Селективация адсорбентов для разделения газов
Иллюстрации
Показать всеИзобретение относится к области селективации адсорбентов для разделения газов, в частности к способу разделения газов. Способ включает приведение адсорбента или мембраны, содержащих цеолит с 8-членными кольцами или микропористый материал с 8-членными кольцами, в контакт с барьерным соединением, при условиях, эффективных для селективации адсорбента или мембраны, включающие температуру от 50 до 350°C и полное давление от 690 до 13,8 МПа изб., где селективация адсорбента или мембраны включает диффузию молекулы барьерного соединения через пористую структуру микропористого материала с 8-членными кольцами, приведение селективированного адсорбента или мембраны в контакт с входящим потоком газа, содержащим первый компонент и второй компонент, с образованием первого потока газа, обогащенного первым компонентом по отношению к входящему потоку газа, и сбор второго потока газа, обогащенного вторым компонентом по отношению к входящему потоку газа. При этом барьерное соединение имеет минимальный размер молекулы, который на 0,4 Å превышает размер наибольшей твердой сферы, которая может диффундировать вдоль любого направления в адсорбенте, и максимальный размер, составляющий 25 Å или менее. Причем барьерное соединение присутствует либо в виде жидкости, либо в виде газа с парциальным давлением барьерного соединения 10% от давления насыщенного пара. Изобретение обеспечивает повышение селективности адсорбирующего материала. 2 н. и 13 з.п. ф-лы, 8 ил., 3 табл., 7 пр.
Реферат
Область техники
Описаны способы и системы для выполнения разделения газов с использованием адсорбирующих материалов.
Уровень техники
Удаление загрязняющих веществ или примесей из газофазного потока обычно осуществляют при переработке нефти и природного газа. Например, большинство потоков природного газа содержат по меньшей мере некоторое количество СО2 помимо требуемого СН4. Дополнительно, во многих способах переработки нефти вырабатывают выходящий поток газовой фазы, который содержит множество соединений, таких как СН4 и СО2, которые являются газами при стандартных температуре и давлении. Выполнение разделения газофазного потока, содержащего СН4, может обеспечить удаление примеси и/или разбавителя, такого как CO2 или N2, при регулируемых условиях. Такую примесь или разбавитель затем можно направить в другие процессы, например направить на другое применение, в котором уменьшают утечку парниковых газов в окружающую среду.
В опубликованной заявке на патент US 2008/0282885 описаны системы и способы удаления CO2, N2 или H2S с использованием способа короткоцикловой адсорбции. Одним типом адсорбента, который можно использовать в способе короткоцикловой адсорбции, является цеолит с 8-членными кольцами, такой как цеолит типа DDR.
В патенте US 7255725 описана пористая неорганическая мембрана, содержащая углерод, и способ применения такой мембраны. Пористую неорганическую мембрану, не содержащую углерод (такую как цеолит), обрабатывают сырьем углеводородного типа при температурных условиях и в течение времени, которые подходят для осаждения углерода на неорганическую мембрану с помощью химической реакции. Углеродсодержащую мембрану затем поддерживают при температуре выше температуры осаждения в течение интервала времени до выполнения мембранного разделения. Описанная мембрана подходит для отделения неконденсируемых газов, таких как CO2, CH4 или Н2, от углеводородного сырья.
В международной публикации WO 2006/017557 описаны мембраны для высокоселективных разделений. После обжига мембрану типа молекулярного сита, такого как SAPO-34, обрабатывают модифицирующим агентом, таким как аммиак. Такая обработанная мембрана подходит для улучшения мембранного отделения СО2 от СН4), в котором понижают количество СН4 в пермеате, пошедшем через мембрану. Описаны и другие модифицирующие агенты, такие как силаны и/или амины, которые реагируют с кислыми центрами цеолитов, и полярные соединения, такие как этанол.
Краткое описание изобретения
В одном аспекте предложен способ выполнения разделения газов. Способ включает приведение адсорбента или мембраны, содержащих цеолит с 8-членными кольцами, или другой микропористый материал с 8-членными кольцами, в контакт с барьерным соединением при условиях, эффективных для селективации адсорбента или мембраны, причем барьерное соединение имеет минимальный размер, составляющий по меньшей мере примерно 4,05 Ангстрем, и максимальный размер, составляющий примерно 25 Ангстрем или менее; приведение селективированного адсорбента или мембраны в контакт с входящим потоком газа, содержащим первый компонент и второй компонент, с образованием первого потока газа, обогащенного первым компонентом по отношению к входящему потоку газа; и сбор второго потока газа, обогащенного вторым компонентом по отношению к входящему потоку газа.
В другом аспекте предложен способ выполнения разделения газов в устройстве короткоцикловой адсорбции. Способ включает приведение адсорбента, содержащего цеолит с 8-членными кольцами, или другой микропористый материал с 8-членными кольцами, в контакт с барьерным соединением в устройстве короткоцикловой адсорбции при условиях, эффективных для селективации адсорбента, причем цеолит с 8-членными кольцами представляет собой цеолит типа DDR, ZSM-58, Sigma-1 или их сочетание; приведение селективированного адсорбента в контакт с входящим потоком газа, содержащим первый компонент и второй компонент, с образованием выходящего потока газа, обогащенного первым компонентом по отношению к входящему потоку газа, при этом селективированный адсорбент адсорбирует по меньшей мере часть второго компонента в течение приведения в контакт; десорбцию по меньшей мере части адсорбированного второго компонента с образованием десорбированной части второго компонента; и сбор газового потока, содержащего по меньшей мере часть десорбированной второго части компонента, при этом газовый поток обогащен вторым компонентом по отношению к входящему потоку газа.
В еще одном аспекте предложен способ выполнения разделения газов в устройстве короткоцикловой адсорбции. Способ включает приведение адсорбента, содержащего микропористый материал, в контакт с барьерным соединением в устройстве короткоцикловой адсорбции при условиях, эффективных для селективации адсорбента, причем микропористый материал имеет поры, характеризующиеся первым размером наибольшей твердой сферы, которая может диффундировать вдоль любого направления в порах, а барьерное соединение имеет второй размер, представляющий собой минимальный размер соединения, причем второй размер больше первого размера на 10-60%; приведение селективированного адсорбента в контакт с входящим потоком газа, содержащим первый компонент и второй компонент, с образованием выходящего потока газа, обогащенного первым компонентом по отношению к входящему потоку газа, при этом селективированный адсорбент адсорбирует по меньшей мере часть второго компонента в течение приведения в контакт; десорбцию по меньшей мере части адсорбированного второго компонента с образованием десорбированной части второго компонента; и сбор газового потока, содержащего по меньшей мере часть десорбированной части второго компонента, при этом газовый поток обогащен вторым компонентом по отношению к входящему потоку газа.
Краткое описание чертежей
На Фиг. 1 и Фиг. 2 показаны результаты хроматографии с нулевой длиной для диффузии газов при различных условиях.
На Фиг. 3 показаны изотермы адсорбции СО2 при различных условиях.
На Фиг. 4 и Фиг. 5 показаны результаты хроматографии с нулевой длиной для диффузии газов при различных условиях.
На Фиг. 6 показаны изотермы адсорбции СО2 при различных условиях.
На Фиг. 7 показана зависимость от времени рабочей производительности для селективно пассивированного адсорбента по сравнению с равновесной адсорбцией для непассивированного адсорбента.
На Фиг. 8 показаны коэффициенты диффузии при 30°С для различных алканов.
Подробное описание воплощений изобретения
Обзор
В различных аспектах предложены способы и системы для улучшения разделения газофазных потоков с использованием адсорбента, такого как кинетически селективный адсорбент. В данном обсуждении термин «кинетически селективные адсорбенты» относится к адсорбентам с различными коэффициентами диффузии в отношении скорости переноса по меньшей мере первого соединения относительно по меньшей мере второго соединения. Примером подходящего адсорбента является цеолитовый адсорбент с 8-членными кольцами, такой как цеолит типа DDR. Подходящие газофазные потоки могут содержать по меньшей мере один углеводород, такой как метан или (газообразный) углеводород, содержащий по меньшей мере одну насыщенную углерод-углеродную связь, и по меньшей мере один дополнительный компонент, такой как СО2 или N2. Не связывая себя какой-либо конкретной теорией, полагают, что селективность адсорбента можно улучшить с помощью барьерных соединений, внедренных в (или по меньшей мере блокирующих) пористую структуру адсорбирующего материала. Поступая в (блокируя) пористую структуру, барьерные соединения могут влиять на эффективную площадь входного отверстия пор и/или объем пор, доступный для поступления потенциального адсорбируемого вещества в адсорбирующий материал. Таким образом, даже если два потенциальных адсорбируемых вещества могут иметь размеры, подходящие для адсорбции в сети пор адсорбента, присутствие барьерных соединений может изменять относительную способность различных потенциальных адсорбируемых веществ к поступлению в поры и/или к продвижению внутри пор адсорбента. В некоторых случаях барьерные соединения также могут вносить вклад в образование слоя на поверхности адсорбента. Такой возможный слой барьерных соединений также может изменять способность потенциальных адсорбируемых веществ поступать в (блокировать) поры адсорбирующего материала. Также следует отметить, что хотя приведенное выше описание относится к модифицированию кинетики поступления соединений в адсорбент, аналогичные способы можно использовать для модификации кинетики поступления соединений в мембрану, например, основанную на цеолитовой структуре с 8-членными кольцами.
В общем случае, подходящие адсорбенты для разделения газофазных потоков могут включать микропористые материалы (включая цеолиты), такие как материалы SAPO или другие типы структур, включающих атомы каркаса, отличные от Si и Al в каркасной структуре цеолитового типа. Дополнительно, микропористые материалы (включая цеолиты) с каркасами, имеющими другие размеры колец, могут образовывать подходящие адсорбенты, такие как цеолиты или другие микропористые материалы с 10-членными кольцевыми структурами, 12-членными кольцевыми структурами или структурами с другим числом атомов в кольце.
Предпочтительно, барьерные соединения могут изменять кинетику поступления молекулярных соединений в поры адсорбента (или мембраны), при этом оказывая пониженное или минимальное воздействие на адсорбцию (и/или перенос через мембрану) других целевых молекулярных соединений. Это может обеспечить поддержание скорости адсорбции требуемого адсорбируемого соединения, при этом улучшая селективность по отношению к адсорбции для адсорбции другого соединения. В других воплощениях кинетику поступления как требуемого адсорбируемого соединения, так и другого соединения (или соединений) можно изменять с помощью барьерных соединений с тем, что изменение кинетики для требуемого адсорбируемого соединения меньше, чем изменение кинетики для другого соединения (соединений), так что можно выгодно улучшить селективность преимущественной адсорбции требуемого адсорбируемого соединения. Например, СН4 и С2Н6 являются примерами соединений, на кинетику адсорбции которых может влиять присутствие определенных барьерных соединений. N2 и CO2 являются примерами соединений, для которых присутствие определенных барьерных соединений оказывают пониженное и/или минимальное воздействие на кинетику адсорбции. Таким образом, N2 и CO2 представляют собой потенциальные требуемые адсорбируемые соединения.
В способах короткоцикловой адсорбции и мембранного разделения селективация адсорбирующего материала с использованием барьерных соединений может улучшить селективность адсорбента для преимущественной адсорбции первого соединения относительно второго соединения. Например, это может обеспечить возможность повышения выхода требуемого углеводорода (такого как СН4 или С2Н6) в потоке продукта, а также повышения массового процентного содержания требуемого углеводорода по отношению к входящему потоку газа. Этого можно достичь путем преимущественного уменьшения кинетики адсорбции требуемого углеводорода относительно кинетики адсорбции одного или более других компонентов входящего потока газа (таких как N2 или СО2). Барьерные соединения, внедряемые в (блокирующие) сеть пор и/или образующие барьерный слой для улучшения разделения, можно использовать, например, в устройстве короткоцикловой адсорбции для выполнения газофазных разделений. Дополнительно, уменьшая скорость, при которой требуемый углеводород диффундирует в адсорбент, можно ослабить требования к продолжительности цикла для адсорбирующего слоя/материала. Это может обеспечить возможность выполнения циклов адсорбции и регенерации, которые могут быть более совместимы с интервалами времени, требуемыми для функционирования крупномасштабных клапанов и структурированных слоев адсорбента. При применении мембранного разделения присутствие барьерного соединения может увеличить относительную вероятность поступления компонента (такого как CO2 или N2) в мембрану и его диффузии через мембрану по сравнению с вероятностью поступления другого компонента (такого как СН4) в мембрану и его диффузии через мембрану.
Предпочтительно, барьерный слой не изменяет адсорбционную способность адсорбента (или требуемого проникающего компонента) в значительной степени. В предпочтительном воплощении присутствие барьерного слоя всего лишь уменьшает адсорбционную способность адсорбента на 40% или менее, например, менее чем на 20% или менее чем на 10%. Даже если адсорбционная способность может быть в некоторой степени снижена барьерным слоем, характеристика адсорбента может улучшиться из-за улучшений кинетической селективности.
Предпочтительно, барьерный слой можно образовать, используя соединение, которое медленно диффундирует через пористую структуру адсорбента. Это может обеспечить образование относительно стабильного слоя, который не требует частой регенерации или обновления. Путем образования барьерного слоя из медленно диффундирующего соединения, данный слой можно сконцентрировать в порах / среди пор вдали от центра адсорбента (то есть, в порах вблизи поверхности адсорбента). Наличие барьера, образованного в порах / среди пор вблизи/на поверхности адсорбента, может способствовать улучшению кинетической селективности путем немедленного блокирования или затруднения переноса и, следовательно, путем уменьшения кинетики адсорбции соединений, подлежащих кинетическому исключению из адсорбента. При температуре требуемого способа разделения коэффициент диффузии соединения, используемого для образования барьерного слоя, предпочтительно может составлять менее 10-15 м2/с, например менее 10-19 м2/с или менее 10-23 м2/с.
В некоторых предпочтительных воплощениях адсорбент может преимущественно адсорбировать второе соединение относительно первого соединения до (или без) применения барьерных соединений. В таких воплощениях применение барьерных соединений может дополнительно усилить селективность адсорбента в мембране или в способе короткоцикловой адсорбции. В других воплощениях барьерные соединения можно использовать для адсорбентов, которые иначе обладают небольшой адсорбционной селективностью для второго соединения относительно первого соединения или не обладают ею вообще. В таких других воплощениях применение барьерных соединений может привнести селективную адсорбцию в адсорбирующую систему.
В зависимости от воплощения блокирующее соединение можно ввести в адсорбент для образования барьерного слоя в различные моменты времени. Одним вариантом может быть введение блокирующего соединения после синтеза кристаллов адсорбента, но перед включением кристаллов в контактор или слоистую структуру. Другим вариантом может быть введение блокирующего соединения после образования адсорбирующего слоя, включающего кристаллы. Еще одним вариантом может быть введение блокирующего соединения после того как адсорбирующий слой, включающий кристаллы, использовали для создания контактора, такого как сосуд короткоцикловой адсорбции.
Удаление СО2 из потока, содержащего легкие углеводороды, может быть выгодным по ряду причин. Например, в потоке, используемом в качестве топлива для сгорания, СО2 может действовать как инертный разбавитель. Слишком большое количество CO2 в потоке топлива может подавлять реакцию горения. Природный газ для продажи в качестве топлива часто должен соответствовать техническим требованиям по максимальному количеству присутствующих разбавителей. В некоторых воплощениях количество инертных веществ, присутствующих в потоке природного газа, предпочтительно может составлять примерно 2 об.% или менее. Кроме того, любой CO2, который поступает в реакцию горения, может добавляться к парниковым газам, образующимся при реакции. Также может быть выгодным удалять N2 из содержащего метан потока (или другого потока, содержащего легкие углеводороды), так как N2 также может действовать как инертный разбавитель при горении. Помимо действия в качестве разбавителя в потоке топлива, высокие уровни CO2 и/или N2 могут увеличить сложность ожижения содержащего метан потока, такого как поток природного газа.
Способы разделения
Данное изобретение можно применять к мембранам, а также к способам короткоцикловой адсорбции. Мембраны можно образовать из адсорбирующих материалов. Например, в способах гидротермального синтеза можно получить цеолитовые мембраны. Цеолиты также можно внедрить в мембраны со смешанной матрицей. В способе мембранного разделения поток подаваемой смеси (обычно в газовой фазе) можно пропускать над одной стороной мембраны. Мембрана может селективно пропускать некоторые соединения к противоположной стороне мембраны, которая либо может находиться при пониженном давлении, либо может повергаться очистке. Соединение, преимущественно проходящее через мембрану, называют тяжелым компонентом, а соединение, преимущественно задерживаемое на стороне подачи, называют легким компонентом (независимо от их относительных молярных масс). Скорость переноса молекул через мембрану можно определить с помощью кинетики и равновесной адсорбции. Усиление кинетической селективности с помощью селективации может улучшить удерживание и, следовательно, извлечение, например, легкого компонента.
Все способы короткоцикловой адсорбции включают стадию адсорбции, на которой подаваемую смесь (обычно в газовой фазе) пропускают над адсорбентом, который преимущественно адсорбирует более легко адсорбируемый компонент по сравнению с менее легко адсорбируемым компонентом. Компонент может быть более легко адсорбируемым из-за кинетики или равновесных свойств адсорбента. Адсорбент обычно может быть заключен в контактор, который является частью установки короткоцикловой адсорбции. Контактор обычно может содержать сконструированный структурированный слой адсорбента или слой адсорбента, состоящий из частиц. Данный слой может содержать адсорбент и другие материалы, такие как другие адсорбенты, мезопористые наполняющие материалы и/или инертные материалы, используемые для уменьшения отклонений температуры, вызванных теплотой адсорбции и десорбции. Другие компоненты в установке короткоцикловой адсорбции могут включать (но не обязательно ограничиваются перечисленным) клапаны, трубы, баки и другие контакторы.
Способ регенерации адсорбента определяет тип способа короткоцикловой адсорбции. Способы адсорбции с перепадом давления (АПД) основаны на том факте, что газы под давлением стремятся быть адсорбированными внутри пористой структуры микропористых адсорбирующих материалов. Обычно чем выше давление, тем больше количество целевого газового компонента, которое будет адсорбировано. Когда давление понижают, адсорбированный целевой компонент обычно высвобождается или десорбируется. Способы АПД можно использовать для разделения газов из газовой смеси, так как различные газы стремятся заполнить микропористый или свободный объем адсорбента в различной степени, обусловленной либо равновесными, либо кинетическими свойствами адсорбента. Способы адсорбции с перепадом температуры (АПТ) также основаны на том факте, что газы под давлением стремятся быть адсорбированными внутри пористой структуры микропористых адсорбирующих материалов. Когда температуру адсорбента повышают, адсорбированный газ обычно высвобождается или десорбируется. Путем циклического изменения температуры адсорбирующих слоев способы АПТ можно использовать для разделения газов в смеси при использовании адсорбента, селективного для одного или более компонентов газовой смеси. В способах адсорбции с перепадом парциального давления (АППД) с вытеснением продувочным потоком адсорбент регенерируют продувочным потоком. В способах короткоцикловой адсорбции с частым циклом (ЧЦ) стадию адсорбции способа короткоцикловой адсорбции завершают за короткое время. Для кинетически селективных адсорбентов может быть предпочтительным использование способа короткоцикловой адсорбции с частым циклом. Если продолжительность цикла становится слишком длительной, кинетическая селективность может быть потеряна. Эти технологии короткоцикловой адсорбции можно выполнять по отдельности или в сочетании. Примерами способов, которые можно использовать в сочетании, являются АПДЧЦ (адсорбция с перепадом давления с частым циклом), АПТЧЦ (адсорбция с перепадом температуры с частым циклом), АПДТ (адсорбция с перепадом давления и температуры) и АППДТ (адсорбция с перепадом парциального давления и температуры). Селективацию можно использовать для улучшения характеристики всех способов короткоцикловой адсорбции.
Способы короткоцикловой адсорбции можно применять для удаления множества целевых газов из разнообразных газовых смесей. Используемый в данном документе термин «легкий компонент» относится к веществам или молекулярным компонентам, которые преимущественно не поглощаются адсорбентом на стадии адсорбции данного способа. Наоборот, используемый в данном документе термин «тяжелый компонент» относится к веществам или молекулярным компонентам, которые преимущественно поглощаются адсорбентом на стадии адсорбции данного способа.
Описанные в данном документе способы селективации могут обеспечить улучшение кинетически регулируемых способов короткоцикловой адсорбции и, например, могут увеличить извлечение легкого компонента. В кинетически регулируемых способах короткоцикловой адсорбции по меньшей мере часть (и предпочтительно большую часть) селективности можно придать, например, благодаря тому, что коэффициент диффузионного переноса в микропорах и свободный объем адсорбента для легких соединений меньше, чем для более тяжелых соединений. Также, в кинетически регулируемых способах короткоцикловой адсорбции с микропористыми адсорбентами, такими как цеолитовые адсорбенты с 8-членными кольцами, диффузионная селективность может быть обусловлена различиями диффузии в микропорах адсорбента и/или селективным диффузионным сопротивлением поверхности в кристаллах или частицах, которые составляют адсорбент. Кинетически регулируемые способы короткоцикловой адсорбции обычно противоположны равновесно регулируемым способам короткоцикловой адсорбции, в которых свойства равновесной адсорбции адсорбента регулируют селективность. Улучшение кинетической селективности может быть таким, что полное извлечение, например, введенного в способ легкого компонента, достигаемое в способе короткоцикловой адсорбции, может составлять более примерно 80 мол.%, например, более примерно 85 мол.%, более примерно 90 мол.% или более примерно 95 мол.%. Извлечение легкого компонента можно определить как средний по времени молярный расход легкого компонента в потоке продукта, деленный на средний по времени молярный расход легкого компонента в подаваемом потоке. Аналогично, извлечение тяжелого компонента можно определить как средний по времени молярный расход тяжелого компонента в потоке продукта, деленный на средний по времени молярный расход тяжелого компонента в подаваемом потоке.
Можно удалять два или более загрязняющих веществ одновременно, но для удобства компоненты, удаляемые путем селективной адсорбции, в данном документе обычно указаны в единственном числе как загрязняющее вещество или тяжелый компонент.
Описанные в данном документе способы селективации могут обеспечить улучшение кинетической селективности адсорбирующего материала, которое можно преобразовать посредством соответствующей схемы в улучшение извлечения требуемого компонента в кинетически регулируемом способе короткоцикловой адсорбции и/или в способе мембранного разделения.
Адсорбирующие контакторы и слои
Используемый в данном документе термин «адсорбирующий контактор» включает как структурированные, так и неструктурированные адсорбирующие контакторы. Адсорбирующий контактор является частью установки короткоцикловой адсорбции, в которой подаваемый газ приводят в контакт с адсорбентом. В способе АПТ контактор может содержать средства нагрева и охлаждения адсорбента, такие как нагревающие и охлаждающие каналы.Каждый контактор может содержать один или более адсорбирующих слоев. Слои являются секциями или частями контактора, которые содержат адсорбент. Каждый слой может содержать один адсорбент или смесь различных адсорбентов. Не обязательно, чтобы все слои в контакторе содержали один и тот же адсорбент.
В некоторых воплощениях слой в контакторе может включать насадку, содержащую по меньшей мере твердые инертные частицы и гранулы, содержащие адсорбент. Инертные частицы можно внедрить в слой, чтобы способствовать управлению теплотой адсорбции и десорбции. Гранулы, содержащие адсорбент, обычно могут включать частицы адсорбента, поры и связующее. Гранулы часто можно образовать в способах сушки распылением или экструзии. Инертные частицы обычно могут иметь размеры от примерно 100 мкм до примерно 10 см, но можно использовать любой подходящий размер частиц, в зависимости от конструкции. Гранулы, содержащие адсорбент, обычно могут иметь размеры от примерно 250 мкм до примерно 1 см, но также можно использовать любой подходящий размер частиц, в зависимости от конструкции. Перенос массы можно улучшить путем использования более мелких гранул, однако падение давления в слое может иметь тенденцию к возрастанию с уменьшением размера.
Одним примером разработанного адсорбирующего контактора является контактор с параллельными каналами, который может подходить для применения во множестве способов короткоцикловой адсорбции. Структура слоя адсорбирующего контактора, состоящего из контакторов с параллельными каналами, может включать закрепленные поверхности, на которых удерживают адсорбент или другой активный материал. Контакторы с параллельными каналами могут предоставить значительные преимущества по сравнению со стандартными способами разделения газов, такими как сосуды, содержащие адсорбирующие слои или экструдированные адсорбирующие частицы. «Контакторы с параллельными каналами» в данном документе определены как подгруппа адсорбирующих контакторов, включающих структурированные (сконструированные) адсорбенты в слоях с по существу параллельными проточными каналами. Эти проточные каналы можно образовать с помощью множества средств. Помимо адсорбирующего материала структура слоя может содержать один или более материалов, таких как (но не ограничиваясь перечисленным) материалы носителя, теплоотводящие материалы и уменьшающие пустоты компоненты.
В установке короткоцикловой адсорбции с контактором с параллельными каналами стенки каналов в слоях могут содержать адсорбент, например, одинакового размера цеолитовые кристаллы с 8-членными кольцами. Слои в контакторе могут при необходимости содержать теплоаккумулирующий (теплопередающий) материал, способствующий регулированию нагрева и охлаждения адсорбента в контакторе в течение стадий как адсорбции, так и десорбции способа адсорбции с перепадом давления. Нагрев в течение адсорбции может быть вызван теплотой адсорбции молекул, поступающих в адсорбент. Возможный теплоаккумулирующий материал также может способствовать охлаждению контактора в течение стадии десорбции. Теплоаккумулирующий материал можно внедрить в проточные каналы слоев в контакторе, внедрить в сам адсорбент и/или внедрить в виде части стенки проточных каналов. Когда он внедрен в адсорбент, он может представлять собой твердый материал, распределенный по всему слою адсорбента, и/или он может быть включен как слой внутри адсорбента. Когда он внедрен как часть стенки проточного канала, адсорбент может быть нанесен или образован на стенке. Любой подходящий материал можно использовать в качестве теплоаккумулирующего материала при практической реализации настоящего изобретения. Неограничивающие примеры таких материалов включают металлы, керамику и полимеры. Неограничивающие примеры предпочтительных металлов включают стальные, медные и алюминиевые сплавы. Неограничивающие примеры предпочтительной керамики включают диоксид кремния, оксид алюминия и диоксид циркония. Примером предпочтительного полимера, который можно использовать при практической реализации настоящего изобретения, является полиимид.
В зависимости от степени, до которой необходимо ограничить повышение температуры в течение стадии адсорбции, отношение массы используемого теплоаккумулирующего материала к массе микропористого адсорбента в контакторе может составлять от примерно 0,1 до примерно 25, например, от примерно 0,25 до 5, от примерно 0,25 до 2 или от примерно 0,25 до 1. В предпочтительном воплощении эффективное количество теплоаккумулирующего материала может быть внедрено в контактор. ффективное количество теплоаккумулирующего материала может быть количеством, достаточным для поддержания роста температуры адсорбента в течение стадии адсорбции до менее примерно 100°С, например, менее примерно 50°С или менее примерно 10°С.
Каналы в контакторе, также иногда называемые «проточными каналами» или «каналами газового потока», представляют собой пути в контакторе, через которые протекает газ. В целом, проточные каналы могут обеспечить относительно низкое гидродинамическое сопротивление наряду с относительно большой площадью поверхности. Длина проточного канала преимущественно может быть достаточной для обеспечения зоны переноса массы, при этом данная длина может по меньшей мере зависеть от скорости текучей среды и от отношения площади поверхности к объему канала. Каналы могут быть выполнены таким образом, чтобы минимизировать падение давления вдоль длины каналов. Во многих воплощениях фракция потока текучей среды, поступающая в канал на первом конце контактора, не находится в соединении с любой другой фракцией текучей среды, поступающей в другой канал на первом конце, до тех пор, пока эти фракции не объединятся после выхода на втором конце. В контакторах с параллельными каналами однородность каналов в слоях может быть важной для обеспечения эффективного использования (по существу всех) каналов и, по существу, равномерного заполнения зоны переноса массы. Как производительность, так и чистота газа может страдать, если существует избыточная несогласованность каналов. Если один проточный канал больше, чем соседний проточный канал, может произойти преждевременный прорыв продукта, что может привести к уменьшению чистоты получаемого газа, в некоторых случаях к неприемлемым уровням чистоты. Кроме того, для устройств, действующих при частотах цикла более примерно 50 циклов в минуту (ц/мин), может потребоваться большая однородность проточных каналов и меньшее падение давления, чем для устройств, действующих при более низких частотах цикла. Далее, если возникает слишком большое падение давления в слое, то трудно достичь более высоких частот цикла, таких как более чем примерно 3 ц/мин.
Размеры и геометрические формы слоев в контакторах с параллельными каналами могут быть любыми, подходящими для применения в оборудовании для осуществления способа короткоцикловой адсорбции. Неограничивающие примеры геометрических форм включают монолиты с различными формами, имеющие множество, по существу, параллельных каналов, проходящих от одного конца монолита до другого, множество трубчатых элементов, расположенные друг над другом слои адсорбирующих листов с промежутками и без промежутков между каждым листом, многослойные спиральные рулоны, пучки полых волокон, а также пучки по существу параллельных твердых волокон. Адсорбент может быть нанесен на эти геометрические формы или во многих случаях данные формы могут быть образованы непосредственно из адсорбирующего материала с подходящим связующим. Примером геометрической формы, образованной непосредственно из адсорбента/связующего, может быть экструзия композиционного материала цеолит/полимер в виде монолита. Другим примером геометрической формы, образованной непосредственно из адсорбента, могут быть экструдированные или скрученные полые волокна, изготовленные из композиционного материала цеолит/полимер. Примером геометрической формы, покрытой адсорбентом, может быть тонкий плоский стальной лист, покрытый микропористой адсорбирующей пленкой с небольшим содержанием мезопор, такой как цеолитовая пленка. Непосредственно образованный или покрытый адсорбентом слой может быть сам структурирован в виде множества слоев, состоящих либо из одинаковых, либо из различных адсорбирующих материалов. Структуры многослойных адсорбирующих листов описаны, например, в опубликованной патентной заявке US 2006/0169142, которая включена в данный документ путем ссылки.
Размеры проточных каналов можно рассчитать, учитывая падение давления вдоль проточного канала. Для проточных каналов может быть предпочтительным иметь ширину канала от примерно 5 мкм до примерно 1 мм, например от примерно 50 мкм до примерно 250 мкм. Используемый в данном документе термин «ширина канала» для проточного канала определен как длина линии поперек минимального размера проточного канала перпендикулярно пути потока. Например, если проточный канал является круглым в поперечном сечении, то ширина канала представляет собой внутренний диаметр круга. Однако, если проточный канал является прямоугольным в поперечном сечении, то ширина канала представляет собой длину перпендикулярной линии, связывающей две наиболее длинные стороны прямоугольника (то есть, длину наименьшей стороны прямоугольника). Также необходимо отметить, что проточные каналы могут иметь любую конфигурацию поперечного сечения. В некоторых предпочтительных воплощениях конфигурация поперечного сечения проточного канала может быть круглой, прямоугольной, квадратной или шестиугольной. Однако можно использовать любую геометрическую конфигурацию поперечного сечения, такую как (но не ограничиваясь перечисленным) эллипсы, овалы, треугольники, различные многоугольники или даже неправильные формы. В других предпочтительных воплощениях отношение объема адсорбента к объему проточного канала в адсорбирующем контакторе может составлять от примерно 0,5:1 до примерно 100:1, например от примерно 1:1 до примерно 50:1.
В некоторых применениях проточные каналы можно образовать путем наслаивания друг на друга листов адсорбента. Обычно, в применениях слоистого адсорбента длина проточного канала может составлять от примерно 0,5 см до примерно 10 м, например от примерно 10 см до примерно 1 м, а ширина канала от примерно 50 мкм до примерно 450 мкм. Каналы могут содержать разделитель или сетку, которая действует как разделитель. Для слоистых адсорбентов можно использовать разделители, которые являются конструкциями или материалами, которые определяют разделение между слоями адсорбента. Неограничивающие примеры типов разделителей, которые можно использовать в настоящем изобретении, включают те, которые состоят из таких материалов с точными размерами, как пластиковая, металлическая, стеклянная или углеродная сетка; пластиковая пленка или металлическая фольга; пластиковые, металлические, стеклянные, керамические или углеродные волокна и нити; керамические колонки; пластиковые, стеклянные, керамические или металлические сферы или диски; или их сочетания или смеси. Слоистые адсорбенты использовали в устройствах, действующих при частотах циклов АПД, составляющих до по меньшей мере примерно 150 ц/мин. Длина проточного канала может коррелировать со скоростью цикла. При более низких скоростях цикла, таких как от примерно 20 ц/мин до примерно 40 ц/мин, длина проточного канала может составлять один метр или более, даже до прим