический результат – повышение эффективности регистрации излучения и повышение сигнал/шум. 4 з.п. ф-лы, 4 ил.

Реферат

Изобретение относится к рентгенотехнике, а именно к средствам получения рентгеновских изображений путем конвертирования рентгеновского излучения в оптический диапазон и последующего преобразования в электрические сигналы. Оно может быть использовано в различных устройствах для определения внутренней структуры материалов и изделий в промышленности, в системах контроля багажа и крупногабаритных грузов, а также в научно-исследовательской практике.

Известна детектирующая матрица, выполненная в виде по крайней мере одной микроканальной пластины, содержащей матричные каналы с непрозрачными для света стенками, заполненными люминофором, причем оси каналов перпендикулярны поверхности микроканальной пластины [1].

Недостатками данного устройства являются высокая стоимость и техническая сложность исполнения. Другим недостатком указанного устройства является рассеяние света в поликристаллическом люминофоре. Это препятствует возможности увеличения длины пути излучения в люминофоре и снижает эффективность регистрации в жестком рентгеновском диапазоне.

Известна также детектирующая матрица, выполненная в виде светочувствительной матрицы, на которую напыляется слой сцинтиллятора [2]. Недостатком данной системы является ограничение разрешающей способности, связанной с размерами светочувствительной ячейки.

Известна детектирующая матрица для конвертирования ионизирующего и проникающего излучения, в частности рентгеновского излучения, в оптическое излучение с целью получения изображений [3]. Устройство содержит оптоволоконный сцинтиллятор, который в свою очередь может быть соединен с камерой или другим детектирующим устройством, прототип.

Недостатком прототипа является ухудшение пространственного разрешения и яркости выхода люминесцентного сигнала вследствие комптоновского рассеяния падающего излучения.

Целью настоящего изобретения является повышение эффективности регистрации излучения и повышение отношения сигнал/шум. Изобретение устраняет недостатки аналогов и прототипа.

Поставленная цель достигается тем, что оболочка оптических волокон изготавливается из материала, для которого выполняется условие EK<EL<1,5EK, где EK - энергия скачка фотопоглощения рентгенолюминесцирующего элемента в оптическом волокне, EL - энергия основной рентгенолюминесцентной линии металла в оболочке оптического волокна. Поставленная цель достигается также тем, что в качестве люминесцирующего материала в волокне используется тербий. Поставленная цель достигается также тем, что в качестве материала оболочки используется вольфрам. Поставленная цель достигается также тем, что в качестве материала оболочки используется тантал. Поставленная цель достигается также тем, что в качестве материала оболочки используется сплав вольфрама и никеля.

Сущность предложенного технического решения заключается в следующем, рентгенолюминесцирующие оптические волокна, покрытые оболочкой из материала, удовлетворяющего вышеуказанным требованиям, собираются в оптоволоконную шайбу либо фокон, который в свою очередь с одной стороны покрывается отражательным слоем, а с другой стороны присоединяется к набору светочувствительных элементов.

Работа устройства поясняется с помощью фиг. 1-3. На фиг. 1 схематично показан продольный разрез устройства. На фиг. 2 схематично показан поперечный разрез устройства. На фиг. 3. показан ход рассеянных лучей в оптическом волокне.

Детектирующая матрица содержит следующие элементы: набор оптических волокон (1), помещенных в оболочку (2), и детектор оптического излучения (3). Детектор оптического излучения (3) содержит набор фоточувствительных элементов (4), например фотодиодов, которые контактируют с торцами рентгенолюминесцирующих оптических волокон (1) через переходный оптический слой (6). На входную сторону детектирующей матрицы нанесен тонкий слой (5), отражающий оптическое излучение.

Работа устройства осуществляется следующим образом. Рентгеновское излучение (7) почти без поглощения проходит через тонкий отражательный слой (5), затем по мере прохождения рентгеновского излучения (7) через люминесцирующее оптическое волокно (1) генерируется оптическое излучение, которое распространяется в направлении фоточувствительных элементов (4) либо сразу, либо после отражения от отражательного слоя (5). После того как оптический сигнал доставляется при помощи волокна к фоточувствительному элементу (4), информация обрабатывается при помощи электроники (3). Сгенерированное оптическое излучение (10) остается внутри оптического волокна за счет отражения от границы раздела оптическое волокно (1) - оболочка оптического волокна (2).

Выполнение условия EK<EL<1,5EK, где EK - энергия скачка фотопоглощения рентгенолюминесцирующего элемента в оптическом волокне, EL - энергия основной рентгенолюминесцентной линии металла в оболочке оптического волокна, приводит к эффективному понижению длины свободного пробега в волокне и, как следствие, повышению коэффициента поглощения для линии EL. Зависимость длины свободного пробега рентгеновских фотонов от энергии в тербии показана на рис. 4. В частности, при EL=1.1EK длина свободного пробега примерно в 4 раза меньше, чем при 0.9EK и 1.7EK

Довольно большая часть исходного рентгеновского излучения (7) поглощается в оболочке волокна (11). Значительная часть поглощенной энергии приводит к генерации вторичного (12) излучения на характеристических линиях флуоресценции материала, из которого сделана оболочка. Благодаря выполнению условия EK<EL<1,5EK, где EK - энергия скачка фотопоглощения рентгенолюминесцирующего элемента в оптическом волокне, EL - энергия основной рентгенолюминесцентной линии металла в оболочке оптического волокна, флуоресцентное излучение оболочки поглощается в волокне с высокой эффективностью, что приводит к дополнительному свечению волокон и увеличению эффективного сигнала.

По мере прохождения через оптическое волокно (1) рентгеновское излучения (7) начинает отклоняться от первоначального направления за счет комптоновского рассеяния (8). Чтобы избежать размытия оптического изображения за счет проникновения рассеянного рентгеновского излучения в соседние волокна, для изготовления оболочки оптического волокна (2) желательно использовать материал с высоким эффективным Z, с целью обеспечения высокого коэффициента поглощения рентгеновского излучения в оболочке.

Рассеянное рентгеновское излучение (8), поглощаясь в оболочке, также приводит к генерации в оболочке флуоресцентного рентгеновского излучения (9). Значительная часть этого излучения также приходится на характеристические линии флуоресценции материала, из которого сделана оболочка. Поскольку выполняется условие EK<EL<1,5EK, где EK - энергия скачка фотопоглощения рентгенолюминесцирующего элемента в оптическом волокне, EL - энергия основной рентгенолюминесцентной линии материала в оболочке оптического волокна, это вторичное излучение с высокой эффективностью поглощается люминесцирующим материалом в оптическом волокне, что приводит к повышению яркости свечения в оптическом диапазоне. Также за счет высокого значения Z материала оболочки рассеянное излучение эффективно поглощается в оболочке, не допуская проникновения излучения в соседние волокна, что приводит к уменьшению уровня фона и, как следствие, повышению отношения сигнал/шум

Для технической реализации устройства можно использовать существующее на сегодняшний день люминесцирующее оптическое волокно [4] с осажденным на него химическим методом танталом.

Таким образом применение предлагаемого устройства позволяет существенно повысить эффективности регистрации рентгеновского излучения и преобразования рентгеновского излучения в оптическое излучение. Например, для волокна с добавкой Tb диаметром 50 мкм и оболочки, выполненной из Та толщиной 20 мкм, расчетное увеличение оптического сигнала при детектировании излучения с энергией 70 кЭв составляет порядка 15-20%. При этом снижение фона рассеянного излучения в диапазоне энергий 40-70 кЭв в результате поглощения в оболочке из Та составляет порядка 20%, при этом эффективная толщина Та, учитываемая при расчете поглощения оказывается существенно больше толщины оболочки, поскольку углы рассеяния не достигают высоких значений. В расчете был использован угол в 30°. Это обеспечивает повышение контраста рентгеновского изображения и соответственно чувствительности контроля.

Литература

1. Патент Российской Федерации № RU 2391649 С1, 2008 г.

2. Патент Соединенных Штатов Америки US 20150378033 A1, 2013 г.

3. Патент Соединенных Штатов Америки US 5594253 A, 1994 г.

4. Proceedings of the "Science of the Future" Conference - Kazan 2016 "Yttrium-aluminoborate glasses containing Tb2O3, Ce2O3 and Sb2O3 for visualization of UV and X-ray radiation"

1. Детектирующая матрица, содержащая набор фоточувствительных элементов и набор оптических волокон с рентгенолюминесцирующей добавкой, которые помещены в защитную оболочку и находятся в оптическом контакте с набором фоточувствительных элементов, отличающаяся тем, что защитная оболочка выполнена из материала, основная рентгенолюминесцентная линия которого удовлетворяет условию EK<EL<1,5EK, где EK - энергия скачка фотопоглощения рентгенолюминесцирующего элемента в оптическом волокне, EL - энергия основной рентгенолюминесцентной линии материала оболочки оптического волокна.

2. Детектирующая рентгеновская матрица по п. 1, отличающаяся тем, что в качестве рентгенолюминесцирующего элемента в оптическом волокне используется тербий.

3. Детектирующая рентгеновская матрица по п. 2, отличающаяся тем, что в качестве защитной оболочки используется вольфрам.

4. Детектирующая рентгеновская матрица по п. 2, отличающаяся тем, что в качестве защитной оболочки используется тантал.

5. Детектирующая рентгеновская матрица по п. 2, отличающаяся тем, что в качестве защитной оболочки используется смесь никеля и вольфрама.