Лиганды на основе полидиметилсилоксана для квантовых точек в кремнийорганических материалах

Иллюстрации

Показать все

Изобретение предлагает способ изготовления светового преобразователя, включающего силоксановую полимерную матрицу с внедренными в нее наночастицами светового преобразователя, причем данный способ включает (a) смешивание (i) наночастиц светового преобразователя, у которых на внешнюю поверхность привиты прививаемые лиганды, и (ii) отверждаемых силоксановых полимеров, и (b) отверждение отверждаемых силоксановых полимеров, в результате чего получается световой преобразователь, причем прививаемые лиганды включают силоксановые прививаемые лиганды, содержащие x1 атомов Si основной цепи, причем по меньшей мере к одному атому Si основной цепи каждого силоксанового прививаемого лиганда присоединена боковая группа для прививки к наночастицам светового преобразователя, причем отверждаемые силоксановые полимеры содержат y1 атомов Si основной цепи и причем x1 составляет по меньшей мере 20, при этом y1 составляет по меньшей мере 2 и при этом x1/y1>1. Техническим результатом является получение системы с хорошей смешиваемостью без использования значительных количеств дополнительных растворителей. 4 н. и 12 з.п. ф-лы, 20 ил., 4 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу получения полимера для светового преобразователя, содержащего внедренные в полимер наночастицы, к световому преобразователю, полученному таким способом, и подсвечивающему устройству, включающему такой (полимерный) световой преобразователь.

Уровень техники, к которой относится изобретение

В технике известно использование наночастиц, таких как квантовые точки (QD, КТ), для осветительных устройств. В патентной заявке США US 20110240960, например, описывается светоизлучающее устройство, включающее светоизлучающий источник, первый квантово-точечный преобразователь длины волны, расположенный над светоизлучающим источником, причем первый квантово-точечный преобразователь длины волны включает множество первых квантовых точек, которые производят свет с преобразованной длиной волны, преобразуя длину волны света от светоизлучающего источника, первую диспергирующую среду, в которой диспергированы внедренные первые квантовые точки, и первый герметизирующий материал, который полностью герметизирует внешнюю поверхность диспергирующей среды с внедренным множеством первых квантовых точек.

Первый герметизирующий материал наносится для герметизации всей внешней поверхности первого квантово-точечного преобразователя длины волны. Кроме того, второй квантово-точечный преобразователь длины волны располагается над первым квантово-точечным преобразователем длины волны, причем второй квантово-точечный преобразователь длины волны включает множество вторых квантовых точек, которые производят свет с преобразованной длиной волны, преобразуя длину волны света от светоизлучающего источника, вторую диспергирующую среду, в которой диспергированы внедренные вторые квантовые точки, и второй герметизирующий материал, который полностью герметизирует внешнюю поверхность диспергирующей среды с внедренным множеством вторых квантовых точек, причем первый квантово-точечный преобразователь длины волны, второй квантово-точечный преобразователь длины волны и светоизлучающий источник находятся на расстоянии друг от друга. Второй герметизирующий материал нанесен на всю внешнюю поверхность второго квантово-точечного преобразователя длины волны и полностью герметизирует внешнюю поверхность второго квантово-точечного преобразователя длины волны. Кроме того, светоизлучающий источник представляет собой светоизлучающий диод или лазерный диод.

В публикации J. Mat. Chemistry C, vol. 1 (2012), т. 1, p. 86-94 описаны бимодально привитые наночастицы, которые диспергированы в силоксанах (реферат; схема 1; страница 90, верхний левый столбец; параграф 4). В данном документе описываются прозрачные тушащие люминесценцию нанокомпозиты, заполненные квантовыми точками CdSe с привитыми щетками из бимодального полидиметилсилоксана (ПДМС).

В патентной заявке США 2010/276638 A1 описаны матрицы, легированные полупроводниковыми нанокристаллами. В определенных вариантах осуществления полупроводниковые нанокристаллы имеют такой размер и состав, что они поглощают или излучают свет при определенных значениях длины волны. Нанокристаллы могут содержать лиганды, которые обеспечивают смешивание с разнообразными матричными материалами, включая полимеры, таким образом, что матрицы рассеивают свет в минимальной степени. Матрицы необязательно состоят из лигандов.

Сущность изобретения

Показано, что наночастицы, такие как квантовые точки (КТ), представляют большой интерес для осветительных устройств. Они могут служить, например, в качестве неорганических люминофоров для преобразования синего света в другие цвета и имеют преимущество относительно узкой полосы излучения, а также преимущество возможного регулирования цвета посредством размера КТ, что позволяет получать высококачественный чистый белый свет.

Чтобы использовать КТ для жидкокристаллических дисплейных (LED, ЖКД) устройств, эти квантовые точки должны быть внедрены в подходящую матрицу. Квантово-точечный порошок (без матрицы) не является желательным вследствие эффектов концентрационного тушения и неудовлетворительной технологичности такого чистого квантово-точечного порошка. До настоящего времени внедрение наночастиц в полимеры множества типов, как правило, приводило к агрегированию наночастиц. В настоящее время в качестве матрицы для КТ используют, главным образом, акриловые матрицы, но они известны своей недостаточной устойчивостью по отношению к высокоинтенсивным потокам синего света. Авторы настоящего изобретения считают, что кремнийорганические соединения (силиконы) являются наиболее предпочтительной матрицей для КТ вследствие доказанной устойчивости силиконов по отношению к высокоинтенсивным потокам синего света (т.е. их доказанной совместимости с ЖКД).

В настоящее время силиконы используют как стандартные матрицы/смолы в многочисленных способах изготовления ЖКД. Однако КТ, как правило, имеют гидрофобное органическое покрытие (обычно в форме лигандов, отходящих от внешней поверхности КТ), которое делает их несовместимыми с силиконами: когда КТ смешивают с силиконами, как правило, получается непрозрачная смесь вследствие агломерации КТ. Это является нежелательным вследствие эффектов концентрационного тушения, ожидаемых эффектов усиленного разложения и нерегулируемого способа обработки этих пленок, что приводит к пространственной изменчивости концентрации. Насколько известно авторам настоящего изобретения, не существует ни одного примера КТ, содержащих координированные лиганды, которые действительно способны смешиваться с используемыми в оптике силиконами.

Таким образом, весьма желательным является более общий способ улучшения смешиваемости КТ с используемыми в оптике силиконами. Следовательно, один из аспектов настоящего изобретения относится к альтернативной системе, содержащей наночастицы и полимер, особенно к системе, содержащей квантовые точки и полимер. В частности, один из аспектов настоящего изобретения относится к альтернативному способу получения такого полимера с внедренными наночастицами. Кроме того, еще один аспект настоящего изобретения относится к альтернативному световому преобразователю с внедренными в него наночастицами. Еще один аспект относится к альтернативному подсвечивающему устройству, содержащему такой полимер с внедренными КТ. Предпочтительно, альтернативный способ, и/или альтернативный световой преобразователь, и/или альтернативное подсвечивающее устройство по меньшей мере частично преодолевает одно или несколько из описанных выше (а также дополнительно описанных ниже) недостатков решений предшествующего уровня техники.

Авторы настоящего изобретения неожиданно обнаружили, помимо прочего, что посредством замены естественных квантово-точечных лигандов в наночастицах светового преобразователя определенными лигандами на основе полидиметилсилоксана (PDMS, ПДМС) можно действительно придавать квантовым точкам способность смешивания с силиконами и/или в значительной степени повышать способность смешивания с силиконами при выполнении определенных условий. Кроме того, преимущественно отсутствует необходимость использования значительных количеств дополнительных растворителей, таких как гексан и ацетон, или других растворителей, чтобы получалась система с хорошей смешиваемостью.

Следовательно, в первом аспекте настоящее изобретение предлагает способ изготовления светового преобразователя, включающего силоксановую полимерную матрицу, в которую внедрены наночастицы светового преобразователя (далее также называемые «наночастицами»), причем данный способ включает:

(a) смешивание (i) наночастиц светового преобразователя, у которых на внешнюю поверхность привиты прививаемые лиганды, и (ii) отверждаемых силоксановых полимеров, и

(b) отверждение отверждаемых силоксановых полимеров, в результате чего получается световой преобразователь;

- причем прививаемые лиганды включают силоксан, содержащий x1 атомов Si основной цепи, при этом по меньшей мере к одному атому Si основной цепи каждого силоксанового прививаемого лиганда присоединена боковая группа, имеющая функциональную возможность прививки, такая как боковая группа, выбранная из группы, состоящей из содержащей амин боковой группы или содержащей карбоновую кислоту боковой группы (хотя возможными также являются и другие функциональные группы; см. ниже);

- причем отверждаемые силоксановые полимеры содержат y1 атомов Si основной цепи;

- причем x1 составляет, в частности, по меньшей мере 20, например, в частности, по меньшей мере 40, более конкретно по меньшей мере 50, причем y1 составляет, в частности, по меньшей мере 2, например по меньшей мере 7, например по меньшей мере 10, и при этом x1/y1≥0,8, >1, например по меньшей мере ≥1,2.

Наночастицы представляют собой наночастицы светового преобразователя, которые могут, в частности, предназначаться, чтобы при возбуждении ультрафиолетовым и/или синим светом обеспечивать люминесценцию по меньшей мере в части видимого диапазона спектра. Следовательно, эти частицы в настоящем документе также описываются как наночастицы светового преобразователя, в которых квантовые точки (КТ) представляют собой конкретный вариант осуществления.

Такой световой преобразователь, который может быть изготовлен описанным в настоящем документе способом, может проявлять люминесценцию (когда он внедрен в матрицу отвержденных силоксановых полимеров) с высоким квантовым выходом и устойчивостью. Кроме того, световой преобразователь может обладать относительной термической и/или фотохимической устойчивостью и/или прозрачностью. Кроме того, с помощью данного способа наночастицы можно диспергировать в полимере относительно равномерным образом, без существенных недостатков агломерации.

Следовательно, в следующем аспекте настоящее изобретение также предлагает световой преобразователь, который может быть изготовлен способом по настоящему изобретению. В частности, настоящее изобретение также (непосредственно) предлагает световой преобразователь, включающий (отвержденный) силоксановый полимер (матричный полимер) с внедренными в него наночастицами светового преобразователя, причем:

(a) наночастицы светового преобразователя имеют внешнюю поверхность, на которую привиты лиганды, и

(b) силоксановая полимерная матрица включает сшитые силоксановые полимеры;

- причем лиганды включают силоксановые прививаемые лиганды, содержащие x1 атомов Si основной цепи, при этом по меньшей мере к одному атому Si основной цепи каждого силоксанового прививаемого лиганда присоединена боковая группа, имеющая функциональную возможность прививки (такая как, например, выбранная из группы, состоящей из содержащей амин боковой группы или содержащей карбоновую кислоту боковой группы);

- причем отверждаемые силоксановые полимеры содержат y1 атомов Si основной цепи;

- причем x1 составляет, в частности, по меньшей мере 20, например, в частности, по меньшей мере 40, более конкретно по меньшей мере 50, например по меньшей мере 80, причем y1 составляет, в частности, по меньшей мере 2, например по меньшей мере 7, например по меньшей мере 10, и причем x1/y1>1, например по меньшей мере ≥1,2.

Поскольку эти световые преобразователи можно также применять в осветительных элементах, настоящее изобретение в следующем аспекте предлагает осветительный элемент, включающий:

- источник света, предназначенный, чтобы производить свет источника света (т.е. свет от источника света),

- световой преобразователь, который может быть изготовлен способом, определенным в настоящем документе, и/или является общеизвестным, предназначенный для преобразования по меньшей мере части света источника света в видимый преобразованный свет.

В следующем аспекте настоящее изобретение также предлагает жидкокристаллическое дисплейное устройство, включающее одно или несколько задних подсвечивающих устройств, причем одно или несколько задних подсвечивающих устройств включают один или несколько осветительных элементов, определенных в настоящем документе.

Термин «световой преобразователь» относится к системе, которая предназначена для преобразования света первой длины волны в свет второй длины волны. В частности, ультрафиолетовый и/или синий свет (длина волны возбуждения) можно (по меньшей мере частично) преобразовать в видимый свет (большей длины волны, чем длина волны возбуждения). Это будет подробно разъяснено ниже; где описываются первые несколько аспектов, предусматривающих силоксановый полимер, прививаемые лиганды и отверждаемые силоксановые полимеры, а также варианты осуществления способа изготовления светового преобразователя.

Силиконы, точнее так называемые полимеризованные или полимеризуемые силоксаны или полисилоксаны, представляют собой гибридные (содержащие неорганические и органические фрагменты) полимеры, имеющие химическую формулу [R1R2SiO]n (не учитывая концевые группы), где R представляет собой группу, такую как, например, водород, углеводородный или фторуглеродный радикал, в частности метил, этил или фенил. В частности, одна или несколько групп R при одном или нескольких атомах Si основной цепи включают один или несколько углеводородных и фторуглеродных радикалов. Одна или несколько этих боковых группы могут также содержать сшивающие функциональные группы, такие как винильная группа.

Эти полимеризованные силоксановые или полисилоксановые материалы состоят из неорганической содержащей атомы кремния и кислорода основной цепи (-Si-O-Si-O-Si-O-) с органическими боковыми группами, присоединенными к атомам кремния, которые являются четырехкоординированными. Поскольку боковые группы R могут, в принципе, быть различными, то вместо формулы [R2SiO]n можно также использовать формулу [R1,R2SiO]n (не учитывая концевые группы). Следует отметить, что в настоящем документе x1 и y1 означают число атомов Si в основной цепи силоксана, которым соответствуют прививаемые лиганды и (отверждаемые) силоксановые полимеры (которые образуют материал основы), соответственно.

Тот факт, что в настоящем документе упоминаются только группы R или, точнее, R1,R2, не исключает, что к различным атомам Si основной цепи могут быть присоединены одинаковые боковые группы, а также в силиконе могут содержаться боковые группы более чем двух различных типов. Следовательно, в качестве группы R можно выбирать, например, но ими не ограничиваясь, метил, фенил и т.д. Кроме того, в качестве боковых групп R являются возможными также галогены, главным образом, хлор. Кроме того, формулой [R2SiO] или [-Si(R)2-O-] обозначается силиконовое звено или характеристическая группа силикона (т.е. группа, которая характеризует силикон).

Силоксан представляет собой любое химическое соединение, которое составляют звенья, имеющие формулу R2SiO, где R представляет собой, например, но ими не ограничиваясь, атом водорода, углеводородный радикал, или одно звено или несколько звеньев R2SiO, соединенных с концевой группой. Силоксаны могут иметь разветвленные или неразветвленные основные цепи -Si-O-Si-O-, состоящие из чередующихся атомов кремния и кислорода, с боковыми цепями R, присоединенными к атомам кремния. Полимеризованные силоксаны с органическими боковыми цепями R, не являющимися атомами водорода, широко известны как силиконы или полисилоксаны. В настоящем документе они также называются «силоксанами» или «силоксановыми полимерами». Соответствующими иллюстративными примерами являются [SiO(CH3)2]n (полидиметилсилоксан) и [SiO(C6H5)2]n (полидифенилсилоксан). Эти соединения можно рассматривать в качестве гибридных как органических, так и неорганических соединений. Органические боковые цепи придают им гидрофобные свойства, в то время как основная цепь -Si-O-Si-O- является чисто неорганической. Как отмечено выше, находящиеся в основной цепи атомы Si в настоящем документе также называются «атомами Si основной цепи». Силоксан [R2SiO]n содержит n атомов Si основной цепи. Следовательно, любой силоксановый характеристический фрагмент R2SiO предусматривает один атом кремния основной цепи, к которому присоединены две боковые группы. Следует отметить, что, например, ПДМС, который представляет собой CH3[Si(CH3)2O]nSi(CH3)3, содержит n+1 атомов Si, т.е., по существу, n+1 атомов Si основной цепи. Если такой силоксан используется как прививаемый лиганд, то x1=n+1; если такой силоксан используется как силоксановый полимер для отверждения, то y1=n+1. Кроме того, ПДМС (см. формулу) содержит n-1 неконцевых атомов Si основной цепи.

Изменяя длину цепей -Si-O-, боковые группы и степень сшивания, можно синтезировать силиконы с широким разнообразием свойств и составов. Они могут отличаться по консистенции от жидкости до геля, каучука и твердой пластмассы.

Наиболее простым силоксаном является линейный полидиметилсилоксан (PMDS, ПДМС; см. выше), силиконовое масло. Второй по величине группой силиконовых материалов являются силиконовые каучуки, образованные разветвленными и клеткоподобными олигосилоксанами.

Согласно настоящему изобретению линейные силоксаны используются, в частности, как отверждаемые силоксановые полимеры и/или силоксановые прививаемые лиганды. Однако нелинейные силоксаны также можно использовать как отверждаемые силоксановые полимеры и/или силоксановые прививаемые лиганды. Кроме того, поскольку силоксаны отверждаются, как правило, световой преобразователь будет представлять собой твердый световой преобразователь (твердый полимерный световой преобразователь). Тем не менее, согласно варианту осуществления, световой преобразователь может быть гибким.

Как отмечено выше, прививаемые лиганды включают силоксановые прививаемые лиганды, содержащие x1 атомов Si основной цепи; в частности прививаемые лиганды представляют собой силоксановые прививаемые лиганды (содержащие x1 атомов Si в основной цепи). Термин «прививаемый лиганд» означает лиганд, который координируется или присоединяется к внешней поверхности наночастиц светового преобразователя (эти частицы более подробно описаны ниже), таких как квантовые точки. Прививаемые лиганды, например, известны в технике и описаны, например, в международных патентных заявках WO 2009/035657, WO 2010/014198, WO 2008/063653 и т.д. Прививаемые лиганды иногда называют также защитными лигандами.

Прививаемые лиганды включают силоксановые молекулы, которые, как правило, содержат широко известные боковые группы, но также содержат по меньшей мере одну боковую группу, имеющую функциональную возможность прививки. Боковая группа, имеющая функциональную возможность прививки, может быть выбрана из группы, состоящей из амина и карбоновой кислоты. Например, амином или карбоновой кислотой могут быть -NH2- или COOH, но также могут быть -R-NH2 или R-COOH, соответственно, причем R представляет собой углеводородный радикал, предпочтительно содержащий менее чем 20 атомов углерода. Однако боковая группа, имеющая функциональную возможность прививки, может также включать фосфин, фосфиноксид, фосфат, тиол и т.д. (а также, согласно варианту осуществления, сочетания двух или более данных групп). Следовательно, прививаемые лиганды представляют собой силоксановые молекулы, которые, как правило, содержат широко известные боковые группы, но также содержат по меньшей мере одну боковую группу, имеющую функциональную возможность прививки, выбранную из группы, состоящей из амина, карбоновой кислоты, фосфина, фосфиноксида, фосфата, тиола, даже более предпочтительно амина, карбоновой кислоты, фосфина, фосфиноксида и фосфата. Согласно варианту осуществления лиганд может содержать множество боковых групп, имеющих функциональную возможность прививки, которые могут включать различные типы таких боковых групп (или которые могут быть все идентичными). К атому Si основной цепи могут также быть присоединены две боковые группы, имеющие функциональную возможность прививки. Выражение «боковая группа, имеющая функциональную возможность прививки» означает боковую группу (не концевую группу), которая имеет возможность прививки к люминесцентной наночастице, как описано в настоящем документе. Таким образом, боковая группа, имеющая функциональную возможность прививки, придает силоксану возможность его прививки (и, следовательно, функцию прививаемого лиганда).

Следовательно, боковая группа представляет собой, в частности, боковую группу, присоединенную к неконцевому атому Si основной цепи (также см. ниже). Амин может быть привит как амин к внешней поверхности люминесцентной наночастицы; карбоновая кислота может быть привита как карбоксилат к люминесцентной наночастице. В частности, оказывается, что функциональные группы должны быть классифицированы как боковые группы, а не как концевые группы. Таким образом, прививаемые лиганды включают, в частности, силоксановые молекулы, которые содержат концевые группы, которые не включают группу, выбранную из амина, карбоновой кислоты, фосфина, фосфиноксида фосфата и тиола; т.е. в них отсутствуют концевые группы, которые (по существу) имеют функциональную возможность прививки. Прививаемые лиганды содержат, в частности, боковые группы, имеющие функциональную возможность прививки к отмеченным в настоящем документе полупроводниковым квантовым точкам, которые образуют, в частности, наночастицы следующих соединений: CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs и InAlPAs, более конкретно сульфиды, теллуриды и селениды.

Боковые группы, имеющие функциональную возможность прививки, могут быть расположены в любом месте силоксановой основной цепи прививаемого лиганда. Если предположить, что линейный силоксан содержит x1 атомов кремния в основной цепи, то, в частности, одна боковая группа или несколько боковых групп, представляющих собой функциональные группы, составляют 20-80% длины основной цепи. Если предположить, например, что основная цепь содержит 50 атомов Si основной цепи, то конкретно от 10 до 40 атомов Si присоединяют боковые группы, имеющие функциональную возможность прививки (причем первый и пятидесятый атомы кремния являются концевыми).

Существует по меньшей мере одна такая боковая группа, хотя необязательно может существовать множество боковых групп, имеющих функциональную возможность прививки, таких как выбранные из амина и карбоновой кислоты, или других, таких как фосфин, фосфиноксид, фосфат, тиол. Число таких боковых групп, имеющих функциональную возможность прививки, может зависеть от длины цепи силоксанового прививаемого лиганда, но, в частности, оно не превышает число 10. Следовательно, конкретно, не более чем к 10 атомам Si основной цепи (которые не являются концевыми атомами Si основной цепи) каждого силоксанового прививаемого лиганда присоединены боковые группы, имеющие функциональную возможность прививки. В частности, не более чем к 10 атомам Si основной цепи (которые не являются концевыми атомами Si основной цепи) каждого силоксанового прививаемого лиганда присоединены боковые группы (имеющие функциональную возможность прививки), выбранные из группы, состоящей из содержащей амин боковой группы, содержащей карбоновую кислоту боковой группы, содержащей фосфин боковой группы, содержащей фосфиноксид боковой группы, содержащей фосфат боковой группы и содержащей тиол боковой группы. Когда боковые группы, имеющие функциональную возможность прививки, присутствуют во множественном числе, в частности, процентное содержание боковых групп, имеющих функциональную возможность прививки, равно 5 мол.% или составляет менее чем 5 мол.% (из всех боковых групп R1,R2 основной цепи не более чем 5% содержат такую функциональную группу), более конкретно процентное содержание боковых групп, имеющих функциональную возможность прививки, равно 2,5 мол.% или составляет менее чем 2,5 мол.%. Следовательно, если предположить, например, что присутствуют 22 атома Si основной цепи (включая два концевых атома Si основной цепи), то доступных имеются 40 боковых групп; когда 5% из них имеют функциональную возможность прививки, это означает, что до двух боковых групп будут иметь функциональную возможность прививки: функциональная возможность прививки будет отсутствовать у других боковых групп, таких как метил, фенил и т.д. Это число (p) боковых групп, имеющих функциональную возможность прививки, может быть распределено по p/2-p силиконовым звеньям основной цепи.

Следует отметить, что термины «прививаемый лиганд» или «силоксановый прививаемый лиганд» могут также означать множество различных типов прививаемых лигандов. В одном из вариантов осуществления эти прививаемые лиганды являются, по существу, идентичными. Однако в другом варианте осуществления прививаемые лиганды могут включать множество различных прививаемых лигандов. Например, они могут различаться по длине цепи (x1), и/или они могут различаться по боковым группам, и/или они могут различаться по боковым группам, имеющим функциональную возможность прививки, и/или они могут различаться по числу боковых групп, имеющих функциональную возможность прививки, и/или они могут различаться по положению боковых групп, имеющих функциональную возможность прививки (и/или они могут различаться по типу концевых групп). Например, силоксановые прививаемых лиганды могут включать множество силоксановых полимеров, каждый из которых имеет только одну боковую (амино)группу, но где положение этой боковой (амино)группы в силоксановых полимерах распределяется произвольно.

Как правило, отверждаемые силоксановые полимеры или (сшитые) силоксановые полимеры светового преобразователя (полимерного устройства) не содержат одну или несколько боковых групп, имеющих функциональную возможность прививки, выбранных из группы, состоящей из амина и карбоновой кислоты.

За исключением боковых групп, имеющих функциональную возможность прививки, приведенная выше информация в отношении силоксановых прививаемых лигандов, по существу, также применяется к отверждаемым силоксановым полимерам.

Термин «отверждаемые силоксановые полимеры» может также означать множество отверждаемых силоксановых полимеров различных типов. В одном из вариантов осуществления эти отверждаемые силоксановые полимеры являются, по существу, идентичными. Однако, в другом варианте осуществления, отверждаемые силоксановые полимеры могут представлять собой множество различных отверждаемых силоксановых полимеров. Например, они могут различаться по длине цепи (y1) и/или они могут различаться по боковым группам (или их типу). Кроме того, они могут различаться по типу концевых групп. Отверждаемые силоксановые полимеры могут содержать концевые группы, которые предназначены для образования сшивок при отверждении. Следует отметить, что в качестве дополнения или в качестве альтернативы, одна или несколько боковых групп на отверждаемый силоксановый полимер могут быть предназначены для образования сшивок при отверждении. Например, боковые группы могут включать винильную группу (или атом водорода). Как становится понятным из приведенного выше описания, отверждаемые силоксановые полимеры могут содержать концевые группы и/или боковые группы, которые предназначены для образования сшивок при отверждении.

В конкретном варианте осуществления x1 составляет по меньшей мере 40, например по меньшей мере 50, в частности по меньшей мере 80. Могут быть получены улучшенные и/или более устойчивые системы. В одном из вариантов осуществления x1 составляет не более чем 2000, в частности не более чем 1000, например не более чем 800. В конкретном варианте осуществления x1 находится в диапазоне 40-1000, таком как 40-800, например 100-800. Как упомянуто выше, можно использовать сочетание различных прививаемых лигандов; в таком случае x1 представляет собой среднее (средневесовое) значение.

Кроме того, y1 составляет по меньшей мере 7, например, в частности, по меньшей мере 10 и, в частности, не более чем 400, например не более чем 200. Как упомянуто выше, можно использовать сочетание различных отверждаемых силоксановых полимеров; в таком случае y1 представляет собой среднее (средневесовое) значение.

Кроме того, хорошие результаты могут быть получены, если x1/y1≥0,80, но, как правило, улучшенные результаты, в отношении устойчивости и/или пропускания света (светового преобразователя), получают, когда x1/y1≥0,95, например, когда x1/y1≥1,2.

В частности, прививаемые лиганды и отверждаемые силоксановые полимеры являются, по существу, идентичными в химическом отношении. Это может означать, например, что как прививаемые лиганды, так и отверждаемые силоксановые полимеры представляют собой полиметилсилоксаны, или полифенилсилоксаны, или полиметилфенилсилоксаны (в частности, при соотношении метильных и фенильных групп 50/50), содержащие прививаемые лиганды, имеющие по меньшей мере одну боковую группу, которая представляет собой боковую группу, имеющую функциональную возможность прививки.

В конкретном варианте осуществления по меньшей мере 75%, в частности 80%, более конкретно 85%, еще более конкретно по меньшей мере 90%, например, в частности, по меньшей мере 95% боковых групп силоксановых прививаемых лигандов и отверждаемые силоксановые полимеры совпадают по химической идентичности. Совпадение по химической идентичности можно оценить, определяя процентное содержание конкретных боковых групп в прививаемых лигандах и отверждаемых силоксановых полимерах и вычисляя процентное содержание совпадающих частей. Например, в гипотетическом примере, когда силоксановый прививаемый лиганд содержит 72% метильных и 25% фенильных боковых групп, а отверждаемые силоксановые полимеры содержат 66% метильных и 29% фенильных боковых групп, суммарное процентное совпадение составляет 66%+25%=91%. Следовательно, такие силоксановые прививаемые лиганды и отверждаемые силоксановые полимеры являются, по существу, идентичными в химическом отношении.

Как отмечено выше, силоксановые прививаемые лиганды и/или отверждаемые силоксановые полимеры могут, соответственно, включать множество различных молекул. В таком случае используют средние значения. Например, предполагая, что первый силоксановый прививаемый лиганд содержит 74% метильных и 22% фенильных боковых групп, а второй силоксановый прививаемый лиганд содержит 70% метильных и 28% фенильных боковых групп, среднее процентное содержание составляет 72% метильных и 25% фенильных боковых групп.

В конкретном варианте осуществления по меньшей мере к 75%, в частности 80%, более конкретно к 85%, еще более конкретно по меньшей мере к 90%, например, в частности, по меньшей мере к 95% атомов Si основной цепи (не включая концевые группы) силоксановых прививаемых лигандов присоединены метильные боковые группы, и, в частности, по меньшей мере к 75%, в частности к 80%, более конкретно к 85%, еще более конкретно, по меньшей мере к 90%, например, в частности, по меньшей мере к 95% атомов Si основной цепи (не включая концевые группы) (отверждаемых) силоксановых полимеров присоединены метильные боковые группы. Следовательно, в одном из вариантов осуществления (твердый) силоксановый полимер (матрица) и силоксановые прививаемые лиганды включают полидиметилсилоксановые полимеры. Предполагая, что силоксан содержит 10 атомов кремния в основной цепи (не включая концевые группы) и 90% метильных боковых групп, в нем присутствуют 16 метильных боковых групп.

В частности, силоксаны в случае прививаемых лигандов и отверждаемых силоксановых полимеров содержат 100% метильных боковых групп или метильные/фенильные боковые группы в соотношении 50/50 (однако, в случае прививаемых лигандов, по меньшей мере одна боковая группа представляет собой боковую группу, имеющую функциональную возможность прививки, таким образом, эта боковая группа представляет собой не только метил или фенил, но включает, в качестве альтернативы или в качестве дополнения, например, амин или карбоновую кислоту).

В еще одном варианте осуществления по меньшей мере 75%, в частности 80%, более конкретно 85%, еще более конкретно по меньшей мере 90%, например, в частности, по меньшей мере 95% атомов Si основной цепи (не включая концевые группы) силоксановых прививаемых лигандов имеют фенильные боковые группы и по меньшей мере 75%, в частности 80%, более конкретно 85%, еще более конкретно по меньшей мере 90%, например, в частности, по меньшей мере 95% атомов Si основной цепи (не включая концевые группы) силоксановых полимеров имеют фенильные боковые группы.

Как будет очевидно, концевые группы могут также включать метильные, фенильные или другие группы, такие как, необязательно, группы, имеющие сшивающие функциональные группы.

Квантовые точки или люминесцентные наночастицы, которые в настоящем документе указаны как наночастицы светового преобразователя, могут, например, включать квантовые точки, содержащие полупроводниковые соединения элементов II-VI групп, выбранные из CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe и HgZnSTe. В другом варианте осуществления люминесцентные наночастицы могут представлять собой, например, квантовые точки, содержащие полупроводниковые соединения элементов III-V групп, выбранные из GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs и InAlPAs. В еще одном варианте осуществления люминесцентные наночастицы могут представлять собой, например, квантовые точки, содержащие халькопиритного типа полупроводниковые соединения элементов I-III-VI2 групп, выбранные из CuInS2, CuInSe2, CuGaS2, CuGaSe2, AgInS2, AgInSe2, AgGaS2 и AgGaSe2. В еще одном варианте осуществления люминесцентные наночастицы могут представлять собой, например, квантовые точки, содержащие полупроводниковые соединения элементов I-V-VI2 групп, например, выбранные из LiAsSe2, NaAsSe2 и KAsSe2. В другом варианте осуществления люминесцентные наночастицы могут представлять собой, например, нанокристаллы, содержащие полупроводниковые соединения элементов IV-VI групп, такие как SbTe. В конкретном варианте осуществления люминесцентные наночастицы выбирают из группы, состоящей из InP, CuInS2, CuInSe2, CdTe, CdSe, CdSeTe, AgInS2 и AgInSe2. В еще одном варианте осуществления люминесцентные наночастицы могут представлять собой, например, нанокристаллы, содержащие полупроводниковые соединения элементов II-VI, III-V, I-III-V и IV-VI групп, выбранные из материалов, описанных выше, с внутренними легирующими элементами, например ZnSe:Mn, ZnS:Mn. Легирующие элементы могут быть выбраны из Mn, Ag, Zn, Eu, S, P, Cu, Ce, Tb, Au, Pb, Tb, Sb, Sn и Tl. В настоящем документе люминесцентные наночастицы на основе люминесцентного материала могут также включать различные типы КТ, такие как CdSe и ZnSe:Mn.

Оказывается, что использование квантовых точек типа II-VI является особенно предпочтительным. Таким образом, в одном из вариантов осуществления полупроводник на основе люминесцентных квантовых точек содержит квантовые точки типа II-VI, в частности, выбранные из группы, состоящей из CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe и HgZnSTe, более конкретно выбранные из группы, состоящей из CdS, CdSe, CdSe/CdS и CdSe/CdS/ZnS.

В одном из вариантов осуществления применяются КТ, не содержащие кадмия. В конкретном варианте осуществления наночастицы светового преобразователя включают квантовые точки на основе соединений типа III-V, более конкретно квантовые точки на основе InP, такие как содержащие ядро и оболочку КТ на основе InP-ZnS. Следует отметить, что термины «квантовая точка InP» или «квантовая точка на основе InP» и аналогичные термины могут означать безоболочечные КТ на основе InP, а также содержащие ядро и оболочку КТ на основе InP, в которых ядро InP покрывает оболочка, такие как содержащие ядро и оболочку КТ типа InP-ZnS, например КТ типа точки в стержне на основе InP-ZnS.

Люминесцентные наночастицы (без покрытия) могут иметь размеры в диапазоне 2-50 нм, в ч