Способ и офтальмологическое устройство для обеспечения визуальных представлений для пользователя
Иллюстрации
Показать всеИзобретение относится к медицине. Офтальмологическое устройство с энергообеспечением выполнено с возможностью расположения в глазу или на глазу и содержит: один или более модулируемых фотонных излучателей; вставку-среду, поддерживающую первый процессор и один или более источников света; при этом указанные один или более источников света выполнены с возможностью генерировать свет, причем по меньшей мере часть генерируемого света от одного или более источников света излучается одним или более фотонными излучателями; и датчик, первый процессор выполнен с возможностью: принимать от датчика указание для проецирования визуального представления, управлять, в ответ на принятое указание, по меньшей мере одним из одного или более модулируемым фотонных излучателей и одним или более источниками света на основе одного или более запрограммированных параметров; и генерировать визуальное представление в глазу. Применение данного изобретения позволит осуществлять визуальное представление безопасным для пользователя способом. 18 з.п. ф-лы, 13 ил.
Реферат
ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ
Изобретение по существу относится к офтальмологическому устройству с электропитанием и связанному с ним способу обеспечения визуальных представлений для пользователя. В частности, проецируемые визуальные представления основаны на реакции на внешний фактор и/или на передаваемых данных, полученных офтальмологическим устройством.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Традиционно офтальмологическое устройство, такое как контактная линза, интраокулярная линза или пробка для слезной точки, представляет собой биосовместимое устройство, обладающее корректирующими, косметическими или терапевтическими качествами. Например, контактная линза может выполнять одну или более из функции коррекции зрения, косметической коррекции и терапевтической функции. Каждая функция обусловлена определенной физической характеристикой линзы. Конфигурация линзы с учетом светопреломляющего свойства позволяет проводить коррекцию зрения. Введение в материал линзы пигмента позволяет получить косметический эффект. Введение в материал линзы активного агента позволяет использовать линзу в терапевтических целях. Таких физических характеристик можно добиться без подключения линзы к источнику питания. Пробка для слезной точки традиционно представляет собой пассивное устройство.
Недавно были разработаны активные офтальмологические устройства с электропитанием. На основе результатов работ по разработке таких устройств высказывались предположения, что указанные офтальмологические устройства с электропитанием смогут содержать в себе элементы оптического излучения, которые можно использовать для проецирования изображений. Проецируемые изображения могут включать в себя текст и изображения, наложенные на нормальное зрительное поле пользователя. Однако помимо планирования использования необходимо преодолеть множество ограничений, прежде чем такие источники излучения смогут функционировать полезным образом, не создавая опасности для пользователя.
В результате вышесказанного существует потребность в разработке способов и офтальмологических устройств, которые могут преодолеть ограничения по объему и обеспечить визуальные представления полезным и безопасным для пользователя образом.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В соответствии с вышесказанным, описанные выше требования в значительной степени удовлетворены в настоящем изобретении, где в одном аспекте описана вставка-среда с фотонными излучателями, которую можно ввести в офтальмологическое устройство с электропитанием, и в некоторых вариантах осуществления более конкретно описана контактная линза. Фотонные излучатели могут обеспечивать световые рисунки, образующие визуальные представления, включая, например, сигналы, улучшения изображения и/или динамические изображения из указанных световых рисунков, которые можно использовать для передачи сообщения пользователю.
Раскрыто устройство офтальмологической линзы с электропитанием. Устройство офтальмологической линзы с электропитанием может включать в себя один или более модулируемых фотонных излучателей, вставку-среду, поддерживающую первый процессор и один или более источников излучения, и одну или более антенн, выполненных с возможностью сообщения с первым процессором и со вторым процессором. Один или более источников света могут быть выполнены с возможностью генерировать свет. По меньшей мере часть генерируемого света от одного или более источников света может излучаться одним или более фотонными излучателями. Первый процессор может быть выполнен с возможностью принимать от датчика указание для проецирования визуального представления. Процессор может быть дополнительно выполнен с возможностью управления, в ответ на полученное указание, по меньшей мере одним из одного или более модулируемых фотонных излучателей и одним или более источниками света на основе одного или более запрограммированных параметров. Второй процессор может быть выполнен с возможностью генерировать визуальное представление.
В некоторых аспектах описания все данные компоненты можно собрать в офтальмологическое устройство, размер и форма которого согласуются с размещением офтальмологического устройства в положении между поверхностью глаза пользователя и соответствующим веком этого глаза.
Может быть изготовлено офтальмологическое устройство, содержащее проекционную систему с элементами питания, схему управления, схему связи и схему обработки данных. Проекционная система может состоять из подсистемы, содержащей по меньшей мере элемент фотонного излучателя, источник света, элемент световой модуляции и элемент линзы. Проекционные системы также могут состоять из подсистем, содержащих комбинации элементов фотонного излучателя и соответствующие им растровые элементы световой модуляции.
Офтальмологическое устройство, содержащее проекционную систему, может отображать данные или информацию в различных формах. Устройство отображения может проецировать текстовую информацию. Аналогичным образом устройство отображения может проецировать изображения. Изображения могут быть в форме цифровых изображений, состоящих из множества проецируемых пикселей данных изображения. Изображения можно отображать как монохромные, или в альтернативном варианте осуществления они могут содержать различные степени цвета. Путем изменения выводимого изображения во времени проекционная система может отображать данные в форме видео в различных форматах.
Пример офтальмологического устройства отображения информации, содержащего систему фотонных излучателей, может включать в себя линзы как часть офтальмологического устройства. Данные линзы могут воздействовать на изображение, образованное системой фотонных излучателей, и фокусировать данное изображение различными способами на сетчатку пользователя. Линзовая система может фокусировать создаваемое массивом фотонных излучателей изображение дальнего поля или создаваемое массивом фотонных излучателей изображение ближнего поля. В некоторых вариантах осуществления линзовая система может содержать множество линзовых подсистем. В некоторых вариантах осуществления линзовые подсистемы могут иметь элементы, имеющие фиксированную фокальную характеристику или фиксированное фокусное расстояние. В других вариантах осуществления линзовая подсистема может включать в себя по меньшей мере первую линзу с изменяемым фокусным расстоянием. Пример такой линзы с изменяемым фокусным расстоянием может включать в себя менисковую линзу, которая также может функционировать на основе эффекта EWOD. Можно также образовать комплексную линзу с изменяемым фокусным расстоянием, используя множество участков электродов, которые могут подходить для изменения характеристик фокусной точки линзы как в плане фокусного расстояния, так и в плане трансляционного перемещения, что может эффективно менять место проецирования изображения. В некоторых случаях изображение может проецироваться системой через глаз пользователя и на сетчатку пользователя. При проецировании на сетчатку пользователя размер изображения, образованного за счет проецируемых фотонных элементов, может составлять менее одного квадратного сантиметра. В других вариантах осуществления размер может приблизительно составлять один квадратный миллиметр или менее.
Таким образом, выше были в общем виде изложены некоторые аспекты настоящего описания для лучшего понимания приводимого ниже подробного описания и для лучшей оценки вклада настоящего изобретения в развитие современного уровня техники в данной области.
В этом отношении, перед подробным описанием по меньшей мере одного варианта осуществления настоящего изобретения следует понимать, что настоящее изобретение не ограничивается в своей применимости деталями конструкции и взаимной организацией компонентов, представленными в приведенном ниже описании или показанными на чертежах. Настоящее изобретение допускает варианты осуществления в дополнение к описанным в настоящем документе и может реализовываться на практике множеством способов. Следует также понимать, что фразеология и терминология, используемые в настоящем документе, а также в реферате изобретения, служат целям описания и не должны рассматриваться как ограничивающие.
Таким образом, специалисты в данной области определят, что концепция, на которой основано настоящее описание, легко может быть использована как основа для проектирования других устройств и систем для выполнения нескольких задач настоящего изобретения. Поэтому важно рассматривать формулу данного изобретения как включающую в себя такие эквивалентные конструкции в той мере, в какой они не отклоняются от сущности и объема настоящего изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 представлен изометрический вид примера офтальмологической линзы 150 с вырезом в сечении и вид сверху вставки-среды 100, выполненных в соответствии с аспектами настоящего изобретения.
На фиг. 2 представлен вид сверху A и вид в сечении B примера многоэлементной вставки-среды 200 в соответствии с аспектами настоящего изобретения.
На фиг. 3 представлен вид сверху A и вид в сечении B другого примера осуществления, альтернативного показанному на фиг. 2, в котором вставка-среда содержит активную линзовую систему с регулируемым фокусным расстоянием.
На фиг. 4 представлен пример структур фотонного излучателя, которые можно использовать в некоторых вариантах осуществления настоящего изобретения.
На фиг. 5 представлен пример структуры массива 500 пикселей 520 фотонных излучателей с источником света 560 и средством связи источника света с массивом.
На фиг. 6 представлен пример устройства, содержащего массив фотонных излучателей в части оптической зоны примера офтальмологического устройства.
На фиг. 7 представлен пример структуры элемента световой модуляции в соответствии с некоторыми аспектами настоящего изобретения.
На фиг. 8 представлен альтернативный пример структуры элемента световой модуляции, которую можно использовать для реализации некоторых аспектов настоящего изобретения.
На фиг. 9 представлен пример офтальмологического устройства с энергообеспечением 900 для проекционной системы, содержащей массивы фотонных элементов, массивы элементов для модуляции фазы или интенсивности света и линзовые системы, которые можно использовать для реализации некоторых аспектов настоящего изобретения.
На фиг. 10 представлены стадии способа, связанного с применением офтальмологических устройств, содержащих фотонные излучатели, в соответствии с некоторыми аспектами настоящего изобретения.
На фиг. 11 представлен вид в перспективе географической сцены с объектами, которые датчик и процессор могут использовать для сопоставления связанных с ними данных для обеспечения визуальных представлений.
На фиг. 12 представлена блок-схема устройства процессора, который можно использовать для реализации различных аспектов настоящего изобретения.
На фиг. 13 представлены стадии способа, связанного с проецированием визуальных представлений в соответствии с некоторыми аспектами настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
СПИСОК ТЕРМИНОВ
В данном описании и формуле изобретения, относящимся к настоящему изобретению, используются различные термины, для которых будут приняты следующие определения.
Электросмачивание на диэлектрике, или EWOD, - при использовании в настоящем документе относится к классу устройств или классу частей устройств, где присутствует комбинация несмешивающихся текучих сред или жидкостей, участок поверхности с заданной свободной энергией поверхности и создаваемое приложением потенциала электрическое поле. Как правило, создаваемое приложением потенциала электрическое поле приводит к изменению свободной энергии поверхности участка поверхности, что может привести к изменению взаимодействия несмешивающихся текучих сред с участком поверхности.
С энергообеспечением - в настоящем документе относится к состоянию возможности подачи электрического тока или хранения электрической энергии внутри устройства.
Энергия - в настоящем документе обозначает способность физической системы к выполнению работы. Множество вариантов применения в рамках настоящего изобретения могут относиться к указанной способности системы выполнять электрические действия во время работы.
Источник энергии - в настоящем документе обозначает устройство или слой, способный подавать энергию или переводить логическое или электрическое устройство в заряженное состояние.
Устройство сбора энергии - в настоящем документе обозначает устройство, способное извлекать энергию из среды и превращать ее в электрическую энергию.
Функционализированный - при использовании в настоящем документе термин обозначает создание слоя или устройства, способного выполнять некоторую функцию, включая, например, питание энергией, активацию или управление.
Утечка - в настоящем документе обозначает нежелательную потерю энергии.
Линза или офтальмологическое устройство - при использовании в настоящем документе термин относится к любому устройству, расположенному в глазу или на нем. Эти устройства могут обеспечивать оптическую коррекцию, выполнять косметическую функцию или могут выполнять функцию, не связанную с глазом. Например, термин «линза» может относиться к контактной линзе, интраокулярной линзе, накладной линзе, глазной вставке, оптической вставке или другому аналогичному устройству, которое применяют для коррекции или модификации зрения или для косметической коррекции физиологии глаза (например, изменения цвета радужной оболочки) без снижения зрения. В альтернативном варианте осуществления линза может обеспечивать неоптические функции, такие как, например, мониторинг уровня глюкозы или введение лекарственного препарата. В некоторых вариантах осуществления предпочтительные линзы настоящего изобретения представляют собой мягкие контактные линзы, изготовленные из силиконовых эластомеров или гидрогелей, которые включают в себя, например, силикон-гидрогели и фтор-гидрогели.
Линзообразующая смесь, или реакционная смесь, или реакционная смесь мономера (РСМ), - при использовании в настоящем документе термин относится к мономерному или форполимерному материалу, который можно полимеризовать и поперечно сшить или поперечно сшить для формирования офтальмологической линзы. Различные варианты осуществления могут включать в себя линзообразующие смеси с одной или более добавками, такими как, например, УФ-блокаторы, красители, фотоинициаторы или катализаторы, а также прочие необходимые добавки для офтальмологической линзы, такой как контактные или интраокулярные линзы.
Линзообразующая поверхность - при использовании в настоящем документе термин относится к поверхности, используемой для литья линзы. В некоторых вариантах осуществления любая такая поверхность может представлять собой поверхность оптической чистоты и качества, что указывает на то, что она является достаточно гладкой и выполнена таким образом, что поверхность линзы, образованная при полимеризации линзообразующего материала, находящегося в контакте с поверхностью формы для литья, обладает оптически приемлемым качеством. Кроме того, в некоторых вариантах осуществления линзообразующая поверхность может иметь такую геометрию, которая необходима для придания поверхности линзы требуемых оптических характеристик, включая, без ограничений, коррекцию сферических, асферических и цилиндрических степенных аберраций волнового фронта, коррекцию топографии роговицы и т.п., а также любых их комбинаций.
Элемент световой модуляции - при использовании в настоящем документе относится к устройству или части устройства, которое модулирует интенсивность света, проходящего с одной его стороны до другой. Идеальные элементы световой модуляции в вариантах осуществления настоящего изобретения могут пропускать весь свет в одном состоянии и совершенно не пропускать свет в другом состоянии. Практические элементы могут по существу достигать идеальных аспектов.
Литий-ионный элемент - при использовании в настоящем документе термин относится к электрохимическому элементу, в котором электрическая энергия вырабатывается в результате перемещения ионов лития через элемент. Данный электрохимический элемент, как правило, называемый аккумуляторной батареей, в своей типичной форме может быть возвращен в состояние с более высоким зарядом или перезаряжен.
Вставка-среда - при использовании в настоящем документе относится к герметизированной вставке, которая будет включена в офтальмологическое устройство с энергообеспечением. Элементы питания и схема могут быть встроены во вставку-среду. Вставка-среда определяет основное назначение офтальмологического устройства с энергообеспечением. Например, в вариантах осуществления, в которых офтальмологическое устройство с энергообеспечением позволяет пользователю регулировать оптическую силу, вставка-среда может включать в себя элементы питания, управляющие жидкостной менисковой частью в оптической зоне. Альтернативно вставка-среда может иметь кольцевую форму, в результате чего оптическая зона не содержит материала. В таких вариантах осуществления функция энергообеспечения линзы может быть не связана с оптическим качеством, а может предусматривать, например, контроль уровня глюкозы или введение лекарственного средства.
Рабочий режим - в настоящем документе обозначает состояние с высоким потреблением тока, при котором ток, проходящий по схеме, позволяет устройству выполнять свою основную функцию энергообеспечения.
Оптическая зона - в настоящем документе обозначает область офтальмологической линзы, через которую смотрит пользователь офтальмологической линзы.
Фотонный излучатель - при использовании в настоящем документе обозначает устройство или часть устройства, которое может принимать падающий свет и передавать его в свободное пространство. Свет, как правило, может выходить в направлении, отличном от направления света, которое падало на излучатель. Как правило, излучатель может содержать антенную структуру для передачи света.
Растровая система световой модуляции - при использовании в настоящем документе обозначает комбинацию отдельно функционирующих элементов световой модуляции, причем каждую отдельно функционирующую часть системы световой модуляции можно рассматривать как пиксель, или элемент изображения.
Мощность - в настоящем документе обозначает выполненную работу или переданную энергию за единицу времени.
Перезаряжаемый, или повторно заряжаемый, - при использовании в настоящем документе термин относится к возможности возврата в состояние с более высокой способностью совершать работу. Многие способы применения в рамках настоящего изобретения могут относиться к восстановлению способности проводить электрический ток определенной величины и в течение определенного промежутка времени.
Повторно подключить к источнику энергии, или перезарядить, - в настоящем документе обозначает восстановление состояния с более высокой способностью совершать работу. Многие способы применения в рамках настоящего изобретения могут относиться к восстановлению способности устройства проводить электрический ток определенной величины и в течение определенного промежутка времени.
Эталон - в настоящем документе обозначает схему, в идеальном варианте создающую фиксированное и стабильное напряжение или выходное значение тока, которые подходит для применения в других схемах. Эталон может быть основан на источнике опорного напряжения с напряжением запрещенной зоны, может иметь компенсацию температуры, подачи питания и технологических вариаций и может быть специально рассчитан для конкретной специализированной интегральной схемы (ASIC).
Функция сброса - в настоящем документе обозначает самоактивирующийся алгоритмический механизм для установки схемы в определенное предварительно заданное состояние, включая, например, логическое состояние или состояние энергообеспечения. Функция сброса может включать в себя, например, схему сброса при включении питания, которая может в сочетании с механизмом переключения обеспечивать надлежащую подачу питания на микросхему как при первоначальном подключении к источнику энергии, так и при выходе из режима сохранения энергии.
Спящий режим, или режим ожидания, - в настоящем документе обозначает состояние низкого потребления тока устройства с энергообеспечением после того, как механизм переключения будет перекрыт с целью энергосбережения, когда рабочий режим не требуется.
Наложение - при использовании в настоящем документе термин относится к расположению по меньшей мере двух слоев с компонентами в непосредственной близости друг к другу таким образом, чтобы по меньшей мере часть одной поверхности одного из слоев контактировала с первой поверхностью второго слоя. В некоторых вариантах осуществления между двумя слоями может находиться пленка, обеспечивающая сцепление или выполняющая иные функции, так что слои находятся в контакте друг с другом через указанную пленку.
Многослойные интегрированные многокомпонентные устройства, или SIC-устройства, - в настоящем документе обозначает продукты технологий компоновки, позволяющих формировать тонкие слои подложек, которые могут содержать электрические и электромеханические устройства, в функциональные интегрированные устройства путем наложения по меньшей мере части каждого слоя друг на друга. Слои могут содержать многокомпонентные устройства различных типов, материалов, форм и размеров. Более того, слои могут быть изготовлены по различным технологиям производства устройств для получения различных контуров.
Режим сохранения энергии - в настоящем документе обозначает состояние системы, содержащей электронные компоненты, в которой источник энергии обеспечивает или должен обеспечивать минимальный расчетный ток нагрузки. Этот термин не является взаимозаменяемым с режимом ожидания.
Вставка подложки - в настоящем документе обозначает формуемую или жесткую подложку, способную поддерживать источник энергии внутри офтальмологической линзы. В некоторых вариантах осуществления вставка подложки также поддерживает один или более компонентов.
Механизм переключения - в настоящем документе обозначает компонент, интегрированный в схему, обеспечивающий различные уровни сопротивления, который может реагировать на внешний стимул и который является независимым от офтальмологического устройства.
ОФТАЛЬМОЛОГИЧЕСКОЕ УСТРОЙСТВО С ЭНЕРГООБЕСПЕЧЕНИЕМ
На фиг. 1 представлен изометрический вид примера офтальмологической линзы 150 с вырезом в сечении и вид сверху вставки-среды 100, выполненных в соответствии с аспектами настоящего изобретения. Вставка-среда 100 может содержать оптическую зону 120, которая может быть или не быть функциональной в плане коррекции зрения. Если функция энергообеспечения офтальмологической линзы 150 не связана со зрением, оптическая зона 120 вставки-среды 100 может не содержать материала. В некоторых вариантах осуществления вставка-среда 100 может включать в себя часть, находящуюся вне оптической зоны 120 и содержащую вставку подложки 115, интегрированную с элементами питания 110 и электронными компонентами 105. В соответствии с аспектами настоящего изобретения, электронные компоненты могут включать в себя множество вариантов осуществления, относящихся к фотонным излучателям, как дополнительно описано в последующих разделах настоящего документа.
В некоторых вариантах осуществления источник питания 110, такой как аккумуляторная батарея, и нагрузка, которая может представлять собой, например, полупроводниковый кристалл, могут быть прикреплены к подложке 115. Проводящие дорожки 125 и 130 могут обеспечивать электрический контакт между электронными компонентами 105 и элементами питания 110. Вставка-среда 100 может быть полностью герметизирована для защиты и удержания элементов питания 110, дорожек 125 и 130 и электронных компонентов 105. В некоторых вариантах осуществления герметично закрывающий материал может быть полупроницаемым, например, для предотвращения попадания определенных веществ, например, воды, во вставку-среду 100, и обеспечения входа и выхода определенных веществ, таких как газы окружающей среды или побочные продукты реакций в элементах питания 110, из вставки-среды 100.
Как показано на чертежах, в некоторых вариантах осуществления вкладыш-среда 100 может быть включен в офтальмологическое устройство 150, которое может содержать полимерный биосовместимый материал. Офтальмологическое устройство 150 может включать в себя конструкцию из жесткой центральной части и мягкого края, где центральный жесткий оптический элемент содержит вставку-среду 100. В некоторых конкретных вариантах осуществления вставка-среда 100 может непосредственно контактировать с атмосферой и/или поверхностью роговицы на передней и задней поверхностях соответственно, или в альтернативном варианте осуществления вставку-среду 100 можно герметизировать внутри офтальмологического устройства 150. Периферическая зона 155 офтальмологического устройства 150 может состоять из мягкого материала края, включая, например, гидрогелевый материал.
Инфраструктура вставки-среды 100 и офтальмологическое устройство 150 могут обеспечивать условия для множества вариантов осуществления, включающих проецирование света с использованием фотонных излучателей, которые можно комбинировать с активными или пассивными линзовыми устройствами и в некоторых вариантах осуществления с массивами, модулирующими интенсивность света. В некоторых из этих вариантов осуществления можно использовать чисто пассивное функционирование части офтальмологического устройства 150, не связанной с компонентами для проецирования фотонов. В других вариантах осуществления можно использовать офтальмологическое устройство 150, имеющее активные функции, которые могут дополнять или поддерживать функционирование компонентов для проецирования фотонов. Например, непроецирующие части устройства могут обеспечивать коррекцию зрения или активное экранирование устройства для уменьшения его прозрачности к падающему свету.
На фиг. 2 представлен вид сверху A и вид в сечении B примера многоэлементной вставки-среды 200. Многоэлементная вставка-среда 200 такого типа может представлять собой кольцевую вставку с кольцом материала вокруг центральной оптической зоны 211, которая может не содержать материала. В некоторых вариантах осуществления область периферической зоны 210 вставки за пределами оптической зоны 211 может включать в себя элементы питания 225 и электронные компоненты управления 228 для поддержки активных элементов 231 различных типов. Данные активные элементы 231, как правило, могут включать в себя датчики и элементы связи. Кроме того, также могут быть включены элементы для обеспечения функции управления и питания для проецирующего элемента (на фигуре не показан) на основе элементов для проецирования фотонов. Кроме того, за пределами оптической зоны 211 устройства могут находиться печатные изображения 221, нанесенные на вставку-среду 200.
В некоторых вариантах осуществления могут предъявляться определенные требования к ориентации офтальмологической линзы в среде глаза. Поэтому могут быть включены элементы зоны стабилизации 250 и 260, которые способствуют правильной ориентации образованного офтальмологического устройства на глазу пользователя. Более того, в некоторых вариантах осуществления применение ориентирующих элементов (на рисунке не показаны) на многоэлементной кольцевой вставке-среде 200 может позволить ориентировать ее относительно фиксированных элементов стабилизации 250 и 260, что может оказаться особенно важным при размещении проецирующих элементов и линзовых систем, не поддерживающих функции динамического управления фокусировкой и центрирования.
На фиг. 3 представлен вид сверху A и вид в сечении B другого примера осуществления, альтернативного показанному на фиг. 2, в котором вставка-среда 300 содержит активную линзовую систему с регулируемым фокусным расстоянием 335. Оптическая зона 311 офтальмологического устройства может включать в себя часть, в которой находится активная линзовая система с регулируемым фокусным расстоянием 335, такая как система жидкостной менисковой линзы. В периферической зоне 310 за пределами оптической зоны 311 вставки-среды 300 могут находиться части вставки, содержащие элементы питания 336 и компоненты управления и активации 331. По тем же причинам, что и в варианте осуществления, показанном на фиг. 2, в офтальмологическое устройство могут быть встроены юстировочные элементы и/или зоны стабилизации 350 и 360 и на поверхности вставки могут быть нанесены печатные изображения, показанные как элементы 321.
Элементы для проецирования фотонов
На фиг. 4 представлен пример структур A и B фотонного излучателя 400, которые можно использовать в некоторых вариантах осуществления настоящего изобретения. Может существовать множество способов создания элементов излучателей (которые также можно называть «излучателем») для применения в фотонных приложениях. В фотонном излучателе 400 под A показан простой элемент фотонного излучателя. Источником фотонов для данной системы может служить световод 420, проходящий параллельно соединительным частям 430 излучающего элемента. Приходящие по световоду 420 фотоны могут связываться с соединительными частями 430 за счет процесса, который можно назвать связью через затухающее поле - экспоненциально затухающее явление на участке, близком к периферической зоне световода. Связь через участки связи 430 позволяет фотонам перейти из световода 420 в излучающий элемент 440. Степень связи и, следовательно, число фотонов, поступающих в излучающий элемент 440, представляющее собой одну из мер интенсивности, можно модулировать с использованием ряда явлений, включая используемые материалы, условия окружающей среды, но, что более важно, структурную конфигурацию системы. Длина параллельной части участков связи 430 и величина зазора 435 между данной частью и световодом может решающим образом определять эффективность связи и может применяться для коррекции номинальной относительной интенсивности фотонного излучателя 400 в наборе фотонных излучателей. Например, в фотонном излучателе A свет проходит по светонаправляющим компонентам элемента в участке связи 430 и достигает излучающей части 440, выполненной в виде дифракционной решетки. Для повышения эффективности передачи света через фотонный излучатель 400 можно использовать различные эффекты, как, например, заложенные в конфигурацию углы между излучающими поверхностями, а также их форму и величину зазора между ними. В идеале из излучающего элемента 440 должно излучаться как можно больше света в одном направлении, например, «из страницы».
В качестве фотонного излучателя B показан более сложный фотонный излучатель 400. В ячейку излучателя может быть встроен нагревательный элемент. Он может представлять собой резистивный нагреватель, встроенный в фотонный излучатель 400. В вариантах осуществления, где излучатель образован из полупроводниковых материалов, таких как кремний, резистивный элемент может быть образован в том же слое, где его можно допировать для изменения его характеристик сопротивления. Пропуская ток через контакт 480, резистивную ветвь 470 и через часть тела излучателя 430 и обратно через другую часть резистивной ветви 471 и через контакт 460, в фотонном излучателе 400 можно создать часть пути света с дифференциальным нагревом. Тепловые эффекты в световодах, таких как элемент A, могут изменять фазовые характеристики поступающего по ним света. Таким образом, фотонный излучатель 400, показанный в элементе B, может обеспечивать определенную интенсивность излучаемого им света на основе интенсивности поступающего по световоду 420 излучения источника и эффективности ввода света от источника в излучающий элемент 490, определяемой степенью близости участка связи излучающего устройства и размерами данного участка связи. Более того, дополнительно можно контролируемым образом изменять фазовые характеристики данного света путем пропускания электрического тока через часть нагревателя между резистивными элементами 460 и 480. Управление относительной фазой излучаемого света таким способом может обеспечить эффективную передачу закодированной в фазовых характеристиках информации, наблюдаемой в изображении дальнего поля, образованным массивом из такого фотонного излучателя 400, где фазой отдельных пикселей можно управлять путем контроля теплового состояния частей излучающего устройства. Соответственно может существовать множество материалов, из которых можно создать фотонный излучатель 400, и может существовать множество способов создания фазовых эффектов в различных материалах, включая, в качестве примеров, не имеющих ограничительного характера, термическое управление и механическое напряжение.
На фиг. 5 представлен пример структуры массива 500 из пикселей фотонных излучателей 520 с источником света 560 и средством связи источника света с массивом. В некоторых вариантах осуществления пиксели фотонных излучателей 520 можно создать способом, аналогичным способу образования пикселей фотонных излучателей, показанных на фиг. 4. Свет может поступать от источника света 560, который в некоторых вариантах осуществления может включать в себя один или более лазерных элементов 561, 562 и 563, излучающих свет в один или более световодов 540, подводящих свет к структуре массива фотонных излучателей 500. Электрический ток, протекающий через нагретые части пикселя 520, можно подвести через линии из проводящего металла, встроенные в структуру массива фотонных излучателей 500, аналогично металлическим линиям, используемым в интегральной схеме. Набор числовых шин 530 может иметь соответствующие разрядные линии 535 для обеспечения эффективной адресации отдельных ячеек. В некоторых вариантах осуществления структуру массива фотонных излучателей 500 можно встроить в кремниевую подложку, которую можно использовать для создания электронных компонентов управления для самого массива. Размеры примеров пикселей фотонных излучателей 520 могут составлять приблизительно 9 микрон на 9 микрон или менее. Таким образом, массив из 64x64 излучателей может иметь характерный размер приблизительно 0,5 мм на 0,5 мм. Реальные размеры пикселей фотонных излучателей 520 в матрице могут быть разными и различаться для разных целевых длин волн излучения.
На вставке 550 структуры массива 500 в увеличенном виде показаны источник света 560 и один или более световодов 540 для передачи света от источника. Свет от источника света 560 можно завести в световод 540. Вдоль длины световода 540 можно разместить дополнительные распределительные элементы в форме дополнительных световодов. В некоторых вариантах осуществления, например, световоды 570, 571 и 572 могут быть связаны с главным световодом 540 и отходить от него приблизительно перпендикулярно для распределения света в ряды пикселей фотонных излучателей 520. Аспекты конфигурации световодов и отдельных пикселей фотонных излучателей 520 внутри ряда можно оптимизировать для каждого элемента таким образом, чтобы получить конкретный рисунок распределения интенсивности по ряду и в структуре массива 500. В предпочтительном примере структура массива 500 может быть выполнена таким образом, чтобы полученная интенсивность излучения каждого пикселя была приблизительно одинаковой для всех элементов.
В некоторых вариантах осуществления можно использовать множество источников света 561, 562 и 563 с различными длинами волн для передачи света в один световод источника излучения 540, или в некоторых вариантах осуществления световод 540 может состоять из множества световодов. В примере могут присутствовать три различных источника света 561, 562 и 563. В качестве примера, не имеющего ограничительного характе