Способ определения эффективности жевательного процесса

Иллюстрации

Показать все

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для определения эффективности жевательного процесса. Для этого проводят исследования образца, представляющего собой частицы пищевого продукта размером менее 1 мм, которые получают с помощью мокрого просеивания через сито с размером ячеек менее 1 мм. После чего проводят анализ дифракции лазерного излучения на частицах дисперсной фазы на лазерном анализаторе в интервале определяемых показателей с эффективным диаметром от 0,10 до 1000 мкм. Для этого готовят суспензию исследуемого образца. Затем проводят измерение величины интенсивности фона, наполняя измерительную кювету 12 мл жидкости и помещая ее в ячейку прибора. Необходимую концентрацию суспензии в кювете подбирают по данным световой интенсивности рассеянного света, так чтобы световая интенсивность находилась в пределах 35-75% от размера шкалы. Полученные результаты анализируют. При выявленном размере частиц от 100 мкм до 1000 мкм судят о снижении эффективности жевательного процесса. Изобретение позволяет ускорить определение эффективности жевательного процесса при повышении точности измерения. 3 ил., 1 пр.

Реферат

Изобретение относится к медицине, а именно к функциональной диагностике в стоматологии, и предназначено для оценки состояния зубочелюстной системы.

Известна жевательная проба И.С. Рубинова [1] в модификации Л.М. Демнера [2]. Пациенту предлагают разжевать 0,8 г ореха до рефлекса глотания. Разжеванную массу взвешивают и просеивают через сито с отверстиями в 2,4 мм. Полученный остаток и прошедшую через сито массу взвешивают. В результате пробы получают два показателя: время жевания и эффективность системы жевания, вычисляемую как соотношение массы всего тестового продукта после пережевывания к массе прошедшей через сито порции (обозначаемый в дальнейшем КПД).

Недостатком известного способа является значительная погрешность за счет ретенции пищи в полости рта, измельчение которой субъективно учитывается при расчете жевательной эффективности. При проведении методики учитывается все, независимо от эффективности (полезности) жевательных движений. Известный способ не позволяет их выделить, методика сложна из-за большого количества операций, необходимых для ее осуществления.

Наиболее близким к предлагаемому способу является способ определения эффективности жевательного процесса [3] путем исследования процесса измельчения пищевого продукта человеком и сравнения с физиологической нормой, заключающийся в регистрации звукового сигнала, возникающего при измельчении пищевого продукта, определения общего времени жевания, количества жевательных движений и суммы амплитуд жевательных движений.

Недостатками способа-прототипа являются низкие функциональнее возможности и невысокая точность диагностики.

Задача изобретения - расширение функциональных возможностей и повышение точности диагностики.

Поставленная задача достигается тем, что в способе определения эффективности жевательного процесса, включающем операции исследования процесса измельчения пищевого продукта человеком и его сравнения, согласно изобретению получают исследуемый образец в виде частиц пищевого продукта размером менее 1 мм с помощью мокрого просеивания через сито с размером ячеек менее 1 мм, проводят анализ дифракции лазерного излучения на частицах дисперсной фазы, распределенных в дисперсионной среде на лазерном анализаторе в интервале определяемых показателей с эффективным диаметром от 0.10 до 1000 мкм, для этого в бюкс с 15 см3 жидкости добавляют исследуемый образец, готовят суспензию исследуемого образца, проводят измерение величины интенсивности фона, наполняя измерительную кювету 12 мл жидкости и помещая в ячейку прибора, далее приготовленную суспензию исследуемого образца объемом от 0,1 до 5 мл мерной пипеткой переносят в кювету с жидкостью, при этом необходимую концентрацию суспензии в кювете подбирают по данным световой интенсивности рассеянного света, считая, что световая интенсивность находится в пределах 35-75% от размера шкалы, полученные результаты сравнивают и анализируют, и при выявленном размере частиц от 100 мкм до 1000 мкм судят о снижении эффективности жевательного процесса.

Достигаемым техническим результатом является сокращение затрат времени на определение эффективности жевательного процесса при повышении точности измерений.

На фиг. 1 представлена гистограмма распределения частиц после сканирования приготовленного раствора.

На фиг. 2 представлены результаты лазерного сканирования - выявленное распределение основного объема частиц от 0,5 до 100 мкм. Этот размер частиц позволяет судить о полноценном пережевывании при небольшом сглаживании окклюзионной поверхности четырех зубов.

На фиг. 3 представлены результаты лазерного сканирования при сглаживании жевательной поверхности восьми зубов. Распределение частиц от 100 до 1000 мкм. Что свидетельствует о снижении жевательной эффективности.

Таким образом, размер частиц в пределах от 0,5 до 100 мкм рассматривается как вариант нормы, а размеры частиц свыше 100 мкм свидетельствуют о снижении жевательной эффективности зубочелюстного аппарата человека.

Предложенный способ работает следующим образом. Предложенный способ позволяет исследовать объем и размеры частиц, полученных после пережевывания (ореха). Для исследования берутся частицы размером менее 1 мм, которые выделяют путем мокрого просеивания через сито с размером ячеек 1 мм. Собранные частицы анализируют с помощью сканирующего лазерного анализатора размеров частиц SALD. При полноценном пережевывании происходит образование частиц 0,1 до 100 мкм. Методика определения размера частиц в суспензии на лазерном анализаторе SALD-2101 (SHIMADZU) в интервале определяемых показателей - эффективный диаметр от 0.10 до 1000 мкм - основана на дифракции (рассеянии) лазерного излучения (λ = 680 нм) на частицах дисперсной фазы, распределенных в дисперсионной среде, и отличается быстротой и широким диапазоном измерения размера частиц. Точность метода обеспечивается высокой чувствительностью датчиков - сенсоров (81-шт.) и использованием обратной оптики Фурье

На первом этапе проводят пробоподготовку образца. Для приготовления суспензии в бюкс, содержащий 15 см3 жидкости, добавляется исследуемый образец. Затем смесь диспергируется 5 сек на ультразвуковом диспергаторе УЗГ 13-0.1/22.

Далее на втором этапе проводятся измерения. Сначала для исключения влияния оптических свойств дисперсионной среды на светорассеяние частиц и, соответственно, на расчет распределения их по размерам проводится измерение величины интенсивности фона («холостое измерение»). Для этого измерительная кювета наполняется 12 мл жидкости, которая была выбрана как измерительная среда для проведения анализа и помещается в ячейку прибора. Приготовленную суспензию исследуемого образца объемом от 0,1 до 5 мл, в зависимости от степени светорассеяния, мерной пипеткой переносят в кювету с жидкостью. Необходимая концентрация суспензии в кювете подбирается по данным световой интенсивности рассеянного света, получаемым в программе. Считается, что концентрация подобрана оптимально, если световая интенсивность находится в пределах 35-75% от размера шкалы. Для поддержания постоянной текущей концентрации частиц в исследуемой (освещаемой лазером) области кюветы используется миксер, входящий в комплект прибора.

Далее проводится дисперсионный анализ. По оси ординат можно оценить объемную долю частиц в исследуемой суспензии, по оси абсцисс размер частиц в микрометрах (мкм). Кроме того, на приведенных фигурах рассчитанные значения медианного диаметра (MedianD - средний размер 50% частиц, присутствующих в пробе), модального диаметра (ModalD - максимум на дифференциальной кривой, показывающий какому размеру частиц в данном распределении, соответствует наибольшая доля), средний диаметр (MeanD) и соответствующее среднеквадратичное отклонение (StdDev).

Клинический пример

Пациент В., 49 лет. Множественные дефекты в области боковой группы зубов. При обследовании дали пережевать 3 гр ореха, совершая 30 жевательных движений. Пережеванную массу собрали из полости рта, затем провели мокрое просеивание через сито, диаметр ячеек которого 1 мм. Полученная взвесь частиц подвергалась лазерному сканированию (фиг. 1). По результатам сканирования размер частиц распределился в пределах 0,5 до 50 мкм. Таким образом, данный способ позволил выявить средний размер частиц и их количество в растворе.

Источники информации

1. Рубинов И.С. Физиологические пробы при учете эффективности акта жевания. // Стоматология. - 1951. - №1. - С. 51-59.

2. Цит. по Аболмасов Н.Г. с соавт. Ортопедическая стоматология // Смоленск, 2000. - С. 57.

3. А.С. №1718796 А61В 5/00, опубликовано 15,03.92.

Способ определения эффективности жевательного процесса, включающий операции исследования процесса измельчения пищевого продукта человеком и его сравнения, отличающийся тем, что получают исследуемый образец в виде частиц пищевого продукта размером менее 1 мм с помощью мокрого просеивания через сито с размером ячеек менее 1 мм, проводят анализ дифракции лазерного излучения на частицах дисперсной фазы, распределенных в дисперсионной среде на лазерном анализаторе в интервале определяемых показателей с эффективным диаметром от 0,10 до 1000 мкм, для этого в бюкс с 15 см3 жидкости добавляют исследуемый образец, готовят суспензию исследуемого образца, проводят измерение величины интенсивности фона, наполняя измерительную кювету 12 мл жидкости и помещая в ячейку прибора, далее приготовленную суспензию исследуемого образца объемом от 0,1 до 5 мл мерной пипеткой переносят в кювету с жидкостью, при этом необходимую концентрацию суспензии в кювете подбирают по данным световой интенсивности рассеянного света, считая, что световая интенсивность находится в пределах 35-75% от размера шкалы, полученные результаты сравнивают и анализируют и при выявленном размере частиц от 100 мкм до 1000 мкм судят о снижении эффективности жевательного процесса.