Улучшенные методика и система измерения аналита
Иллюстрации
Показать всеГруппа изобретений относится к обнаружению аналита в физиологических текучих средах. Способ определения концентрации глюкозы в крови осуществляют с помощью системы измерения глюкозы, которая включает тест-полоску и измерительный прибор, причем измерительный прибор имеет микроконтроллер, запрограммированный для приложения множества тестовых напряжений к тест-полоске и измерения выходного переходного токового сигнала, который является результатом электрохимической реакции в камере для анализа тест-полоски, причем способ включает: вставку тест-полоски в разъем порта для установки полоски измерительного прибора для соединения по меньшей мере двух электродов тест-полоски с цепью измерения полоски; запуск последовательности анализа после нанесения пробы; приложение первого напряжения в течение первого промежутка времени и измерение первого выходного значения тока; переключение первого напряжения на второе напряжение, отличное от первого напряжения; изменение второго напряжения на третье напряжение, отличное от второго напряжения; измерение второго выходного значения тока переходного токового сигнала с электродов после изменения со второго напряжения на третье напряжение; оценку третьего тока, близкого к выходному значению установившегося тока переходного токового сигнала, после установки третьего напряжения на электродах; вычисление концентрации глюкозы в крови на основе первого, второго и третьего выходных значений тока переходных токовых сигналов с помощью заданного соотношения. Также описана система измерения концентрации глюкозы в крови. Достигается повышение точности и надежности анализа. 2 н. и 3 з.п. ф-лы, 1 табл., 26 ил.
Реферат
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Обнаружение аналита в физиологических текучих средах, например крови или продуктах, полученных из крови, приобретает все большее значение в современном обществе. Анализы на обнаружение аналита находят применение во множестве областей, включая клинические лабораторные исследования, исследования в домашних условиях и т.п., когда результаты такого исследования играют важную роль в диагностике и контроле различных заболеваний. К интересующим аналитам относится глюкоза при контроле диабета, холестерин и т.п. В ответ на такое растущее значение обнаружения аналита было разработано множество протоколов и устройств обнаружения аналита как для клинического, так и для домашнего применения.
Одним типом способа, используемого для обнаружения аналита, является электрохимический способ. В таких способах жидкую пробу на водной основе помещают в камеру для приема пробы в электрохимической ячейке, в которой находятся два электрода, например, противоэлектрод и рабочий электрод. Аналит подвергают реакции с окислительно-восстановительным реагентом с образованием окисляемого (или восстанавливаемого) вещества в количестве, соответствующем концентрации аналита. Затем количество присутствующего окисляемого (или восстанавливаемого) вещества оценивают электрохимически и соотносят с количеством аналита, присутствующего в исходной пробе.
Такие системы подвержены разного рода неэффективности и/или ошибкам. Одна из систем измерения концентрации глюкозы в крови производства компании LifeScan Inc., известная на рынке под названием One-Touch Verio (Verio), имеет чрезвычайно высокую общую эффективность в отношении устойчивости к влияниям гематокрита и посторонних восстанавливающих агентов, таких как мочевая кислота (UA). Тем не менее посторонние вещества, такие как восстанавливающие агенты в форме мочевой кислоты, могут влиять на результаты способа. В частности, наблюдается потенциальная зависимость гематокрита от данных заявителя о концентрации глюкозы в крови. В качестве примера рассмотрим ситуацию, когда электроактивные молекулы, такие как мочевая кислота или ферроцианид, равномерно распределены в ячейке тест-полоски Verio. Измерения, проведенные непосредственно после переключения потенциала, находятся в режиме, в котором развивающийся градиент концентрации полубесконечен - он еще не переместился достаточно далеко в ячейку, так что на него воздействует градиент, развивающийся на противоположном электроде.
Другим наблюдением было влияние эндогенных восстанавливающих агентов, таких как мочевая кислота, которые не зависят от глюкозы. Считается, что в тест-полоске Verio применяется ток 1,1 секунды, чтобы учесть интерференции путем прогнозирования величины тока помех при третьем импульсном измерении на основе тока 1,1 секунды:
где b~0,678
По-видимому, данная функция предназначена для нахождения дробного значения iR, которое появляется исключительно из-за глюкозы, путем применения функции, стремящейся к 1 при отсутствии помех (i1.1=0), или к 0 при наличии тока постороннего восстанавливающего агента, но отсутствии глюкозы (i4.1, i5, содержащие только токи помех). В этом случае i2corr не должен зависеть от постороннего восстанавливающего агента.
Эксперименты показывают, что, несмотря на то что i2corr хорошо устраняет зависимость iR от мочевой кислоты при средней и высокой концентрации глюкозы, он неспособен полностью устранять ее при низкой концентрации глюкозы. Но несмотря на данную довольно успешную корректировку iR, на результаты измерения концентрации глюкозы Gbasic (результаты измерения концентрации глюкозы до корректировки (-ок)) в значительной степени влияет мочевая кислота, в особенности при высокой концентрации глюкозы.
Формула для результата измерения концентрации глюкозы:
где p~0,523
a~0,14
zgr~2
Считается, что, несмотря на то что Gbasic сильно зависит от мочевой кислоты при высокой концентрации глюкозы, i2corr такой зависимости не имел, поэтому очевидно, что функция компенсации гематокрита не работает надлежащим образом, когда сталкивается как с высокой концентрацией глюкозы, так и с высокой концентрацией постороннего восстанавливающего агента. Несомненно, частично проблема вызвана тем, что на iL (сумму токов от 1,4 до 4 секунд) значительно воздействуют посторонние восстанавливающие вещества.
Следует отметить, что iL состоит по существу из установившегося тока от посторонних восстанавливающих агентов и нарастающего тока глюкозы, вызванного происходящей диффузией ферроцианида и фермента со второго электрода. Мочевая кислота имеет по существу большее влияние на iL, чем на iR. Приведенный выше анализ показал, как функция компенсации гематокрита должна компенсировать влияние эритроцитов, при условии, что обнаруживали только ток глюкозы. Функция компенсации гематокрита фактически не может правильно работать с разными концентрациями постороннего восстанавливающего агента. Считается, что при высокой концентрации глюкозы iL повышается, вызывая несоответственно малые значения функции компенсации гематокрита и низкие результаты измерения концентрации глюкозы.
Поскольку |i2corr| повышается с увеличением концентрации мочевого агента, влияние снижающейся функции коррекции помех частично компенсируется. Но при высокой концентрации глюкозы i2corr работает лучше, поэтому такая компенсация не происходит. Таким образом, оказывается, что при высокой концентрации глюкозы происходит чрезмерная компенсация посторонних восстанавливающих агентов. В действительности вводные данные для функции компенсации гематокрита подвержены помехам, что вызывает неправильную компенсацию гематокрита.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Несмотря на то что описанная ранее система Verio имеет очень высокую общую эффективность в отношении устойчивости к влияниям гематокрита и посторонних восстанавливающих агентов, таких как мочевая кислота, исследование показало, что тест-полоска Verio не полностью невосприимчива к посторонним влияниям эндогенных и терапевтических восстанавливающих агентов. Данные интерференции по существу малы при типичных концентрациях посторонних агентов, но в свете строгих требований к эффективности, предполагаемых для систем измерения концентрации глюкозы в крови, может быть необходимо устранить все возможные источники помех. В попытках найти способы снижения помех заявитель предлагает модифицировать методику определения концентрации глюкозы в такой системе без необходимости в модификации химических характеристик тест-полоски. В частности, заявитель открыл части методики, которые не позволяют достичь оптимальной эффективности, и, следовательно, внес изменения для улучшения эффективности тест-полоски и системы.
Следовательно, заявитель открыл различные аспекты способа вычисления концентрации аналита в пробе аналита. В одном аспекте предложен способ определения концентрации глюкозы в крови с помощью системы измерения концентрации глюкозы, включающей тест-полоску и измерительный прибор. Измерительный прибор имеет микроконтроллер, выполненный с возможностью приложения множества тестовых напряжений к тест-полоске и измерения выходного переходного токового сигнала, который является результатом электрохимической реакции в камере для анализа тест-полоски. Способ может быть реализован путем: вставки тест-полоски в разъем порта для установки полоски измерительного прибора для соединения по меньшей мере двух электродов тест-полоски с цепью измерения полоски; запуска последовательности анализа после нанесения пробы; приложения первого напряжения; переключения первого напряжения на второе напряжение, отличное от первого напряжения; изменения второго напряжения на третье напряжение, отличное от второго напряжения; измерения второго выходного значения тока переходного токового сигнала с электродов после изменения со второго напряжения на третье напряжение; оценки тока, близкого к выходному значению установившегося тока переходного токового сигнала, после установки третьего напряжения на электродах; вычисления концентрации глюкозы в крови на основе первого, второго и третьего выходных значений тока переходного токового сигнала с помощью Уравнения следующей формы:
где G1 представляет собой концентрацию глюкозы;
;
где
a’, b’, c, d, p’, zgr’ представляют собой производственные параметры; i4.1 представляет собой ток, измеренный во время приложения третьего напряжения;
i5 представляет собой ток, измеренный во время приложения третьего напряжения;
i1.1 представляет собой ток, измеренный во время приложения второго напряжения; и
i2 представляет собой ток, измеренный во время приложения второго напряжения.
В данном способе измерение первого выходного значения тока включает измерение выходного значения тока по меньшей мере двух электродов через приблизительно 1,1 секунды после запуска последовательности анализа; измерение второго выходного значения тока включает измерение выходного значения тока по меньшей мере двух электродов через приблизительно 4,1 секунды после запуска последовательности анализа; оценка выходного значения установившегося тока включает измерение выходного значения тока по меньшей мере двух электродов через приблизительно 5 секунд после запуска последовательности анализа; производственный параметр a’ составляет приблизительно 0,14, b’ составляет приблизительно 4,9, c составляет приблизительно 4,24, d составляет приблизительно 11,28, p’ составляет приблизительно 0,548, а zgr’ составляет приблизительно 9,38.
В другом аспекте предложен способ определения концентрации глюкозы в крови с помощью системы измерения концентрации глюкозы, включающей тест-полоску и измерительный прибор. Измерительный прибор имеет микроконтроллер, выполненный с возможностью приложения множества тестовых напряжений к тест-полоске и измерения выходного переходного токового сигнала, который является результатом электрохимической реакции в камере для анализа тест-полоски. Способ может быть реализован путем: вставки тест-полоски в разъем порта для установки полоски измерительного прибора для соединения по меньшей мере двух электродов тест-полоски с цепью измерения полоски; запуска последовательности анализа после нанесения пробы; приложения первого напряжения; вызова трансформации аналитов в пробе из одной формы в другую форму с помощью реагента в камере для анализа; переключения первого напряжения на второе напряжение, отличное от первого напряжения; изменения второго напряжения на третье напряжение, отличное от второго напряжения; измерения второго выходного значения тока переходного токового сигнала с электродов после изменения со второго напряжения на третье напряжение; оценки тока, близкого к выходному значению установившегося тока переходного токового сигнала, после установки третьего напряжения на электродах; выведение тока, пропорционального исходной концентрации глюкозы, на основе первого тока, второго тока и оценочного тока; составление формулы коэффициента компенсации гематокрита на основе тока, пропорционального исходной концентрации глюкозы; и вычисления концентрации глюкозы из выведенного тока, пропорционального исходной концентрации глюкозы, и коэффициента компенсации гематокрита. В данном конкретном способе выведение включает вычисление тока, пропорционального исходной концентрации глюкозы, i2Corr’, на основе следующего Уравнения: , где представляет собой ток, пропорциональный исходной концентрации глюкозы, i4.1 представляет собой ток, измеренный во время приложения третьего напряжения, i5 представляет собой ток, измеренный во время приложения третьего напряжения; и i1.1 представляет собой ток, измеренный во время приложения второго напряжения; где i4.1 представляет собой ток, измеренный через приблизительно 4,1 секунды после запуска последовательности анализа, i5 представляет собой ток, измеренный через приблизительно 5 секунд после запуска последовательности анализа; и i1.1 представляет собой ток, измеренный через приблизительно 1,1 секунды после запуска последовательности анализа; где коэффициент компенсации гематокрита представляет собой значение тока, пропорционального исходной концентрации глюкозы, разделенное на сумму выходных значений тока во время приложения второго напряжения, минус компенсирующая поправка на основе выходного значения тока, измеренном во время приложения второго напряжения; коэффициент компенсации гематокрита имеет следующую форму:
, где p’ представляет собой коэффициент, и , где i2 представляет собой ток, измеренный через приблизительно 2 секунды после запуска последовательности анализа, а 41i2 представляет собой компенсирующую поправку. Способ дополнительно включает использование Уравнения следующей формы:
;
где G1 представляет собой концентрацию глюкозы;
;
где
a’, b’, c, d, p’, zgr’ представляют собой производственные параметры; i4.1 представляет собой ток, измеренный во время приложения третьего напряжения и через приблизительно 4,1 секунды после запуска последовательности анализа;
i5 представляет собой ток, измеренный во время приложения третьего напряжения и через приблизительно 5 секунд после запуска последовательности анализа;
i1.1 представляет собой ток, измеренный во время приложения второго напряжения и через приблизительно 1,1 секунды после запуска последовательности анализа; и
i2 представляет собой ток, измеренный во время приложения второго напряжения и через приблизительно 2 секунды после запуска последовательности анализа.
В дополнительном аспекте предложена система измерения концентрации глюкозы в крови, включающая тест-полоску для измерения аналита и измерительный прибор. Тест-полоска для измерения аналита включает подложку, имеющую нанесенный на нее реагент, и по меньшей мере два электрода, расположенных в непосредственной близости от реагента в камере для анализа. Измеритель аналита включает разъем порта для установки полоски, размещенный с возможностью соединения с двумя электродами; источник питания; и микроконтроллер, электрически соединенный с разъемом порта для установки полоски и источником питания, причем микроконтроллер запрограммирован на определение концентрации глюкозы G1 на основе коэффициента компенсации гематокрита и тока, пропорционального исходной концентрации глюкозы, причем коэффициент компенсации гематокрита включает отношение, которое включает ток, пропорциональный исходной концентрации глюкозы, так что по меньшей мере 97% скорректированных результатов анализа находятся в пределах соответствующего критерия погрешности ±10 мг/дл при 65 мг/дл, 240 мг/дл или 450 мг/дл по сравнению с эталонными данными YSI; ±12 мг/дл при 65 мг/дл, 240 мг/дл или 450 мг/дл по сравнению с эталонными данными YSI; и ±15 мг/дл при 65 мг/дл, 240 мг/дл или 450 мг/дл по сравнению с эталонными данными YSI. В данной системе производственные параметры a’, b’, c, d, p’, zgr’ таковы, что a’ составляет приблизительно 0,14, b’ составляет приблизительно 4,9, c составляет приблизительно 4,24, d составляет приблизительно 11,28 p’ составляет приблизительно 0,548, а zgr’ составляет приблизительно 9,38.
В дополнительном аспекте предложен способ определения концентрации глюкозы в крови с помощью системы измерения концентрации глюкозы, включающей тест-полоску и измерительный прибор. Измерительный прибор имеет микроконтроллер, выполненный с возможностью приложения множества тестовых напряжений к тест-полоске и измерения выходного переходного токового сигнала, который является результатом электрохимической реакции в камере для анализа тест-полоски. Способ может быть реализован путем запуска последовательности анализа после нанесения пробы; приложения первого напряжения; вызова трансформации аналитов в пробе из одной формы в другую форму с помощью реагента в камере для анализа; переключения первого напряжения на второе напряжение, отличное от первого напряжения; изменения второго напряжения на третье напряжение, отличное от второго напряжения; измерения второго выходного значения тока переходного токового сигнала с электродов после изменения со второго напряжения на третье напряжение; оценки тока, близкого к выходному значению установившегося тока переходного токового сигнала, после установки третьего напряжения на электродах; выведение тока, пропорционального исходной концентрации глюкозы, на основе первого тока, второго тока и оценочного тока; и составления формулы коэффициента компенсации гематокрита на основе выведенного тока, пропорционального исходной концентрации глюкозы. В данном способе составление формулы включает деление выведенного тока, пропорционального исходной концентрации глюкозы, на сумму выходных значений тока во время приложения второго напряжения; причем сумма включает компенсирующую поправку относительно суммы, основанную на значении тока, измеренном во время приложения второго напряжения. Данный способ может дополнительно включать стадию вычисления концентрации глюкозы на основе компенсации выведенного тока, пропорционального исходной концентрации глюкозы, коэффициентом компенсации гематокрита; коэффициент компенсации гематокрита имеет следующую форму:
, где p’ представляет собой коэффициент, и , где i2 представляет собой ток, измеренный через приблизительно 2 секунды после запуска последовательности анализа, а 41i2 представляет собой компенсирующую поправку. Альтернативно вычисление включает использование Уравнения следующей формы:
где G1 представляет собой концентрацию глюкозы;
;
где
a’, b’, c, d, p’, zgr’ представляют собой производственные параметры; i4.1 представляет собой ток, измеренный во время приложения третьего напряжения и через приблизительно 4,1 секунды после запуска последовательности анализа;
i5 представляет собой ток, измеренный во время приложения третьего напряжения и через приблизительно 5 секунд после запуска последовательности анализа;
i1.1 представляет собой ток, измеренный во время приложения второго напряжения и через приблизительно 1,1 секунды после запуска последовательности анализа; и
i2 представляет собой ток, измеренный во время приложения второго напряжения и через приблизительно 2 секунды после запуска последовательности анализа.
В другом аспекте предложен способ определения концентрации глюкозы в крови с помощью системы измерения концентрации глюкозы, включающей тест-полоску и измерительный прибор. Измерительный прибор имеет микроконтроллер, выполненный с возможностью приложения множества тестовых напряжений к тест-полоске и измерения выходного переходного токового сигнала, который является результатом электрохимической реакции в камере для анализа тест-полоски. Способ может быть реализован путем: вставки тест-полоски в разъем порта для установки полоски измерительного прибора для соединения по меньшей мере двух электродов тест-полоски с цепью измерения полоски; запуска последовательности анализа после нанесения пробы; приложения первого напряжения; вызова трансформации аналитов в пробе из одной формы в другую форму с помощью реагента в камере для анализа; переключения первого напряжения на второе напряжение, отличное от первого напряжения; изменения второго напряжения на третье напряжение, отличное от второго напряжения; измерения второго выходного значения тока переходного токового сигнала с электродов после изменения со второго напряжения на третье напряжение; оценки приблизительного выходного значения установившегося тока переходного токового сигнала после установки третьего напряжения на электродах; вычисления концентрации глюкозы в крови.
В дополнительном варианте осуществления предложен способ определения концентрации глюкозы в крови с помощью системы измерения концентрации глюкозы, включающей тест-полоску и измерительный прибор. Измерительный прибор имеет микроконтроллер, выполненный с возможностью приложения множества тестовых напряжений к тест-полоске и измерения выходного переходного токового сигнала, который является результатом электрохимической реакции в камере для анализа тест-полоски. Способ может быть реализован путем: вставки тест-полоски в разъем порта для установки полоски измерительного прибора для соединения по меньшей мере двух электродов тест-полоски с цепью измерения полоски; запуска последовательности анализа после нанесения пробы; приложения первого напряжения; вызова трансформации аналитов в пробе из одной формы в другую форму с помощью реагента в камере для анализа; переключения первого напряжения на второе напряжение, отличное от первого напряжения; изменения второго напряжения на третье напряжение, отличное от второго напряжения; измерения второго выходного значения тока переходного токового сигнала с электродов после изменения со второго напряжения на третье напряжение; оценки приблизительного выходного значения установившегося тока переходного токового сигнала после установки третьего напряжения на электродах; вычисления концентрации глюкозы в крови на основе первого, второго и третьего выходных значений тока переходного токового сигнала; выведение первой скорректированной концентрации глюкозы в крови; и выведение второй скорректированной концентрации глюкозы в крови. Третье напряжение может отличаться по величине электродвижущей силы, полярности или комбинации обоих.
В дополнительном варианте осуществления предложен способ определения коэффициента компенсации гематокрита с помощью системы измерения концентрации глюкозы, включающей тест-полоску и измерительный прибор. Измерительный прибор имеет микроконтроллер, выполненный с возможностью приложения множества тестовых напряжений к тест-полоске и измерения выходного переходного токового сигнала, который является результатом электрохимической реакции в камере для анализа тест-полоски. Способ может быть реализован путем: запуска последовательности анализа после нанесения пробы; приложения первого напряжения; вызова трансформации аналитов в пробе из одной формы в другую форму путем приложения множества тестовых напряжений к пробе с реагентом в камере для анализа; измерения множества выходных значений тока из камеры для анализа; выведения тока, пропорционального исходной концентрации глюкозы, на основе множества измеренных выходных значений тока; и составления формулы коэффициента компенсации гематокрита на основе выведенного тока, пропорционального исходной концентрации глюкозы. В данном способе составление формулы может включать деление выведенного тока, пропорционального исходной концентрации глюкозы, на сумму тока, измеренного во время приложения второго напряжения. Сумма может включать компенсирующую поправку относительно суммы, основанную на значении тока, измеренном во время приложения второго напряжения. Способ может включать стадию вычисления концентрации глюкозы на основе компенсации выведенного тока, пропорционального исходной концентрации глюкозы, коэффициентом компенсации гематокрита. В частности, коэффициент компенсации гематокрита может иметь следующую форму:
, где p’ представляет собой коэффициент, и , где i2 представляет собой ток, измеренный через приблизительно 2 секунды после запуска последовательности анализа, а 41i2 представляет собой компенсирующую поправку. В данном способе при вычислении можно использовать Уравнение следующей формы:
где G1 представляет собой концентрацию глюкозы;
;
где
a’, b’, c, d, p’, zgr’ представляют собой производственные параметры; i4.1 представляет собой ток, измеренный во время приложения третьего напряжения и через приблизительно 4,1 секунды после запуска последовательности анализа;
i5 представляет собой ток, измеренный во время приложения третьего напряжения и через приблизительно 5 секунд после запуска последовательности анализа;
i1.1 представляет собой ток, измеренный во время приложения второго напряжения и через приблизительно 1,1 секунды после запуска последовательности анализа; и
i2 представляет собой ток, измеренный во время приложения второго напряжения и через приблизительно 2 секунды после запуска последовательности анализа.
Данные и другие варианты осуществления, особенности и преимущества станут очевидны специалистам в данной области после изучения представленного ниже более подробного описания различных примеров осуществления настоящего изобретения в сочетании с приложенными чертежами, которые кратко описаны в начале заявки.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Приложенные чертежи, включенные в настоящий документ и составляющие часть настоящей спецификации, иллюстрируют считающиеся в настоящее время предпочтительными варианты осуществления настоящего изобретения и вместе с приведенным выше общим описанием и приведенным ниже подробным описанием призваны разъяснить особенности настоящего изобретения (в котором аналогичными номерами представлены аналогичные элементы).
На Фиг.1A представлена предпочтительная система измерения концентрации глюкозы в крови.
На Фиг.1B представлены различные компоненты, размещенные в измерительном приборе, изображенном на Фиг.1A.
На Фиг.1C представлен вид в перспективе тест-полоски в сборе, подходящей для применения в системе и способах, описанных в настоящем документе.
На Фиг.1D представлен вид в перспективе с пространственным разделением компонентов несобранной тест-полоски, подходящей для применения в системе и способах, описанных в настоящем документе.
На Фиг.1E представлен вид в перспективе в увеличенном виде проксимальной части тест-полоски, подходящей для применения в системе и способах, описанных в настоящем документе.
На Фиг.2 представлен вид в горизонтальной проекции снизу одного варианта осуществления тест-полоски, описанной в настоящем документе.
На Фиг.3 представлен вид в горизонтальной проекции сбоку тест-полоски, изображенной на Фиг.2.
На Фиг.4A представлен вид в горизонтальной проекции сверху тест-полоски, изображенной на Фиг.3.
На Фиг.4B представлен частичный вид сбоку проксимальной части тест-полоски, изображенной на Фиг.4A.
На Фиг.5 представлена упрощенная схема, на которой показан измерительный прибор, электрически взаимодействующий с частями тест-полоски, описанной в настоящем документе.
На Фиг.6 представлены по существу стадии, участвующие в определении концентрации глюкозы в крови.
На Фиг.7A представлен пример трехимпульсного потенциального волнового фронта, приложенного изображенным на Фиг.5 измерительным прибором к рабочему электроду и противоэлектроду в течение заданных интервалов времени.
На Фиг.7B представлен первый и второй переходный токовый сигнал (CT), сгенерированный во время анализа физиологической пробы.
На Фиг.8 представлены графики концентрации глюкозы G1 при эталонном значении 65 мг/дл, 240 мг/дл и 450 мг/дл в сравнении с концентрациями, вычисленными существующей системой Verio при различных концентрациях мочевой кислоты в измеренных пробах.
На Фиг.9A представлены графики концентрации глюкозы при таком же эталонном значении и концентрациях мочевой кислоты, как показано на Фиг.8, но вычисленные с помощью новой методики, изобретенной заявителем.
На Фиг.9B представлена таблица IIA, в которой показаны различные уровни погрешности при разных эталонных данных по глюкозе (номинальные значения 65 мг/дл, 240 мг/дл, 450 мг/дл) с применением существующей методики Verio.
На Фиг.9C представлена таблица IIA по ранее существовавшей методике, а на Фиг.9D представлена таблица IIB по новой методике, в которой показано улучшение уровней погрешности при тех же эталонных данных, что и в таблице IIA, с применением новой методики.
На Фиг.10A представлены графики концентрации глюкозы при эталонном значении 65 мг/дл, 240 мг/дл и 450 мг/дл (номинальные значения) в сравнении с концентрацией, вычисленной существующей системой Verio и скорректированными на температурные вариации при различных концентрациях мочевой кислоты в измеренных пробах.
На Фиг.10B представлены графики концентрации глюкозы при эталонном значении 65 мг/дл, 240 мг/дл и 450 мг/дл (номинальные значения) в сравнении с концентрацией, вычисленной по новой методике и скорректированной на температурные вариации при различных концентрациях мочевой кислоты в измеренных пробах.
На Фиг.11A представлены графики концентрации глюкозы, определенные существующей системой Verio при различных уровнях погрешности при каждой концентрации гематокрита из 19%, 30%, 40% и 50%.
На Фиг.11B представлены графики концентрации глюкозы, определенные по новой методике при разных уровнях погрешности при каждой концентрации гематокрита из 19%, 30%, 40% и 50%.
На Фиг.12A представлена таблица IIIA, в которой показаны различные уровни погрешности при разных эталонных данных по глюкозе (65 мг/дл, 240 мг/дл, 450 мг/дл (номинальные значения)) с применением существующей методики Verio.
На Фиг.12B представлена таблица IIIB, в которой показаны различные уровни погрешности при разных эталонных данных по глюкозе (65 мг/дл, 240 мг/дл, 450 мг/дл (номинальные значения)) с применением новой методики.
ВАРИАНТЫ ВЫПОЛНЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Представленное ниже подробное описание следует толковать в отношении чертежей, на которых аналогичные элементы на разных чертежах представлены под идентичными номерами. Чертежи, не обязательно выполненные в масштабе, показывают выбранные варианты осуществления и не призваны ограничить объем настоящего изобретения. Подробное описание представляет принципы настоящего изобретения для иллюстрации, но не для ограничения настоящего изобретения. Настоящее четко изложенное описание позволяет специалисту в данной области реализовать и применять настоящее изобретение, а также описывает несколько вариантов осуществления, адаптаций, вариаций, альтернатив и применений настоящего изобретения, включая способ выполнения изобретения, который считается наилучшим в настоящее время.
В настоящем изобретении термин «приблизительно» применительно к любым числовым значениям или диапазонам указывает на подходящий допуск на размер, который позволяет части или набору компонентов выполнять функцию, предусмотренную для них в настоящем описании. Кроме того, в настоящем документе термины «пациент», «оператор», «пользователь» и «субъект» относятся к любому субъекту-человеку или животному и не ограничивают применение систем или способов людьми, хотя применение объекта изобретения пациентами-людьми представляет собой предпочтительный вариант осуществления.
На Фиг.1A представлена система контроля диабета, включающая измерительный прибор 10 и биосенсор в форме тест-полоски для измерения уровня глюкозы 62. Следует отметить, что измерительный прибор (блок измерительного прибора) также называется блоком измерения и управления концентрацией аналита, глюкометром, измерительным прибором и устройством для измерения концентрации аналита. В одном варианте осуществления блок измерительного прибора может быть скомбинирован с устройством доставки инсулина, дополнительным устройством измерения аналита и устройством доставки лекарственного препарата. Блок измерительного прибора может быть соединен с удаленным компьютером или удаленным сервером посредством кабеля или с помощью подходящей технологии беспроводной связи, такой как, например, GSM, CDMA, BlueTooth, WiFi и т.п.
Как показано на Фиг.1A, глюкометр или блок измерительного прибора 10 может включать кожух 11, кнопки интерфейса пользователя (16, 18 и 20), дисплей 14 и отверстие порта для полоски 22. Кнопки интерфейса пользователя (16, 18 и 20) могут быть выполнены с возможностью ввода данных, навигации по меню и исполнения команд. Кнопка интерфейса пользователя 18 может иметь форму двухпозиционного переключателя. Данные могут включать значения, представляющие концентрацию аналита и/или информацию, которая имеет отношение к повседневной жизни индивидуума. Информация, которая имеет отношение к повседневной жизни, может включать потребление пищи, применение лекарственного средства, проведение медицинских осмотров, а также общее состояние здоровья и уровни физической нагрузки индивидуума. Электронные компоненты измерительного прибора 10 могут быть размещены на печатной плате 34, находящейся внутри кожуха 11.
На Фиг.1B представлены (в упрощенной схематической форме) электронные компоненты, размещенные на верхней поверхности печатной платы 34. Электронные компоненты на верхней поверхности включают разъем порта для установки полоски 22, цепь операционного усилителя 35, микроконтроллер 38, разъем дисплея 14a, энергонезависимое запоминающее устройство 40, тактовый генератор 42 и первый беспроводной модуль 46. Электронные компоненты на нижней поверхности могут включать разъем для батареи питания (не показан) и порт передачи данных 13. Микроконтроллер 38 может быть электрически соединен с разъемом порта для установки полоски 22, цепью операционного усилителя 35, первым беспроводным модулем 46, дисплеем 14, энергонезависимым запоминающим устройством 40, тактовым генератором 42, батареей, портом передачи данных 13 и кнопками интерфейса пользователя (16, 18 и 20).
Цепь операционного усилителя 35 может включать два или более операционных усилителя, выполненных с возможностью обеспечивать часть потенциостатической функции и функции измерения тока. Потенциостатическая функция может означать приложение тестового напряжения между по меньшей мере двумя электродами тест-полоски. Функция измерения тока может означать измерение тестового тока, который является результатом приложения тестового напряжения. Измерение силы тока может выполняться с помощью преобразователя ток-напряжение. Микроконтроллер 38 может быть выполнен в форме микропроцессора со смешанным сигналом (MSP), такого как, например, Texas Instrument MSP 430. Микропроцессор TI-MSP 430 также может быть выполнен с возможностью выполнения части потенциостатической функции и функции измерения тока. Кроме того, MSP 430 также может включать энергозависимое запоминающее устройство и энергонезависимое запоминающее устройство. В другом варианте осуществления многие из электронных компонентов могут быть интегрированы в микроконтроллер в форме специализированной интегральной схемы (СИС).
Разъем порта для установки полоски 22 может быть выполнен с возможностью образования электрического соединения с тест-полоской. Разъем дисплея 14a может быть выполнен с возможностью прикрепления дисплея 14. Дисплей 14 мо