Композиции серебряных нанопластин и способы

Иллюстрации

Показать все

Группа изобретений относится к медицине. Описан способ получения имеющих высокую оптическую плотность растворов наночастиц, таких как нанопластины, серебряные нанопластины или серебряные пластинчатые наночастицы. Способ может включать добавление стабилизирующих агентов, таких как химические или биологические агенты, которые связаны с поверхностью наночастицы и которые стабилизируют наночастицу до, во время и/или после концентрирования, в результате чего обеспечивается возможность получения стабильного, имеющего высокую оптическую плотность раствора серебряных нанопластин. Способ может также включать увеличение концентрации серебряных нанопластин в растворе, за счет чего обеспечивается увеличение оптической плотности раствора. 2 н. и 22 з.п. ф-лы, 9 ил., 6 пр.

Реферат

ВКЛЮЧЕНИЕ ПОСРЕДСТВОМ ССЫЛКИ НА ПРИОРИТЕТНЫЕ ЗАЯВКИ

Настоящая заявка испрашивает приоритет на основании предварительной заявки на патент США №61/795149, поданной 11 октября 2012 г., содержание которой полностью включено в настоящую заявку посредством ссылки.

СТОРОНЫ ДОГОВОРА О СОВМЕСТНЫХ ИССЛЕДОВАНИЯХ

Описанное в этом документе изобретение было создано при соблюдении договора о совместных исследованиях между Sienna Labs, Inc. и nanoComposix, Inc.

УРОВЕНЬ ТЕХНИКИ

Область техники

Изобретение относится к способу получения имеющих высокую оптическую плотность растворов серебряных пластинчатых наночастиц (например, нанопластин) и к наночастицам, растворам и субстратам, полученным указанными способами.

Описание уровня техники

Наночастицы, включающие наносферы, наностержни, нанопроволоки, нанокубы, нанопластины, а также другие формы, могут быть синтезированы из разных материалов. В одном варианте реализации пластинчатая наночастица представляет собой нанопластину. Наночастицы, изготовленные из металлов, включающих золото и серебро, имеют уникальные оптические свойства, которые можно регулировать для обеспечения взаимодействия со светом по всему спектру электромагнитного излучения благодаря локализованному поверхностному плазмонному резонансу, обеспечиваемому этими наноматериалами. Технологии, в которых используют преимущество таких уникальных оптических свойств серебряных наночастиц, включают, но не ограничиваются, диагностические, фотонные, медицинские и затемняющие технологии. В подгруппе этих технологий, включающей фототермическую абляцию опухоли, удаление волос, уход за угристой кожей, заживление ран и противомикробные применения, помимо прочего, можно использовать растворы наночастиц с высокой оптической плотностью. Серебряные нанопластины, которые также известны как серебряные пластинчатые наночастицы или нанопризмы, представляют особенный интерес для технологий, в которых используют оптические свойства наночастиц, благодаря их регулируемым спектральным пикам и чрезвычайно высокой оптической эффективности. Хотя и разработаны способы изготовления серебряных нанопластин посредством фотоконверсии (Jin et al. 2001; Jin et al. 2003), фотоконверсии с регулированием pH (Xue 2007), термического выращивания (Нао et al. 2004; Нао 2002; Не 2008; Metraux 2005), выращивания на темплате (Нао et al. 2004; Нао 2002) и выращивания с применением затравочных кристаллов (Aherne 2008; Chen; Carroll 2003; Chen; Carroll 2002, 2004; Chen et al. 2002; He 2008; Le Guevel 2009; Xiong et al. 2007), с помощью этих способов получают относительно разбавленные растворы с соответствующей низкой оптической плотностью в видимой и в ближней инфракрасной области спектра.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Для многих областей применения серебряных нанопластин более концентрированный раствор серебряных нанопластин является полезным и может быть особенно выгодным. В некоторых случаях, когда полученные растворы серебряных наночастиц сразу концентрируют с получением более высокой плотности частиц, используя ранее разработанные способы, форма наночастиц может претерпевать изменения, которые приводят к изменению оптических свойств, таких как оптическая плотность. Во многих случаях эти изменения приводят к нежелательному ухудшению оптических свойств наночастиц. Соответственно в нескольких вариантах реализации настоящего изобретения предложены способы получения растворов серебряных нанопластин более высокой концентрации с повышенной оптической плотностью, при этом вероятности ухудшения оптических свойств серебряных нанопластин снижена. В различных вариантах реализации, согласно настоящему изобретению, предложены способы получения имеющих высокую оптическую плотность растворов серебряных нанопластин из разбавленных растворов серебряных нанопластин, которые частично, по существу или полностью сохраняют форму и оптические свойства полученных серебряных нанопластин при увеличении концентрации частиц.

В различных вариантах реализации согласно настоящему изобретению предложены способы получения имеющих высокую оптическую плотность растворов серебряных нанопластин, а также наночастицы и растворы, полученные посредством этих способов. В одном варианте реализации способ включает замещение одного или более исходных компонентов (например, химических или биологических агентов), связанных или иным образом соединенных с поверхностью наночастиц стабилизирующим агентом. В другом варианте реализации стабилизирующий агент не замещает исходный компонент, но скорее дополняет или изменяет исходный компонент. Стабилизирующий агент может представлять собой биологический или химический агент, который стабилизирует нанопластины до, во время и/или после концентрирования, в результате чего обеспечивается возможность получения стабильного имеющего высокую оптическую плотность раствора серебряных нанопластин. В одном варианте реализации способ также включает способ увеличения концентрации серебряных нанопластин в растворе, за счет чего обеспечивается увеличение оптической плотности раствора. В нескольких вариантах реализации стабильность (например, характеристики наночастиц в растворе, такие как форма, размер, оптические свойства, максимальный отклик, плазмонные свойства и т.д.) раствора с высокой оптической плотностью не подвергаются изменению или по существу не подвергаются изменению в течение осуществления способа. Несколько вариантов реализации изобретения включают имеющий высокую оптическую плотность раствор серебряных нанопластин, который стабилизирован стабилизирующими агентами (например, связанными с поверхностью молекулами, химическими агентами и/или биологическими агентами). В одном варианте реализации изобретение включает раствор серебряных нанопластин, поверхность которых функционализирована химическими или биологическими агентами, которые физически адсорбируются на поверхности, молекулярно связываются с поверхностью посредством специфических взаимодействий или заключают в оболочку каждую наночастицу.

В одном варианте реализации имеющий высокую оптическую плотность раствор серебряных нанопластин ассоциирован с субстратом. В одном варианте реализации часть нанопластин в растворе связывается с субстратом с образованием композиционного материала нанопластина-субстрат. Растворы серебряных нанопластин с высокой оптической плотностью можно выдерживать на субстратах с получением нанопластинчатых композиционных материалов, в которых существенная часть площади поверхности субстрата покрыта нанопластинами. В некоторых вариантах реализации субстрат включает волокна, ткань, сетчатый материал, перевязочные материалы, носки, пледы, другие предметы одежды, губки, высокопористые субстраты, частицы с длиной ребра более 1 мкм, шарики, волосы, кожу, бумагу, поглощающие полимеры, пеноматериал, дерево, корковую пробку, предметные стекла, шероховатые поверхности, биосовместимые субстраты, фильтры и/или медицинские имплантаты.

В нескольких вариантах реализации способ увеличения оптической плотности стабильного раствора серебряных нанопластин включает: (i) обеспечение раствора, содержащего множество серебряных нанопластин, имеющих пластинчатую форму, и характеризующегося максимальной оптической плотностью от 0,1 до 10 см-1; (ii) добавление в раствор стабилизирующего агента; (iii) добавление в раствор буфера; и (iv) концентрирование содержащего буфер раствора с получением концентрированного раствора, причем концентрированный раствор содержит множество серебряных нанопластин, имеющих пластинчатую форму, и при этом концентрированный раствор имеет максимальную оптическую плотность более 10 см-1.

В нескольких вариантах реализации способ получения стабильного имеющего высокую оптическую плотность раствора серебряных нанопластин включает следующие стадии: (i) добавление стабилизирующего агента к раствору серебряных нанопластин; (ii) добавление буфера (например, такого как буфер, содержащий растворимую в воде соль) в раствор серебряных нанопластин; (iii) смешивание стабилизирующего агента с буфером и серебряными нанопластинами в течение периода времени, достаточного для того, чтобы стабилизирующий агент вступил во взаимодействие с растворимой в воде солью в буфере на поверхности серебряных нанопластин; и (iv) концентрирование раствора до достижения максимальной оптической плотности более 10 см-1 (например, 50-1500 см-1).

Стабилизирующий агент может включать одно или более соединений из цитрата натрия, растворимого в воде полимера (такого, как полистиролсульфонат натрия и/или углеводородный полимер, образующий производное с сульфонатом), полимера на основе поливинила (такого как поливиниловый спирт (ПВС) и/или поливинилпирролидон (ПВП)), полиэтиленгликоля, полиакриловой кислоты или декстрана. Растворимая в воде соль может включать одно или более соединений из сульфатов, карбонатов, хроматов, боратов, фосфатов, и сульфитов, ацетатов и нитратов. В различных вариантах реализации комбинация стабилизирующего агента и буфера, содержащего одну или более растворимых в воде солей, обеспечивает стабилизацию состава нанопластин, при этом один из компонентов соли может взаимодействовать со стабилизирующим агентом с обеспечением сшивания стабилизирующего агента и повышения стабильности покрытия на серебряной нанопластине. В одном варианте реализации исходный раствор серебряных нанопластин может быть получен из раствора, содержащего один или более стабилизирующих агентов и источник серебра (например, такой, как соль серебра, затравочные кристаллы серебра), и в котором для восстановления источника серебра используют химические агенты, биологические агенты, смешивание, электромагнитное излучение и/или тепло (например, фотоконверсию, фотоконверсию с регулируемым рН, термическое выращивание, выращивание на темплате и/или выращивание с применением затравочных кристаллов).

В различных вариантах реализации способ концентрирования раствора серебряных нанопластин включает стадии обеспечения раствора, содержащего множество серебряных нанопластин, имеющего максимальную оптическую плотность менее 10 см-1 (например, 0,1-9,9 см-1, 1-9 см-1, 3-7 см-1, 1-5 см-1 и/или 5-10 см-1), добавление в раствор стабилизирующего агента, добавление в раствор буфера, содержащего растворимую в воде соль, и концентрирование раствора до достижения максимальной оптической плотности более 10 см-1 (например, 80-150 см-1, 900-1100 см-1, 100 см-1, 1000 см-1 или более). В различных вариантах реализации максимальную оптическую плотность увеличивают на 10%, 50%, 100%, 200%, 500%, 1000%, 10000% или более, и/или увеличивают в соотношении 1:1,5; 1:2; 1:5; 1:10 или более, и/или увеличивают в 1, 1,5, 2, 5, 10, 25, 20, 100, 1000 или более раз.

В различных вариантах реализации серебряные нанопластины имеют аспектное отношение от 1,5 до 50 (например, 1,5-10, 25-50). В одном варианте реализации длина ребра серебряных нанопластин составляет от 10 нм до 300 нм (например, 50-250, 65-100 нм). В различных вариантах реализации стабилизирующий агент включает цитрат натрия или по меньшей мере один растворимый в воде полимер, выбранный из группы, состоящей из полистиролсульфоната натрия и углеводородного полимера, образующего производное с сульфонатом. В некоторых вариантах реализации растворимая в воде соль включает одно или более соединений из сульфатов, карбонатов, хроматов, боратов, фосфатов и сульфитов, ацетатов и нитратов. В одном варианте реализации стабилизирующий агент включает по меньшей мере одно соединение из группы, состоящей из поливинилпироллидона, поливинилового спирта, полиэтиленгликоля, полиакриловой кислоты и декстрана. В одном варианте реализации стабилизирующий агент включает тиол-содержащую молекулу. Тиол-содержащая молекула может включать дигидролипоевую кислоту или ее производное. Способ возможно включает стадии выделения концентрированных нанопластин и заключения выделенных концентрированных нанопластин в оболочку (например, в оболочку из диоксида кремния или другого материала). В одном варианте реализации способ включает стадию концентрирования заключенных в оболочку нанопластин до достижения оптической плотности более 10 см-1 (например, 100 см-1, 1000 см-1 или более). Стабилизирующий агент добавляют до образования серебряных нанопластин. В одном варианте реализации нанопластины концентрируют посредством фильтрации в тангенциальном потоке. В одном варианте реализации концентрация серебра составляет более 1,0 мг/мл (например, 1-1000, 10-300 мг/л).

В различных вариантах реализации предложен способ получения серебряных нанопластин, покрытых оксидом металла. Способ может включать следующие стадии: обеспечение раствора серебряных нанопластин, имеющего максимум спектра поглощения от 500 до 1500 нм (например, 600-1400, 800-1200 нм) и оптическую плотность более 10 см-1 (например, 100 см-1, 1000 см-1 или более), и приведение этого раствора в контакт с раствором оксида металла или предшественника оксида металла в количестве, достаточном для образования покрытия из оксида металла на внешней поверхности серебряных нанопластин. В некоторых вариантах реализации серебряные нанопластины ассоциированы со стабилизирующим полимером (например, поливинилпирролидоном, поливиниловым спиртом или их комбинацией) перед приведением их в контакт с предшественником оксида металла, например, посредством размещения стабилизирующего полимера на внешней поверхности серебряных нанопластин. В различных вариантах реализации оксид металла представляет собой диоксид кремния или включает диоксид кремния.

В различных вариантах реализации способ получения раствора серебряных нанопластин включает следующие стадии: обеспечение раствора, содержащего восстанавливающий агент, стабилизирующий агент, растворимый в воде полимер и соль серебра; образование множества затравочных кристаллов серебра из раствора; обеспечение роста множества затравочных кристаллов серебра с образованием множества серебряных нанопластин в растворе с получением раствора серебряных нанопластин; добавление стабилизирующего агента к раствору серебряных нанопластин; добавление в раствор серебряных нанопластин буфера, содержащего растворимую в воде соль, и концентрирование раствора серебряных нанопластин до достижения максимальной оптической плотности более 10 см-1 (например, 100 см-1, 1000 см-1 или более).

В различных вариантах реализации композиция содержит или по существу состоит из раствора серебряных нанопластин, при этом серебряные нанопластины содержат поливиниловый полимер. В некоторых вариантах реализации поливиниловый полимер включает поливинилпирролидон или поливиниловый спирт. В нескольких вариантах реализации композиция (например, раствор) содержит одну или более солей, таких как растворимые в воде соли (например, сульфаты, карбонаты, хроматы, бораты, фосфаты и сульфиты, ацетаты и нитраты).

В различных вариантах реализации поливиниловый полимер ассоциирован с солью, поливиниловый полимер покрывает по меньшей мере часть серебряных нанопластин и/или поливиниловый полимер находится на внешней поверхности серебряных нанопластин. В одном варианте реализации раствор содержит серебряные нанопластины в концентрации, эффективной для сцепления с неметаллическим материалом покрытия, присутствующим в растворе. Раствор может быть приготовлен в виде состава для концентрирования. В некоторых вариантах реализации оптическая плотность раствора или серебряных нанопластин составляет более 10 см-1 (например, 100 см-1, 1000 см-1 или более). Раствор может содержать соль (сульфаты, карбонаты, хроматы, бораты, фосфаты и сульфиты, ацетаты и нитраты) в концентрации более 0,1 мМ (например, от 0,1 мМ до 10 мМ). В одном варианте реализации раствор имеет рН более 7 (например, 8-13). В некоторых вариантах реализации спектр поглощения серебряных нанопластин включает максимум при длине волны от 500 до 1500 нм (например, 600-1400, 550-1100, 810-830, 1000-1100 нм). В одном варианте реализации раствор содержит бикарбонат. Серебряные нанопластины могут быть покрыты диоксидом кремния. Длину ребра серебряных нанопластин может составлять от 10 нм до 500 нм (например, 50-300, 100-150 нм).

В различных вариантах реализации композиция содержит или по существу состоит из раствора серебряных нанопластин, связанных с материалом оболочки, содержащим поливиниловый полимер. В одном варианте реализации серебряные нанопластины по существу покрыты поливиниловым полимером. В различных вариантах реализации композиция содержит оксид металла, оксид металла включает диоксид кремния, поливиниловый полимер включает поливиниловый спирт или поливинилпирролидон, серебряные нанопластины связаны с поливиниловым спиртом и диоксидом кремния, и/или серебряные нанопластины связаны с поливинилпирролидоном и диоксидом кремния, или композиция содержит любую комбинацию вышеперечисленного. В одном варианте реализации композиция содержит фрагмент, выбранный из аминного фрагмента и меркаптофрагмента. В одном варианте реализации фрагмент связан с диоксидом кремния. В одном варианте реализации композиция содержит алюминий. В одном варианте реализации оптическая плотность раствора составляет более 10 см-1 (например, 100-1100 см-1 или более). В одном варианте реализации оптическая плотность серебряных нанопластин составляет более 10 см-1 (например, 100 см-1, 1000 см-1, 11-5000 см-1 или более). В некоторых вариантах реализации раствор содержит растворимую в воде соль (такую, как сульфаты, карбонаты, хроматы, бораты, фосфаты и сульфиты, ацетаты и нитраты) в концентрации более 0,1 мМ (например, от 0,5 мМ до 2 мМ, от 0,1 мМ до 10 мМ). В одном варианте реализации рН составляет более 7 (например, 8, 9, 10, 11, 12, 13). В одном варианте реализации серебряные нанопластины имеют максимум при длине волны от 500 до 1500 нм (например, 700-1300, 810-830, 1000-1100 нм).

В различных вариантах реализации композиция содержит серебряные нанопластины, по меньшей мере частично покрытые материалом оболочки, который содержит поливиниловый полимер, при этом средняя толщина оболочки составляет от 1 нм до 50 нм (например, 5, 15, 40 нм). В одном варианте реализации длина по меньшей мере одного ребра серебряных нанопластин составляет от 10 нм до 500 нм (например, 25, 100, 250, 300 нм).

В различных вариантах реализации набор включает или по существу состоит из одного или более контейнеров, содержащих нанопластины с оптической плотностью более 10 см-1 (например, 100 см-1, 1000 см-1 или более), раствор, подходящий для нанесения на нанопластины оболочки из оксида металла, и инструкции по его применению. В одном варианте реализации нанопластины содержат поливиниловый полимер. В одном варианте реализации поливиниловый полимер взаимодействует (например, сшивается или иным образом соединяется) с растворимой в воде солью (например, сульфатами, карбонатами, хроматами, боратами, фосфатами и сульфитами, ацетатами и нитратами).

В различных вариантах реализации раствор содержит серебряные нанопластины, по меньшей мере частично покрытые покрытием из диоксида кремния, при этом серебряные нанопластины имеют максимальную оптическую плотность более 10 см-1 (например, 11-5000 см-1, 90-1100 см-1 или более). В одном варианте реализации толщина оболочки покрытия из диоксида кремния составляет от 2 до 100 нм (например, 10-70, 30-90, 40-60 нм). В одном варианте реализации раствор содержит растворимую в воде соль (например, сульфаты, карбонаты, хроматы, бораты, фосфаты и сульфиты, ацетаты и нитраты) в концентрации более 0,1 мМ (например, от 0,1 мМ до 10 мМ). В одном варианте реализации раствор имеет рН более 7 (например, 9, 12, 13). В одном варианте реализации серебряные нанопластины имеют максимум спектра поглощения, включающий максимум при длине волны от 500 нм до 1500 нм (например, 800-1400 нм). В одном варианте реализации покрытие из диоксида кремния находится на внешней поверхности серебряных нанопластин. В одном варианте реализации покрытие из диоксида кремния включает аминный фрагмент или меркаптофрагмент. В одном варианте реализации покрытие дополнительно содержит алюминий. В одном варианте реализации покрытие содержит бикарбонат. В одном варианте реализации покрытие содержит поливинилпирролидон. В одном варианте реализации толщина серебряных нанопластин составляет от 1 нм до 50 нм (например, 10-40, 15-25, 5-30). В одном варианте реализации длина по меньшей мере одного ребра серебряных нанопластин составляет от 10 нм до 500 нм (например, 20-400, 50-250, 300-450).

В некоторых вариантах реализации способ получения раствора серебряных нанопластин с очень высокой оптической плотностью включает стадии: (i) добавление стабилизирующего концентрацию химического агента к раствору серебряных нанопластин или реагентов-предшественников и (ii) увеличение концентрации серебряных нанопластин с увеличением оптической плотности раствора.

В различных вариантах реализации серебряные нанопластины имеют аспектное отношение от 1,5 до 25 (например, 1,5-10, 1,5-5, 10-30, 25-50), и/или длина ребра нанопластин составляет примерно от 10 нм до 250 нм (например, 25-180, 50-150 нм), и/или нанопластины имеют треугольное поперечное сечение, и/или нанопластины имеют круглое поперечное сечение. В одном варианте реализации периметр поперечного сечения нанопластин содержит от 4 до 8 ребер (например, 5, 6, 7). В различных вариантах реализации раствор серебряных нанопластин получают с использованием одного или более способов из способа фотоконверсии, способа фотоконверсии с регулированием рН, способа термического выращивания, способа выращивания с применением затравочных кристаллов, и/или раствор содержит стабилизирующий форму агент или агенты и источник серебра. В различных вариантах реализации для восстановления источника серебра используют химические или биологические агенты, и/или электромагнитное излучение, и/или тепло, и/или их комбинацию. В одном варианте реализации раствор серебряных нанопластин получают из комбинации восстанавливающего агента, стабилизирующего форму агента, источника света, источника тепла и источника серебра.

В одном варианте реализации для изменения рН раствора добавляют кислоту, основание или буфер (также называемый «буферным агентом»). В различных вариантах реализации стабилизирующий концентрацию химический агент добавляют до, во время и/или после образования серебряных нанопластин. В одном варианте реализации стабилизирующий концентрацию химический агент действует как стабилизирующий форму агент. В одном варианте реализации стабилизирующий концентрацию химический агент действует как восстанавливающий агент. В одном варианте реализации стабилизирующий концентрацию химический агент действует как агент, изменяющий рН раствора.

В одном варианте реализации стабилизирующий концентрацию химический агент представляет собой растворимый в воде полимер. В различных вариантах реализации полимер представляет собой одно или более соединений из производного полисульфоната, полистиролсульфоната натрия, производного винилового полимера и поливинилового спирта (ПВС). В различных вариантах реализации ПВС имеет молекулярную массу менее примерно 80000 дальтон, примерно от 80000 дальтон до 120000 дальтон и/или более примерно 120000 дальтон. В одном варианте реализации полимер представляет собой поливинилпирролидон (ПВП). В различных вариантах реализации ПВП имеет молекулярную массу менее примерно 20000 дальтон, более примерно 20000 дальтон, примерно от 20000 дальтон до 60000 дальтон и/или более примерно 60000 дальтон. В одном варианте реализации полимер представляет собой производное этиленоксида.

В одном варианте реализации полимер представляет собой полиэтиленгликоль (ПЭГ). В различных вариантах реализации ПЭГ имеет молекулярную массу менее примерно 5000 дальтон, примерно от 5000 дальтон до 10000 дальтон и/или более примерно 10000 дальтон. В одном варианте реализации ПЭГ содержит одну функциональную группу. В одном варианте реализации ПЭГ содержит две функциональные группы. Согласно некоторым вариантам реализации, функциональная группа или группы состоят из одной или более следующих групп: аминной, тиольной, акрилатной, алкиновой, малеимидной, силановой, азидной, гидроксильной, липидной, дисульфидной группы, группы флуоресцирующей молекулы и/или биотина. В одном варианте реализации стабилизирующий концентрацию агент представляет собой производное углевода. В различных вариантах реализации полимер представляет собой моносахарид, дисахарид, олигосахарид, полисахарид и/или декстран. В различных вариантах реализации декстран имеет молекулярную массу менее примерно 2000 дальтон, более примерно 2000 дальтон (например, 500, 1000, 1500 дальтон), примерно от 2000 дальтон до 5000 дальтон (например, 3000, 4000 дальтон) и/или более примерно 5000 дальтон (например, 6000, 8000, 10000 или более).

В различных вариантах реализации стабилизирующий концентрацию химический агент представляет собой одно или более веществ из фенола, мономерного фенола, димерного фенола, тримерного фенола, полифенола, танина, гуммиарабика, биологической молекулы, белка, альбумина бычьей сыворотки, стрептавидина, биотина, пептида, олигонуклеотида, природного олигонуклеотида, синтетического олигонуклеотида, оксида металла или металлоида, и/или оболочку из диоксида кремния. В одном варианте реализации оболочка из диоксида кремния имеет толщину от примерно менее 1 нм до примерно 100 нм (например, 2-90, 5-25, 30-70). В одном варианте реализации используют комбинацию стабилизирующих агентов.

В различных вариантах реализации растворитель может представлять собой одно или более соединений из воды, спирта, этанола, изопропилового спирта, трет-бутанола, смесь воды и спирта.

В одном варианте реализации концентрацию серебряных нанопластин увеличивают с использованием фильтрации в тангенциальном потоке. В одном варианте реализации фильтрацию в тангенциальном потоке выполняют с использованием фильтрующей мембраны с тангенциальным потоком. В одном варианте реализации мембрана с тангенциальным потоком выполнена из сложного эфира целлюлозы или смеси сложных эфиров целлюлозы.

В различных вариантах реализации мембрана с тангенциальным потоком выполнена из одного или более соединений из полиэфирсульфона и/или полисульфона. В различных вариантах реализации мембрана с тангенциальным потоком имеет отсечение по молекулярной массе менее примерно 10 кД (например, 1, 5, 8 кД), примерно от 10 кД до 500 кД (например, 50, 250, 400 кД), более примерно 500 кД (например, 750, 1000, 5000 кД или более), менее примерно 0,05 мкм (например, 0,01; 0,03 мкм), примерно от 0,05 мкм до 0,5 мкм (например, 0,1; 0,25; 0,4 мкм) и/или более примерно 0,5 мкм (например, 1,0; 2; 5; 10; 100 мкм).

В различных вариантах реализации раствор серебряных нанопластин концентрируют с получением раствора, имеющего оптическую плотность более примерно 10 см-1, более примерно 50 см-1, более примерно 75 см-1, более примерно 100 см-1 и/или более примерно 500 см-1 (например, 100-1000, 100-2000 см-1).

В одном варианте реализации растворитель концентрированного раствора заменяют с использованием фильтрации в тангенциальном потоке. В одном варианте реализации концентрированный раствор обрабатывают с использованием фильтрации в тангенциальном потоке с удалением остаточных химических веществ.

В различных вариантах реализации раствор наночастиц, содержащий серебряные наночастицы, покрывают полимером с оптической плотностью более 100 см-1 (например, 200, 500, 700, 1500 или более). В одном варианте реализации раствор серебряных нанопластин выдерживают с субстратом. В одном варианте реализации субстрат удаляют из раствора серебряных нанопластин и высушивают.

В одном варианте реализации настоящего изобретения предложены способы приготовления растворов плазмонных наночастиц, таких как, например, серебряные нанопластины, которые подходят для выполнения термической модуляции целевого участка ткани. Термической модуляции целевой ткани можно достичь, когда композицию, содержащую множество плазмонных наночастиц, вводят субъекту при таких условиях, что эффективное количество плазмонных наночастиц локализуется в области целевого участка ткани, и целевой участок ткани подвергают воздействию энергии, высвобождающейся из источника возбуждения поверхностного плазмонного резонанса, в количестве, эффективном для того, чтобы вызвать термическую модуляцию области целевого участка ткани. В различных вариантах реализации материалы, описанные в этом документе, являются пригодными для осуществления направленного аблятивного или неаблятивного нагревания ткани. Например, в одном варианте реализации предложен способ осуществления направленного аблятивного или неаблятивного нагревания ткани для лечения субъекта, представляющего собой млекопитающее, нуждающегося в таком лечении, включающий следующие стадии: (i) местное нанесение на поверхность кожи субъекта композиции плазмонных наночастиц, включающих серебряные нанопластины; (ii) обеспечение средств проникновения для перераспределения плазмонных частиц с поверхности кожи в компонент кожной ткани; и (iii) обеспечение облучения поверхности кожи светом.

В некоторых вариантах реализации изобретение включает композиции, которые при применении с подходящими способами введения и возбуждении источником энергии на основе света, могут обеспечить достижение неинвазивного или минимально инвазивного лечения кожи и нижележащих тканей, или других доступных участков тканей с использованием наночастиц. Применение оптически плотных растворов плазмонных наночастиц, таких как, например, серебряные нанопластины, при возбуждении лазером с короткими импульсами излучения (например, с длительностью импульса от 0,1 мс до 1 с), может обеспечить крутые нестационарные градиенты температуры, которые селективно направляют аблятивное или неаблятивное тепло к структурам в пределах нескольких клеточных слоев, где локализованы частицы, например, пилосебацейный комплекс для ухода за угристой кожей и уменьшения размеров пор, целевые эпидермальные и дермальные слои для шлифовки кожи и для ремоделирования рубцов малого профиля, и волосяные фолликулы для длительного удаления волос. Лечение может включать, но не ограничивается ими, удаление волос, рост волос, возобновление роста волос и обновление или шлифовку кожи, удаление или сокращение количества угрей, сокращение количества морщин, уменьшение пор, абляцию целлюлита и других дермальных липидных отложений, удаление бородавок и грибков, уменьшение толщины или удаление рубцов, включая гипертрофические рубцы, атрофические рубцы и келоиды, устранение аномальной пигментации (такой, как капиллярная гемангиома), удаление татуировок и/или неровностей кожи (например, по текстуре, цвету, тону, эластичности, увлажненности). Другие терапевтические или профилактические способы включают, но не ограничены перечисленным, лечение усиленного потоотделения, отсутствия потоотделения, синдрома Фрея (аурикулотемпорального синдрома), синдрома Горнера и синдрома Росса, актинического кератоза, фолликулярного дискератоза, дерматита, витилиго, питириаза, псориаза, красного плоского лишая, экземы, алопеции, псориаза, злокачественных или незлокачественных опухолей кожи.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Другие задачи, признаки и преимущества изобретения (изобретений) станут очевидны из нижеследующего подробного описания, рассматриваемого в сочетании с сопроводительными чертежами, показывающими приведенные в качестве иллюстрации варианты реализации изобретения, при этом ниже представлено описание чертежей. Чертежи являются примерами, и их не следует использовать для ограничения вариантов реализации. Более того, перечисление вариантов реализации, имеющих указанные признаки, не предполагает исключение других вариантов реализации, имеющих дополнительные признаки, или других вариантов реализации, включающих различные комбинации указанных признаков. Кроме того, признаки в одном варианте реализации (например, на одном чертеже) можно комбинировать с описаниями (и чертежами) других вариантов реализации.

На Фиг. 1 показан оптический спектр раствора серебряных нанопластин, приготовленного с использованием способа фотоконверсии согласно одному варианту реализации настоящего изобретения. После приготовления эти серебряные нанопластины, в одном варианте реализации, имеют максимальную оптическую плотность менее 1 см-1 (например, примерно 0,8 см-1).

На Фиг. 2 показан оптический спектр раствора серебряных нанопластин, приготовленного с использованием способа выращивания с затравочными кристаллами, согласно одному варианту настоящего изобретения. После приготовления эти серебряные нанопластины имеют максимальную оптическую плотность менее 3 см-1.

На Фиг. 3А показано изображение, полученное с помощью просвечивающей электронной микроскопии, раствора серебряных нанопластин, приготовленного с использованием способа фотоконверсии, согласно одному варианту реализации настоящего изобретения.

На Фиг. 3В показано изображение, полученное с помощью просвечивающей электронной микроскопии, раствора серебряных нанопластин, приготовленного с использованием способа выращивания с затравочными кристаллами, согласно одному варианту реализации настоящего изобретения.

На Фиг. 4 представлены оптические спектры серебряных нанопластин без добавления стабилизирующего агента и растворимой в воде соли, согласно одному варианту реализации настоящего изобретения, перед концентрированием в тангенциальном потоке и после концентрирования в тангенциальном потоке.

На Фиг. 5 представлены нормализованные оптические спектры серебряных нанопластин без добавления стабилизирующего агента и растворимой в воде соли, согласно одному варианту реализации настоящего изобретения, перед концентрированием в тангенциальном потоке и после концентрирования.

На Фиг. 6 представлены оптические спектры серебряных нанопластин в комбинации с поливиниловым спиртом и растворимой в воде солью, согласно одному варианту реализации, перед концентрированием и после концентрирования.

На Фиг. 7 представлены нормализованные оптические спектры серебряных нанопластин в комбинации с поливиниловым спиртом и растворимой в воде солью, согласно одному варианту реализации, перед концентрированием и после концентрирования.

На Фиг. 8 показаны оптические спектры затухания растворов нанопластин с высокой оптической плотностью, обработанных с использованием способов, описанных в различных вариантах реализации изобретения.

На Фиг. 9 показаны стадии получения серебряных нанопластин в одном варианте реализации посредством получения серебряных нанопластин, добавления стабилизирующих агентов, концентрирования нанопластин и возможно нанесения на нанопластины покрытия из диоксида кремния.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА РЕАЛИЗАЦИИ

Несколько вариантов реализации настоящего изобретения включают способы получения растворов плазмонных наночастиц, включающих серебряные нанопластины, которые подходят для выполнения термической модуляции целевого участка ткани. В одном варианте реализации термической модуляции целевой ткани можно достичь, когда композицию, содержащую множество плазмонных наночастиц вводят субъекту при таких условиях, что эффективное количество плазмонных наночастиц локализируется в области целевого участка ткани. Целевой участок ткани подвергают воздействию энергии, высвобождающейся из источника возбуждения поверхностного плазмонного резонанса. Энергию высвобождают в количестве, эффективном для того, чтобы вызвать термическую модуляцию области целевого участка ткани.

Оптическую плотность (О.П.), которую в этом документе используют как синоним поглощения, определяют как логарифмическое отношение излучения, падающего на материал, к излучению, прошедшему через материал

(О.П.=-log10(I1/I0),

где I1 представляет собой интенсивность прошедшего света, a I0 представляет собой интенсивность падающего света. Для растворов оптическая плотность представляет собой функцию длины оптического пути через жидкий о