Устройство для определения чувствительности расплава взрывчатых веществ к ударно-волновому воздействию

Иллюстрации

Показать все

Изобретение относится к области исследования свойств взрывчатых веществ. Устройство содержит соосно установленные в вертикальной направляющей кювету для исследуемого образца ВВ, инертную преграду, источник ударно-волнового воздействия и средство инициирования, кювета расположена на защитном экране, под которым установлен нагреватель, а инертная преграда выполнена из двух частей. В устройстве используется быстродействующий электродетонатор в качестве стабильного генератора ударной волны, что позволяет исследовать влияние температуры расплава на показатели ударно-волновой чувствительности, а также варьировать амплитудой ударно-волнового импульса, воздействующего на расплав ВВ, обеспечивается изменением толщины инертной преграды между детонатором и расплавом. Достигается возможность определения чувствительности с учетом амплитуды давления ударно-волнового воздействия, температуры расплава и амплитуды ударно-волнового импульса, а также - обеспечение сохранности значительной части элементов устройства при проведении взрывного опыта. 3 з.п. ф-лы, 7 ил., 1табл.

Реферат

Изобретение относится к области исследования свойств взрывчатых веществ (далее ВВ), а именно к устройствам для определения чувствительности расплава ВВ к ударно-волновому воздействию, и может быть использовано при установлении уровня опасности устройств, содержащих расплав ВВ и подвергающихся ударно-волновому воздействию.

Известно устройство для определения передачи детонации через инертную преграду, содержащее детонатор, промежуточный детонатор, активный заряд, инертную преграду, пассивный заряд и электрические зонды (М.А. Кук. Наука о промышленных взрывчатых веществах. - М.: Недра, 1980, с. 85), выбранное в качестве аналога.

При срабатывании последовательно детонатора и промежуточного детонатора в активном заряде возбуждается детонационная волна, которая формирует в инертной преграде и далее в пассивном заряде нестационарную ударную волну, развивающуюся до детонационной. Расстояние перехода ударной волны в детонационную является мерой чувствительности ВВ.

Известно устройство для определения ударно-волновой чувствительности ВВ по времени задержки детонации (Методы исследования свойств материалов при интенсивных динамических нагрузках. Монография / Под ред. М.В. Жерноклетова. - г. Саров, 2003), содержащее капсюль-детонатор, активный заряд, экран, заряд исследуемого ВВ (пассивный заряд) и пару электрических контактов, расположенных по торцам исследуемого заряда, выбранное в качестве аналога. Время задержки детонации рассчитывается как разность между экспериментально измеренным временем и временем, необходимым для прохождения стационарной детонационной волны по всей длине заряда. Очевидно, что чем меньше эта задержка детонации, тем чувствительнее испытываемое ВВ.

Известно устройство для определения характеристик чувствительности взрывчатых веществ к удару (Патент RU №2272242, МПК F42B 35/00, G01N 33/22, опубл. 20.03.2006, бюл. №8), выбранное в качестве аналога. Устройство содержит установленную на основании наковальню и груз с вертикальными направляющими. Наковальня соединена с основанием наклонно расположенными пластинчатыми пружинами. Заявленное устройство позволяет повысить точность определения чувствительности ВВ к косому удару и, как следствие, повысить безопасность работ с ВВ.

Известно устройство для определения чувствительности к ударной волне заряда ВВ (Патент RU №2376599, МПК G01N 33/22, опубл. 20.12.2009, бюл. №35), выбранное в качестве аналога. Устройство содержит последовательно установленные источник ударно-волнового воздействия, инертную преграду, электроконтактные датчики, которые размещены на инертной преграде. Исследуемый заряд ВВ содержит не менее 90% октогена, а инертная преграда выполнена из полимерного вещества аморфной структуры.

Данные устройства - аналоги предназначены для определения чувствительности твердого ВВ.

При патентно-информационном поиске не найдены устройства, позволяющие определять ударно-волновую чувствительность расплавов ВВ.

Задачей изобретения является разработка устройства, позволяющего оценивать чувствительность расплава ВВ к ударно-волновому воздействию при разных значениях температуры расплава ВВ.

При использовании устройства достигается следующий технический результат:

- возможность определять ударно-волновую чувствительность расплава ВВ, мерой чувствительности которой является амплитуда давления ударно-волнового воздействия;

- возможность исследовать влияние температуры расплава на показатели ударно-волновой чувствительности;

- варьирование амплитудой ударно-волнового импульса позволяет определить чувствительность расплава ВВ при разных нагрузках на одном устройстве.

Дополнительным техническим результатом является сохранность значительной части элементов устройства при проведении взрывного эксперимента.

Для решения указанной задачи и достижения технического результата заявляется устройство для определения чувствительности расплава ВВ к ударно-волновому воздействию, содержащее соосно установленные в вертикальной направляющей кювету для исследуемого образца ВВ, инертную преграду, источник ударно-волнового воздействия и средство инициирования. Кювета расположена на защитном экране, под которым установлен нагреватель, а инертная преграда выполнена из двух частей, расположенных на заданном расстоянии друг от друга, при этом нижняя часть преграды установлена в контакте с кюветой, а верхняя часть преграды выполнена в виде конуса с возможностью увеличения или уменьшения толщины.

В нижней части инертной преграды заявляемого устройства могут быть выполнены сквозные каналы для удаления газообразных продуктов разложения ВВ. Направляющая может быть выполнена составной, при этом ее часть, контактирующая с нижней частью инертной преграды, выполнена из фторопласта, а другая часть из алюминиевого сплава Д16Т. Кювета для исследуемого образца ВВ выполнена из термостойкого стекла и установлена в металлическом корпусе из теплопроводного материала, в котором выполнено смотровое окно для осуществления визуального контроля. Выполнение кюветы из термостойкого стекла позволяет осуществлять визуальный контроль за процессом плавления ВВ и установлением контакта нижней части преграды с расплавом ВВ.

Выполнение инертной преграды из двух частей, расположенных на заданном расстоянии друг от друга, и установка ее нижней части в контакте с кюветой существенно уменьшает затраты на прогрев ВВ и примыкающих к нему деталей и сокращает время эксперимента, а выполнение верхней части преграды в виде конуса с возможностью увеличения или уменьшения толщины позволяет варьировать амплитудой ударно-волнового импульса и определять чувствительность расплава ВВ при разных нагрузках на одном устройстве.

Применение источника ударно-волнового воздействия (быстродействующего электродетонатора) позволяет в каждом эксперименте получать стабильный первичный ударно-волновой импульс.

Наличие нагревательного элемента позволяет получить расплав ВВ, чувствительность которого к ударно-волновому воздействию определяется заявляемым устройством. Кювета для исследуемого ВВ выполнена из термостойкого стекла и расположена в корпусе из теплопроводящего материала, установленном на защитном экране. Выполнение кюветы из термостойкого стекла и наличие окна в металлическом корпусе позволяют осуществлять визуальный контроль за процессом плавления ВВ. Наличие металлического корпуса из теплопроводного материала, в котором установлена стеклянная кювета, позволяет осуществить более быстрый и равномерный разогрев ВВ, расположенного в кювете, до состояния расплава. Корпус также выполняет роль опоры инертной преграды и не позволяет ей ударять по расплаву ВВ в случае, если ударная волна не вызывает взрывчатого превращения (горения). Корпус также выполняет роль индикатора взрывчатого превращения в расплаве ВВ. В случае возникновения в расплаве ВВ взрывчатого превращения с высокой скоростью боковые стенки и дно корпуса разрушается на отдельные фрагменты, а на тепловыравнивающем защитном экране образуется четкий след с ярко выраженным эффектом от воздействия ударной волны по диаметру расплава ВВ. В случае отсутствия взрывчатого превращения корпус остается целым. В случае развития быстрого горения дно корпуса остается целым, а на тепловыравниваюшем защитном экране образуется след по диаметру расплава ВВ. Защитный экран служит для обеспечения сохранности и защиты нагревательного элемента от механических повреждений, а также выполняет тепловыравнивающую функцию. Выполнение направляющей составной из разных материалов, а именно часть, контактирующая с нижней частью инертной преграды, выполнена из фторопласта, а другая часть из алюминиевого сплава Д16Т, позволяет сохранять верхнюю часть направляющей во взрывном опыте.

Заявляемое устройство иллюстрируется следующими чертежами:

На фиг. 1 приведена схема заявляемого устройства.

На фиг. 2 - вид дна металлического корпуса, в котором установлена кювета, и защитного экрана после опыта с взрывом.

На фиг. 3 - вид нижней и верхней части преграды после опыта с взрывом.

На фиг. 4 - вид дна металлического корпуса после опыта с взрывом.

На фиг. 5 - вид защитного экрана после опыта с взрывом.

На фиг. 6 - вид металлического корпуса после опыта без взрыва.

На фиг. 7 - расчетное поле давлений Р[ГПа] на момент времени выхода ударной волны на контактную границу расплав ВВ - алюминиевая преграда в сборке с образцом ВВ ТЭН (толщина преграды 40 мм).

На фиг. 1 показаны: 1 - нагревательный элемент; 2 - защитный экран; 3 - металлический корпус, в котором установлена кювета 5 с исследуемым образцом ВВ 4; 6а; 6б - нижняя и верхняя части инертной преграды соответственно; 7 - источник ударно-волнового воздействия; 8 - направляющая.

Сборку устройства производят следующим образом.

Устройство размещают в защитном сооружении, предназначенном для проведения взрывных работ.

В кювету 5 насыпают исследуемый образец ВВ 4, затем кювету 5 помешают в металлический корпус 3, который располагают на защитном экране 2, под которым размещают нагревательный элемент 1. В контакте с исследуемым образцом ВВ 4 устанавливают нижнюю часть инертной преграды 6а, затем направляющую 8 размещают сверху на металлический корпус 3 с кюветой 5, далее производят нагрев ВВ 4 до получения расплава. После завершения расплавления ВВ и достижения заданной температуры с помощью направляющей 8 устанавливают верхнюю часть преграды 6б и источник ударно-волнового воздействия 7 на нижнюю часть преграды 6а, затем подают инициирующий импульс на источник ударно-волнового воздействия 7.

Амплитуда ударно-волнового импульса варьируется толщиной верхней части преграды. Конкретные значения параметров ударно-волнового импульса рассчитываются по двухмерному программному комплексу МИД-Д2 (Сафронов И.Д., Делов В.И., Дмитриев Н.А. и др. Методика Д для расчета многомерных задач механики сплошной среды в переменных Лагранжа на регулярной сетке. // Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов, 1999. Вып. 4. С. 42-45). В табл. 1 представлены параметры ударно-волнового импульса, выходящего на границу преграда-расплав ВВ в зависимости от толщины преграды. Длительность импульса 0,5-0,6 мкс.

Нагревательный элемент 1 служит для нагрева кюветы 5 с навеской ВВ 4 и обеспечения ее расплавления. Нагревательный элемент 1 состоит из подложки, изготовленной из асбестоцементного листа и закрепленной на ней дорожки из нихромовой ленты. Защитный экран 2 - пластина, изготовленная из материала Сталь 3, служит для обеспечения сохранности и защиты нагревательного элемента 1 от механических повреждений. Металлический корпус 3 выполняет тепловыравнивающую функцию, а также выполняет функцию отметчика. Навеска ВВ 4 исследуемое вещество, на которое осуществляется ударно-волновое воздействие с помощью источника ударно-волнового воздействия (быстродействующий электродетонатор) 7. Кювета 5 изготовлена из химико-лабораторного стекла, обладает высокой химической и термической стойкостью, является емкостью для расплавления навески штатного ВВ. Стекло выбрано с целью осуществления визуального контроля процесса плавления ВВ. Нижняя часть направляющей 8 изготовлена из фторопласта, что обеспечивает предохранение верхней части направляющей от воздействия продуктов взрыва ЭД и ВВ. Верхняя часть преграды 6б изготовлена из алюминиевого сплава Д16Т, с ее помощью методом увеличения или уменьшения толщины варьируется амплитуда ударно-волнового импульса. Выполнение верхней части преграды в виде конуса обеспечивает ее целостность при срабатывании ЭД. В нижней части преграды 6а сделаны отверстия для свободного выхода газообразных продуктов, образующихся в результате разложения ВВ в пристеночной области в процессе плавления навески ВВ.

Заявленное устройство применено при определении ударно-волновой чувствительности расплава ВВ ТЭН (пентаэритриттетранитрат). При проведении опыта с ВВ ТЭН массой 3,2 г установлено, что при использовании верхней части преграды, выполненной из алюминиевого сплава Д16Т толщиной 30 мм (суммарная толщина 40 мм), в расплаве, нагретом до 149°С, реализуется взрывное горение, о чем свидетельствует состояние металлического корпуса 3 (фиг. 2). Боковые стенки разрушены, на дне и на защитном экране 2 имеется след от воздействия ударной волны. Нижняя часть преграды 6а разрушена, на верхней части преграды 6б видны следы нагара (фиг. 3). При проведении опыта с верхней частью преграды толщиной 10 мм ударная волна привела к инициированию расплава ТЭНа в режиме детонации, о чем свидетельствует характер разрушения металлического корпуса 3. Боковые стенки разрушены, дно раздроблено на фрагменты (фиг. 4), деформирован защитный экран (фиг. 5), нагреватель раздроблен на мелкие фрагменты. Характер разрушений свидетельствуют о высокой интенсивности процесса взрывчатого превращения расплава и явно выраженном бризантном эффекте.

Проведено три эксперимента, где верхняя часть преграды выполнена из сплава Д16Т толщиной 35 мм (суммарная толщина 45 мм), во всех опытах экзотермической реакции в расплаве не реализовалось. Металлический корпус 3 сохранен полностью (фиг. 6). Остывшие остатки расплава превратились в кристаллы ТЭНа. По результатам экспериментов установлено, что минимальная амплитуда ударно-волнового импульса, приводящая к инициированию взрывчатого превращения в расплаве ТЭНа при температуре 149°С составляет 38,4 МПа. Приведено расчетное поле давлений Р[ГПа] на момент времени выхода ударной волны на контактную границу расплав ВВ - алюминиевая преграда в сборке с образцом ВВ ТЭН (толщина преграды 40 мм) (фиг. 7).

1. Устройство для определения чувствительности расплава ВВ к ударно-волновому воздействию, содержащее соосно установленные в вертикальной направляющей кювету для исследуемого образца ВВ, инертную преграду, источник ударно-волнового воздействия и средство инициирования, кювета расположена на защитном экране, под которым установлен нагреватель, а инертная преграда выполнена из двух частей, расположенных на заданном расстоянии друг от друга, при этом нижняя часть преграды установлена в контакте с кюветой, а верхняя часть преграды выполнена в виде конуса с возможностью увеличения или уменьшения толщины.

2. Устройство по п. 1, отличающееся тем, что в нижней части инертной преграды выполнены сквозные каналы для удаления газа.

3. Устройство по п. 1, отличающееся тем, что направляющая выполнена составной, при этом ее часть, контактирующая с нижней частью инертной преграды, выполнена из фторопласта, а другая часть из алюминиевого сплава Д16Т.

4. Устройство по п. 1, отличающееся тем, что кювета для исследуемого образца ВВ выполнена из термостойкого стекла и установлена в металлическом корпусе из теплопроводного материала, в котором выполнено смотровое окно для осуществления визуального контроля за процессом плавления.