Способ и система эксплуатации двигателя транспортного средства и система двигателя с наддувом
Иллюстрации
Показать всеИзобретение может быть использовано в двигателях внутреннего сгорания с наддувом. Способ эксплуатации двигателя (10) с наддувом заключается в том, что если запас до границы помпажа компрессора (162) превышает пороговое значение, то осуществляют эксплуатацию двигателя (10) с наддувом и удерживают клапан (158), соединяющий выпускное отверстие компрессора (162) с впускным отверстием компрессора (162), в полуоткрытом положении, являющемся положением по умолчанию. Если указанный запас меньше указанного порогового значения, то переводят клапан (158) из полуоткрытого положения в полностью открытое положение. При временном увеличении требуемого крутящего момента водителем транспортного средства переводят клапан (158) из полуоткрытого положения в полностью закрытое положение. Раскрыты вариант способа эксплуатации двигателя с наддувом и система транспортного средства. Технический результат заключается в предотвращении помпажа компрессора. 3 н. и 11 з.п. ф-лы, 8 ил.
Реферат
Область техники, к которой относится изобретение
Изобретение относится к способам и системам для использования рециркулирующего потока компрессора для защиты от помпажа.
Уровень техники
Системы двигателей могут быть оборудованы устройствами наддува, такими как нагнетатели или турбонагнетатели, для нагнетания воздуха и повышения пиковой выходной мощности. Использование компрессора позволяет одновременно достичь увеличения мощности малолитражного двигателя внутреннего сгорания и снижения расхода топлива. Однако следует отметить, что компрессоры подвержены явлению помпажа. Например, при отпускании водителем педали газа происходит закрытие дросселя на входе двигателя, что приводит к снижению прямого потока воздуха, проходящего через компрессор, и может стать причиной помпажа компрессора. Помпаж может привести к проблемам, связанным с шумом, вибрацией и жесткостью (NVH), например, к нежелательному шуму, создаваемому впускной системой двигателя. Таким образом, в зависимости от потока воздуха и давления на входе компрессор может перейти в область слабого или сильного помпажа. Во время сильного помпажа воздух мгновенно проходит обратно через компрессор, вызывая резкие колебания давления. Во время слабого помпажа возникает относительно небольшая нестабильность работы компрессора.
Для устранения проблем, связанных с любым типом помпажа компрессора, системы двигателя могут содержать перепускной клапан компрессора, соединенный с компрессором для обеспечения резкого снижения давления наддува. Один пример такого перепускного клапана компрессора (так называемого рециркуляционного клапана компрессора) раскрыт в документе US 2012/0014812. В известном решении перепускной клапан компрессора представляет собой двухпозиционный клапан, который удерживают в закрытом положении в установившемся режиме работы и принудительно открывают в зависимости от обнаружения помпажа. При открытии клапана часть воздуха, выходящего из компрессора, поступает обратно на впускное отверстие компрессора. В других способах для решения проблем, связанных с помпажем, может быть использован всережимный клапан.
В настоящем описании указаны возможные проблемы, связанные с такими системами. Например, для снижения износа и расхода топлива клапан, раскрытый в вышеуказанном документе, удерживают в закрытом состоянии при отсутствии признаков помпажа. В частности, если клапан удерживают в открытом положении (например, для снижения вероятности возникновения помпажа до его фактического наступления), компрессор не сможет создать давление наддува, необходимое для создания требуемого крутящего момента двигателя. Увеличение работы турбины, необходимой для компенсации дополнительной работы компрессора, также приводит к снижению эффективности расхода топлива. Кроме того, энергия может быть использована для удержания клапана в открытом положении. Однако такой способ может привести к значительному увеличению расхода энергии. Это связано со снижением запаса до границы помпажа при установившемся режиме, когда клапан удерживают в закрытом положении, что приводит к частому помпажу и требует частого открытия клапана. Таким образом, это расходует энергию. Кроме того, если помпаж вызван отпусканием водителем педали газа вскоре после нажатия на нее, энергия также используется для приведения закрытого клапана в движение и увеличения давления наддува. Это приводит к увеличению времени реакции на изменение требуемого крутящего момента. В частности, в случае предотвращения помпажа за счет открытия клапана после отпускания водителем педали газа вскоре после нажатия на нее восстановление давления наддува и создание крутящего момента двигателя занимает больше времени, чем в случае, если бы клапан не был полностью открыт.
Кроме того, клапан, раскрытый в известном решении, не позволяет одинаково хорошо справляться с проблемами, связанными с сильным и слабым помпажем. Например, открытие перепускного клапана компрессора и последующее быстрое увеличение потока, проходящего через компрессор, может оказаться более эффективным при решении проблем, связанных с сильным помпажем, который возникает при переходных условиях, например, при отпускании педали газа, но не со слабым помпажем, который может возникнуть во время установившегося режима. В частности, сильное снижение давления на впуске, связанное с открытием клапана, может снизить производительность двигателя при слабом помпаже в случае подачи команды открытия клапана.
Раскрытие изобретения
С учетом указанных выше проблем было определено, что предпочтительным может быть удержание клапана в частично открытом положении и обеспечение рециркуляции, по крайней мере, части потока, проходящего через компрессор, при установившемся режиме до получения индикации помпажа, даже при необходимости потратить некоторое количество энергии для этого. Указанные выше проблемы могут быть решены с помощью способа эксплуатации двигателя с наддувом, имеющего рециркуляционный клапан компрессора, который может быть переключен между несколькими положениями, в том числе, по меньшей мере, полностью открытое положение, полностью закрытое положение и полуоткрытое положение. В соответствии со способом эксплуатируют двигатель без помпажа с клапаном, соединяющим выпускное отверстие компрессора с впускным отверстием компрессора в полуоткрытом положении; удерживают клапан в полуоткрытом положении при обнаружении слабого помпажа или при отсутствии помпажа и переключают клапан из полуоткрытого положения в полностью открытое положение при обнаружении сильного помпажа. Данный способ позволяет решить проблемы, связанные с сильным и слабым помпажем, а также снизить использование энергии и уменьшить время реакции на изменение требуемого крутящего момента.
Система двигателя с наддувом может содержать рециркуляционный клапан компрессора, расположенный в канале, соединяющем выпускное отверстие компрессора с впускным отверстием компрессора. Во время установившегося режима при включенном наддуве клапан может иметь исходное полуоткрытое положение. Клапан может пассивно удерживаться в полуоткрытом положении без использования внешнего исполнительного механизма, соединенного с клапаном, с помощью пары предварительно нагруженных и сжатых противодействующих пружин. Предварительно нагруженные пружины удерживают клапан в исходном полуоткрытом положении и обеспечивают прохождение номинального потока через компрессор. Таким образом, запас до границы сильного и слабого помпажа может быть увеличен, что позволяет снизить вероятность возникновения помпажа и, следовательно, уменьшить частоту приведения клапана в движение. Уменьшение частоты привода клапана в движение при повышенном запасе по помпажу в установившемся режиме позволяет снизить потребление энергии. Клапан может удерживаться в исходном полуоткрытом положении для снижения вероятности возникновения слабого помпажа. При обнаружении сильного помпажа (например, во время отпускания педали газа) внешний исполнительный механизм может быть приведен в действие для перемещения клапана из полуоткрытого положения в полностью открытое положение. Увеличение степени открытия клапана позволяет быстро увеличить поток, проходящий через компрессор, чтобы практически мгновенно решить проблемы, связанные с сильным помпажем. В сравнении, при обнаружении резкого увеличения требуемого крутящего момента (например, при увеличении нагрузки на двигатель) внешний исполнительный механизм может быть приведен в действие для перемещения клапана из полуоткрытого положения в полностью закрытое положение. В данном случае при резком увеличении мощности двигателя происходит закрытие клапана, позволяющее быстро увеличить давление наддува.
Таким образом, частичное открытие рециркуляционного клапана компрессора при установившемся режиме позволяет увеличить запас по помпажу и снизить вероятность возникновения помпажа. Также при возникновении помпажа (например, сильного помпажа) клапан может быть быстро переведен в полностью открытое положение, что позволит снизить время реакции на обнаружение сильного помпажа. Аналогичным образом клапан может быть быстро перемещен в полностью закрытое положение для увеличения давления наддува, что позволит уменьшить время реакции на изменение крутящего момента при переходных условиях и улучшить управляемость транспортного средства. Возможность работы с полуоткрытым клапаном увеличивает запас до границы сильного и слабого помпажа по сравнению с использованием традиционных двухпозиционных помпажных клапанов компрессора, которые имеют ограничения, связанные с регулировкой положения, без увеличения расхода энергии. Использование трехпозиционного клапана позволяет эффективнее решать проблемы, связанные с сильным и слабым помпажем. Кроме того, по сравнению с всережимными клапанами трехпозиционный клапан имеет меньшую стоимость и сложность. Также практически при любых условиях работы двигателя клапан потребляет гораздо меньше энергии. Например, клапан со сбалансированным давлением, представляющий собой корпус электронного дросселя, может быть всережимным, но при этом потреблять гораздо меньше энергии при установившемся режиме работы. В общем случае проблемы, связанные с помпажем, могут быть решены при помощи более простых клапанов.
Следует понимать, что приведенная выше сущность изобретения используется для того, чтобы познакомить в упрощенной форме с набором концепций, которые будут далее описаны в подробном описании, и не предназначена для определения ключевых или основных особенностей заявленного объекта, область применения которого однозначно определена формулой изобретения. Кроме того, заявленный объект изобретения не ограничен вариантами, которые устраняют недостатки, указанные выше или упомянутые в любой части настоящего раскрытия.
Краткое описание чертежей
На Фиг. 1 показан пример пути прохождения воздуха через систему двигателя с наддувом, содержащую рециркуляционный клапан компрессора.
На Фиг. 2-3 показаны детальные варианты реализации рециркуляционного клапана компрессора по Фиг. 1.
На Фиг. 4 показан график рабочих характеристик компрессора, на котором показаны границы сильного и слабого помпажа.
На Фиг. 5 показана высокоуровневая блок-схема, показывающая способ, который может быть использован для регулировки положения рециркуляционного клапана компрессора по Фиг. 1-2 при обнаружении помпажа.
На фиг. 6 показан пример регулировки рециркуляционного клапана компрессора при переменных условиях работы двигателя в соответствии с изобретением.
На Фиг. 7-8 показаны варианты реализации рециркуляционного клапана компрессора по Фиг. 1.
Осуществление изобретения
Следующее описание относится к системам и способам решения проблем, связанных с помпажем компрессора в системе двигателя с наддувом, например, в системе по Фиг. 1, использующей трехпозиционный рециркуляционный клапан компрессора, например, клапан по Фиг. 2-3. Контроллер может быть выполнен с возможностью выполнения способа управления, например, способа по Фиг. 5, для изменения положения клапана в соответствии с условиями работы двигателя. Контроллер может удерживать клапан в исходном полуоткрытом положении во время установившегося режима работы двигателя, а также при обнаружении слабого помпажа. В зависимости от сильного помпажа клапан может быть перемещен в полностью открытое положение. Для сравнения: при временном увеличении требуемого крутящего момента клапан может быть перемещен в полностью закрытое положение. Контроллер может использовать график рабочих характеристик компрессора, например, график рабочих характеристик с Фиг. 4, для определения условий сильного и слабого помпажа. Пример регулировок клапана приведен со ссылкой на Фиг. 6. В данном случае могут быть эффективнее решены проблемы, связанные с помпажем, и увеличена производительность двигателя с наддувом.
На Фиг. 1 представлена система 100 двигателя для транспортного средства. Транспортное средство может представлять собой дорожное транспортное средство, имеющее ведущие колеса, контактирующие с дорожным покрытием. Система 100 двигателя содержит двигатель 10 с несколькими цилиндрами. На Фиг. 1 подробно изображены один такой цилиндр или камера сгорания. Различными компонентами двигателя 10 может управлять электронный контроллер 12 двигателя. Двигатель 10 содержит камеру 30 сгорания и стенки 32 цилиндра с поршнем 36, расположенным внутри них и соединенным с коленчатым валом 40. Камера 30 сгорания соединена с впускным коллектором 144 и выпускным коллектором 148 с помощью соответствующих впускного клапана 152 и выпускного клапана 154. Каждый впускной клапан и каждый выпускной клапан могут управляться с помощью впускного кулачка 51 и выпускного кулачка 53. Один или несколько впускных или выпускных клапанов могут управляться с помощью катушки и якоря клапана с электромеханическим управлением. Положение впускного кулачка 51 может быть определено с помощью датчика 55 впускного кулачка. Положение выпускного кулачка 53 может быть определено с помощью датчика 57 выпускного кулачка.
Топливная форсунка 66 расположена с возможностью выполнять впрыск топлива непосредственно в цилиндр 30, известный специалистам в данной области техники как прямой впрыск топлива. В качестве альтернативы топливо может впрыскиваться во впускной канал, известный специалистам в данной области техники как впрыск во впускные каналы. Топливная форсунка 66 подает жидкое топливо пропорционально длительности импульса сигнала FPW от контроллера 12. Топливо подают в топливную форсунку 66 с помощью топливной системы (не показана), содержащей топливный бак, топливный насос и топливную рампу. Привод 68 подает рабочий ток на топливную форсунку 66 в соответствии с командами от контроллера 12. Кроме того, впускной коллектор 144 соединен с дополнительным электронным дросселем 62, который регулирует положение дроссельной заслонки 64 для изменения потока воздуха в цилиндр 30 двигателя. Данный процесс может предусматривать регулировку потока воздуха турбонаддува из впускной камеры 146 создания наддува. В некоторых вариантах реализации дросселя 62 может не быть, при этом поток воздуха в двигатель может регулироваться с помощью одного дросселя 82 системы впуска воздуха (дроссель AIS), соединенного с впускным каналом 42 для воздуха и расположенного выше по потоку от камеры 146 создания наддува.
В некоторых вариантах реализации двигатель 10 выполнен с возможностью обеспечения рециркуляции выхлопных газов (EGR). При наличии такой системы рециркулирующие выхлопные газы проходят через канал 135 EGR и клапан 138 EGR в систему впуска воздуха в двигатель ниже по потоку от дросселя 82 системы впуска воздуха (AIS) из участка выхлопной системы, расположенного ниже по потоку от турбины 164. Рециркулирующие выхлопные газы могут выходить из выхлопной системы в систему впуска воздуха при наличии разности давлений, достаточной для возникновения потока. Разность давлений может быть создана за счет частичного закрытия дросселя 82 AIS. Дроссельная заслонка 84 регулирует давление на впускном отверстии компрессора 162. Система AIS может иметь электрическое управление, а ее положение может изменяться в зависимости от показаний дополнительного датчика 88 положения.
Компрессор 162 нагнетает воздух из впускного канала 42 для подведения во впускную камеру 146 создания наддува. Канал 42 для впуска воздуха может содержать воздушную камеру (не показана) с фильтром. Выхлопные газы вращают турбину 164, соединенную с компрессором 162 с помощью вала 161. Исполнительный механизм 72 перепускной заслонки с вакуумным управлением позволяет направить выхлопные газы по перепускному каналу турбины 164 для управления давлением наддува при изменяющихся рабочих условиях. Исполнительный механизм перепускной заслонки может иметь пневматический или электрический привод. Перепускная заслонка 72 может быть закрыта (или переведена в положение с меньшей степенью открытия) в зависимости от обнаружения повышенной величины запрашиваемого наддува, например, во время нажатия водителем на педаль газа. Закрытие перепускной заслонки позволяет увеличить давление выхлопных газов на участке выше по потоку от турбины, увеличивая скорость вращения и пиковую выходную мощность турбины. Это позволяет повысить давление наддува. Кроме того, перепускная заслонка может быть перемещена в сторону закрытого положения для поддержания необходимого давления наддува при частичном открытии рециркуляционного клапана компрессора. В другом примере перепускная заслонка 72 может быть открыта (или переведена в положение с большей степенью открытия) в зависимости от обнаружения пониженной величины запрашиваемого наддува, например, во время отпускания водителем педали газа. Открытие перепускной заслонки позволяет снизить давление выхлопных газов, снижая скорость и мощность турбины. Это позволяет снизить давление наддува.
В рециркуляционном канале 159 компрессора вокруг компрессора 162 может быть установлен рециркуляционный клапан 158 компрессора (CRV) таким образом, чтобы воздух мог проходить из выпускного отверстия компрессора во впускное отверстие компрессора, обеспечивая снижение давления, которое может возрастать по мере прохождения через компрессор 162. Охладитель 157 воздуха турбонаддува может быть расположен в канале 146, расположенном ниже по потоку от компрессора 162 для охлаждения воздуха турбонаддува, подаваемого во впускное отверстие двигателя. В представленном примере рециркуляционный канал 159 компрессора выполнен с возможностью рециркуляции охлажденного сжатого воздуха из участка ниже по потоку от охладителя 157 воздуха турбонаддува во впускное отверстие компрессора. В других примерах рециркуляционный канал 159 компрессора может быть выполнен с возможностью рециркуляции сжатого воздуха из участка, расположенного ниже по потоку от компрессора и выше по потоку от охладителя 157 воздуха турбонаддува, во впускное отверстие компрессора. Клапан 158 CRV может быть открыт или закрыт с помощью электрического сигнала от контроллера 12. Как было указано со ссылкой на Фиг. 2-3, клапан 158 CRV может представлять собой трехпозиционный клапан, имеющий исходное полуоткрытое положение, из которого он может быть перемещен в полностью открытое положение или полностью закрытое положение. Клапан может удерживаться в полуоткрытом положении при установившемся режиме работы двигателя с наддувом, а также во время работы при условиях слабого помпажа. Если удерживать клапан в частично открытом положении при таких условиях, то, по крайней мере, часть сжатого воздуха может рециркулировать из выпускного отверстия компрессора, расположенного выше или ниже по потоку относительно охладителя воздуха турбонаддува, во впускное отверстие компрессора, при этом часть давления наддува может быть стравлена, что позволит увеличить запас по помпажу.
Клапан может состоять из двух противодействующих пружин, которые будут пассивно удерживать клапан в полуоткрытом положении за счет сил сжатия пружин. Обе пружины могут иметь разные значения предварительной нагрузки и предварительного сжатия для достижения определенного коэффициента упругости каждой из них. Например, пара противодействующих пружин может содержать внутреннюю пружину, имеющую повышенную предварительную нагрузку и пониженный действительный коэффициент упругости, и внешнюю пружину, имеющую пониженную предварительную нагрузку и повышенный действительный коэффициент упругости. Пружины могут быть расположены таким образом, чтобы при частичном сжатии каждой из них путем предварительной нагрузки, сила сжатия, создаваемая пружинами, удерживала клапан в полуоткрытом положении. Внешний исполнительный механизм, например, электромагнитный клапан с электрическим управлением или мембрана/ поршень с пневматическим управлением, может быть приведен в движение контроллером таким образом, чтобы отрегулировать нагрузку и степень сжатия каждой пружины и обеспечить перевод клапана в полностью открытое или полностью закрытое положение. Другими словами, клапан пассивно удерживают в полуоткрытом положении при помощи пружин (без использования внешнего исполнительного механизма), а затем активно переводят в полностью открытое или полностью закрытое положение при помощи внешнего исполнительного механизма.
Следует понимать, что хотя в указанном варианте реализации клапан CRV содержит пару противодействующих пружин, которые содержат внутреннюю пружину, имеющую повышенную предварительную нагрузку и пониженный действительный коэффициент упругости, и внешнюю пружину, имеющую пониженную предварительную нагрузку и повышенный действительный коэффициент упругости, в других вариантах реализации значения коэффициента упругости и предварительной нагрузки внутренней и наружной пружин могут быть рассчитаны на удержание клапана в частично открытом положении при наличии давления газов для минимизации использования силы исполнительного механизма, необходимой для удержания клапана в полностью открытом или полностью закрытом положении.
Клапан может быть полностью открыт в зависимости от возникновения сильного помпажа, чтобы быстро снизить давление наддува и оптимизировать поток, создаваемый компрессором. Например, когда водитель отпускает педаль газа, дроссель 62 закрывается, уменьшая поток воздуха. В результате входной поток, проходящий через компрессор, уменьшается, что может привести к помпажу компрессора и ухудшению производительности турбонагнетателя. Полное открытие клапана 158 CRV в зависимости от сильного помпажа позволяет сместить рабочие характеристики компрессора от границы помпажа или из области помпажа. В частности, может быть уменьшена разность давлений внутри компрессора и увеличена скорость потока, проходящего через компрессор. Клапан может быть полностью закрыт в зависимости от временного увеличения требуемого крутящего момента для быстрого увеличения давления наддува и уменьшения времени реакции на изменение крутящего момента при переходных условиях. В частности, за счет закрытия клапана CRV при временном увеличении требуемого крутящего момента во впускной коллектор двигателя будет поступать воздух с более высоким уровнем наддува, что позволит увеличить крутящий момент двигателя и повысить мощность турбины. Это позволит более быстро повысить уровень наддува.
Контроллер двигателя может использовать график рабочих характеристик, например, график рабочих характеристик по Фиг. 4, для определения того, работает ли компрессор при условиях помпажа или условиях, близких к помпажу. В частности, на графике 400 рабочих характеристик по Фиг. 4 показано изменение отношения давлений в компрессоре (по оси Y) при разных значениях скорости потока, проходящего через компрессор (по оси X). График рабочих характеристик содержит контурные линии 405, соответствующие постоянной скорости компрессора. Линия 402 представляет собой линию области сильного помпажа (или границу сильного помпажа) при заданных условиях работы. Условия работы компрессора слева от границы 402 сильного помпажа приводят к работе в области 404 сильного помпажа (заштрихованная область). Соответственно, работа компрессора в области 404 сильного помпажа приводит к неприемлемым значениям NVH и возможному ухудшению производительности двигателя. Сильный помпаж может произойти при переходных условиях, когда требуемый поток воздуха через двигатель внезапно снижается, например, во время отпускания водителем педали газа водителем. В данных условиях обычно требуется быстро снизить давление на выпускном отверстии компрессора или быстро увеличить рециркулирующий поток, проходящий через компрессор, для поступления в двигатель уменьшенного потока. В данной области клапан CRV может быть переведен из полуоткрытого положения в полностью открытое положение для смещения условий работы от границы 402 сильного помпажа, в частности, в область, находящуюся справа от границы 402 помпажа.
Слабый помпаж может возникать в области 406 слабого помпажа на графике рабочих характеристик компрессора во время отпускания водителем педали газа (в установившемся режиме работы), когда для двигателя необходимо удерживать повышенное впускное давление. В данном случае предпочтительным является увеличение потока, проходящего через компрессор, без снижения давления наддува. Таким образом, удержание клапана в частично открытом положении позволит, по крайней мере, частично увеличить поток воздуха, проходящий через компрессор, не снижая давление наддува. Для сравнения: если используется двухпозиционный рециркуляционный клапан компрессора, то единственное, что можно сделать с клапаном, это полностью открыть его, после чего произойдет снижение давления наддува и крутящего момента двигателя. Поскольку это нежелательно, то либо двигатель начнет работать в области слабого помпажа, либо придется выполнить дополнительные действия для смещения условий работы от области слабого помпажа, например, для переключения передачи.
На Фиг. 1 бесконтактная система 90 зажигания подает искру зажигания в камеру 30 сгорания с помощью запальной свечи 92 в ответ на команду контроллера 12. Изображенный универсальный датчик 126 содержания кислорода (UEGO) в выхлопных газах соединен с выпускным коллектором 148 выше по потоку от каталитического нейтрализатора 70. Датчик 126 UEGO может быть заменен на бистабильный датчик содержания кислорода в выхлопных газах. Преобразователь 70 может содержать несколько каталитических блоков. В другом примере может быть использовано несколько устройств для снижения токсичности выхлопных газов, каждое из которых будет состоять из нескольких блоков. Каталитический преобразователь 70 может представлять собой трехкомпонентный нейтрализатор. Хотя в представленном примере показан датчик 126 UEGO, расположенный выше по потоку от турбины 164, следует понимать, что в альтернативных вариантах реализации датчик UEGO может быть расположен в выпускном коллекторе ниже по потоку от турбины 164 и выше по потоку от каталитического нейтрализатора 70.
Контроллер 12 по Фиг. 1 представляет собой микрокомпьютер, содержащий блок 102 микропроцессора, порты 104 ввода/вывода, постоянное запоминающее устройство 106, оперативное запоминающее устройство 108, энергонезависимое запоминающее устройство 110 и стандартную шину данных. Помимо вышеописанных сигналов, контроллер 12 принимает различные сигналы от соединенных с двигателем 10 датчиков, в том числе: значение температуры охлаждающей жидкости двигателя (ЕСТ) от датчика 112 температуры, соединенного с охлаждающим рукавом 114; положение педали газа, регулируемой ногой 132, от датчика 134 положения, соединенного с педалью газа 130; индикация возгорания отработавших газов (не показан) от датчика детонации; давление в коллекторе двигателя (MAP) от датчика 121 давления, соединенного с впускным коллектором 144; давление наддува от датчика 122 давления, подключенного к камере 146 создания наддува; положение двигателя от датчика 118 Холла, определяющего положение коленчатого вала 40; массовый расход воздуха, поступающего в двигатель, от датчика 120 (например, от термоанемометра); положение дросселя от датчика 58. Для измерения атмосферного давления может быть также использован датчик (не показан), позволяющий контроллеру 12 произвести дальнейшую обработку. В предпочтительном варианте реализации изобретения при каждом повороте коленчатого вала датчик 118 положения двигателя генерирует предварительно установленное количество импульсов через равные промежутки времени, с помощью которых можно определить частоту вращения двигателя (об./мин.).
В гибридных транспортных средствах двигатель может быть соединен с системой электродвигатель/аккумулятор. Гибридное транспортное средство может иметь параллельную конфигурацию, последовательную конфигурацию, иную конфигурацию или сочетание данных конфигураций. Могут быть использованы другие конфигурации двигателей, например, дизельный двигатель.
Во время работы каждый цилиндр в двигателе 10 обычно проходит четырехтактный цикл: цикл содержит такт впуска, такт сжатия, такт расширения и такт выпуска. В общем случае во время такта впуска выпускной клапан 154 закрыт, а впускной клапан 152 открыт. Воздух поступает в камеру 30 сгорания через впускной коллектор 144, причем поршень 36 перемещается в нижнюю часть цилиндра таким образом, чтобы увеличить объем внутри камеры 30 сгорания. Положение, в котором поршень 36 находится в нижней части цилиндра в конце своего хода (например, при наибольшем объеме камеры 30 сгорания), как правило, известен специалистам в данной области техники как нижняя мертвая точка (BDC). При такте сжатия впускной клапан 152 и выпускной клапан 154 закрыты. Поршень 36 перемещается к головке цилиндра таким образом, чтобы сжать воздух внутри камеры 30 сгорания. Точка, в которой поршень 36 находится в конце своего такта и наиболее близок к головке цилиндра (например, при наименьшем объеме камеры 30 сгорания), как правило, известен специалистам в данной области техники как верхняя мертвая точка (TDC). Во время процесса, называемого впрыском, топливо поступает в камеру сгорания. Во время процесса, называемого зажиганием, впрыснутое топливо зажигают с помощью известного средства зажигания, например, свечи зажигания 92, что приводит к горению. При такте расширения расширяющиеся газы толкают поршень 36 назад в BDC. Коленчатый вал 40 преобразует движение поршня в крутящий момент вращающегося вала. Наконец, при такте выпуска выпускной клапан 154 открывается для выпуска сгоревшей воздушно-топливной смеси в выпускной коллектор 148, поршень возвращается в TDC. Следует заметить, что все вышеописанное приведено исключительно для примера и что моменты открытия и (или) закрытия впускного и выпускного клапанов могут быть изменены для того, чтобы обеспечить положительное или отрицательное перекрытие клапана, позднее закрытие впускного клапана или различные другие примеры.
На Фиг. 2 представлен иллюстративный вариант 200 выполнения рециркуляционного клапана (158) компрессора по Фиг. 1. На Фиг. 3 показан иллюстративный вариант 300 выполнения клапана в различных положениях.
Вариант 200 выполнения показывает клапан 158 CRV в исходном полуоткрытом состоянии. Клапан 158 может быть соединен с впускной камерой 146 создания наддува таким образом, чтобы в полуоткрытом состоянии часть охлажденного сжатого воздуха, поступающего из участка ниже по потоку от охладителя воздуха турбонаддува, могла поступать обратно в канал 159 для подачи во впускное отверстие компрессора.
Клапан 158 может содержать шток 206 клапана, головку 204 клапана и корпус 202 клапана. Головка 204 клапана может быть смещена, например, поднята или опущена, в отверстие 205 клапана при помощи штока 206 клапана для изменения потока 208 воздуха, проходящего через клапан. Шток 206 клапана может быть соединен с парой ступенчатых выступов, включая верхний выступ 214 и нижний выступ 216. Со штоком 206 клапана также может быть соединена подвижная стопорная шайба 218. В исходном положении подвижная стопорная шайба 218 может удерживаться непосредственно под верхним выступом 214. В исходном положении неподвижная стопорная шайба 220 может быть выровнена относительно верхнего выступа 214. Поднимая или опуская головку 204 клапана внутри отверстия 205 клапана, подвижная стопорная шайба 218 может смещаться относительно неподвижной стопорной шайбы 220 (в частности, при перемещении между исходным средним положением и закрытым положением. Соответственно, если клапан открыт на большую величину по сравнению с исходным положением, подвижная стопорная шайба не двигается).
Клапан также может содержать систему 203 пружин, состоящую из двух противодействующих пружин. Пара пружин выполнена с возможностью удержания клапана в полуоткрытом положении за счет действия сил сжатия. Пара противодействующих пружин может содержать внутреннюю пружину 212 и внешнюю пружину 210. Первая, внутренняя пружина может иметь первый действительный коэффициент упругости, отличный от второго действительного коэффициента упругости второй, внешней пружины. Первая, внутренняя пружина может иметь нелинейно изменяющийся действительный коэффициент упругости, а вторая, внешняя пружина может иметь линейно изменяющийся действительный коэффициент упругости. В другом примере вторая, внешняя пружина может иметь нелинейно изменяющийся действительный коэффициент упругости, а первая, внутренняя пружина может иметь линейно изменяющийся действительный коэффициент упругости. В качестве альтернативы обе пружины могут иметь линейно изменяющиеся или нелинейно изменяющиеся действительные коэффициенты упругости. В одном примере реализации коэффициент упругости первой, внутренней пружины может быть ниже коэффициента упругости второй пружины. В другом примере реализации коэффициент упругости первой, внутренней пружины может быть выше коэффициента упругости второй пружины. Кроме того, при одновременном сжатии пружины могут иметь действительные коэффициенты упругости пружины, изменяющиеся в зависимости от величины смещения головки 204 клапана в отверстии 205. Следует отметить, что внутренняя пружина дополнительно сжимается при перемещении штока клапана вверх от исходного положения, при этом внешнюю пружину не используют. Аналогичным образом внешняя пружина дополнительно сжимается при перемещении штока клапана вниз от исходного положения, при этом внутренняя пружина не используется.
Следует отметить, что пружины могут быть расположены по-другому, что позволит достичь аналогичного эффекта, например, пружины могут быть расположены сверху и снизу, а не снаружи и внутри. Также можно изменять назначение внутренней и внешней пружин таким образом, чтобы они действовали в обратных направлениях по сравнению с рассмотренным вариантом реализации. Каждый вариант реализации основан на том, что пружины действуют на клапан в противоположных направлениях, при этом каждая пружина предварительно сжата таким образом, чтобы создавать достаточное внешнее усилие, необходимое для перемещения клапана в одном из направлений.
Клапан 158 также может содержать внешний исполнительный механизм 222, приводимый в движение на основании сигналов, принимаемых от контроллера 12. При приведении в движение внешний исполнительный механизм 222 может вытягивать шток 206 клапана для перемещения головки 204 клапана из отверстия 205. Это позволяет увеличить зазор 207 и, следовательно, увеличить поток воздуха, проходящий через клапан. В качестве альтернативы внешний исполнительный механизм 222 может толкать головку 204 клапана в отверстие 205 для уменьшения зазора 207 и уменьшения потока воздуха, проходящего через клапан. Внешний исполнительный механизм 222 может представлять собой нажимно-вытяжной электромагнитный клапан с электрическим приводом от контроллера 12. Как будет описано ниже со ссылкой на Фиг. 3, на электромагнитный клапан может быть подан ток для вытягивания головки клапана таким образом, чтобы перевести клапан в полностью открытое положение, или ток для толкания головки клапана таким образом, чтобы перевести клапан в полностью закрытое положение. В другом примере реализации внешний исполнительный механизм 222 может представлять собой мембрану или поршень с пневматическим приводом от контроллера 12. В пневматическом варианте исполнения на мембрану может действовать регулируемое воздушное давление (или вакуум) с одной стороны и атмосферное давление с другой стороны. За счет изменения воздушного давления, действующего на мембрану, может происходить проталкивание или вытягивание исполнительного механизма, что позволит изменить положение головки 204 клапана в отверстии 205.
В полуоткрытом положении, как показано на Фиг. 2, внутренняя пружина 212 и внешняя пружина 210 находятся в частично сжатом состоянии. В частности, пружины могут быть предварительно нагружены. За счет того, что пружины удерживают в таком предварительно сжатом состоянии, головка 204 клапана остается в исходном положении (например, в показанном выровненном положении) относительно отверстия 205 кл