Способ обработки сырой воды, содержащей тритиевую воду
Иллюстрации
Показать всеИзобретение относится к способу обработки сырой воды, содержащей тритиевую воду. Способ обработки сырой воды, содержащей тритиевую воду, включает: подачу части сырой воды, содержащей тритиевую воду, и щелочной воды в циркуляционный резервуар; смешивание сырой воды со щелочной водой в циркуляционном резервуаре с образованием электролита, имеющего требуемую концентрацию щелочи; и непрерывный электролиз электролита при циркуляции электролита, при проведении которого сырую воду, находящуюся в резервуаре для хранения, подвергают электролизу щелочной воды и таким образом превращают сырую воду в газ. Превращение сырой воды, содержащей тритиевую воду, в газ посредством электролиза щелочной воды снижает до 1/1244 концентрацию трития в тритийсодержащем газообразном водороде, при этом может быть снижен объем сырой воды, содержащей тритиевую воду. Изобретение позволяет произвести прямое разложение дистиллированной воды, а также позволяет проводить электролиз при высоких значениях электрического тока, что позволит сократить время проведения электролиза. 10 з.п. ф-лы, 5 ил., 1 табл.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способу обработки сырой воды, содержащей тритиевую воду, при осуществлении которого сырую воду, содержащую тритиевую воду, превращают в газ посредством электролиза щелочной воды, что приводит к снижению концентрации трития до 1/1244 по сравнению с концентрацией трития в сырой воде и одновременному понижению объема сырой воды, содержащей тритиевую воду.
Настоящее изобретение также относится к способу выведения трития в количестве, составляющем 1/20 от величины норматива допустимых сбросов (англ. - Permissible Discharge Standard), в атмосферный воздух, и его выведения на значительную высоту без контакта с живыми организмами.
Настоящее изобретение также относится к способу извлечения трития в виде водного концентрата, содержащего тритиевую воду посредством реакции тритийсодержащего газообразного водорода с водяным паром.
Настоящее изобретение также относится к способу обработки сырой воды, содержащей тритиевую воду, в котором в качестве сырой воды, содержащей тритиевую воду, используют сырую воду, практически не содержащую загрязняющие примеси, такие как хлорид-ионы, и сырую воду превращают в газ посредством непрерывного электролиза, снижая тем самым концентрацию трития и одновременно понижая объем сырой воды, содержащей тритиевую воду. Настоящее изобретение также относится к способу обработки сырой воды, содержащей тритиевую воду, согласно которому после проведения непрерывного электролиза отделенную воду, содержащую тритиевую воду, дополнительно подвергают электролизу щелочной воды, и при этом извлекают щелочной компонент, применяемый для электролиза.
Настоящее изобретение также относится к способу обработки сырой воды, содержащей тритиевую воду, в котором в качестве сырой воды, содержащей тритиевую воду, используют сырую воду, содержащую большое количество загрязняющих примесей, таких как хлорид-ионы, и после удаления загрязняющих примесей проводят непрерывный электролиз, приводящий к снижению концентрации трития и одновременному понижению объема сырой воды, содержащей тритиевую воду. Настоящее изобретение также относится к способу обработки сырой воды, содержащей тритиевую воду, в котором после проведения непрерывного электролиза проводят дополнительный электролиз, одновременно извлекая щелочной компонент, применяемый для электролиза, и дополнительно понижая объем воды, содержащей тритиевую воду.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Большая часть имеющегося на Земле трития находится в виде оксида, такого как вода, содержащая тритий, т.е. тритиевой воды. Полагают, что, благодаря циркуляции тритиевой воды в атмосфере, ее концентрация в организмах животных и растений всех возрастов и во всех местностях почти постоянна. Исходя из пониженной концентрации трития в воде, может быть определен период, прошедший с момента циркуляции в атмосфере, а также может быть произведено определение возраста подземной воды. Концентрацию тритиевой воды также используют при реальном исследовании течений подземной воды в гражданском строительстве и сельском хозяйстве. Тритий находится в воде в составе тритиевой воды, которая включает кислород и смешана с обычной водой; он также широко распространен в водных ресурсах, которые включают водяной пар, дождевые воды, подземные воды, водные потоки, воду озер и морей, питьевую воду и воду в живых организмах, которая может находиться в газообразном, жидком или твердом состоянии.
В природе тритий образуется при взаимодействии космических лучей и воздуха. Однако, из-за низкой вероятности его образования, его количество чрезвычайно мало. Тем не менее, выбросы трития в окружающую среду происходили при проведении ядерных испытаний в 1950-х годах, при разгрузке ядерных реакторов и переработке ядерного топлива, и в настоящее время тритий присутствует в большом количестве в окружающей среде (загрязнение тритием). Кроме того, по сравнению с внешней системой, тритий, получаемый при работе или ремонте реактора или при переработке ядерного топлива, накапливается и локализуется на верхних уровнях предприятий, связанных с ядерным реактором. Однако, из-за того, что его химические свойства практически не отличаются от свойств водорода, его выпускают под контролем в атмосферу или океан (море).
Самая большая величина активности, измеренная в Японии, составила 1100 Бк/л; она была зарегистрирована 21 июня 2013 г. у выпускного порта первого блока атомной электростанции Фукусима после ядерной аварии. Поскольку тритий сложно отделить от водорода химическими способами, была предпринята попытка физического разделения. Однако этот способ все еще находится на стадии испытаний и пока не имеет практического успеха. Таким образом, радиоактивность, возникшая в результате выброса трития в окружающую среду из-за аварии на атомной электростанции или подобного события, не может быть устранена с помощью имеющихся в настоящее время методик. Объем загрязненной тритием воды, вырабатываемой первым блоком атомной электростанции Фукусима, в будущем может достичь 800000 м3 или близкого к этому значения; таким образом, желательно как можно скорее создать способ эффективной обработки такой воды.
В настоящее время, поскольку концентрация трития находится на чрезвычайно низком уровне, для повышения точности измерений его концентрации обычно производят концентрирование электролизом. Так, в данной области техники известен способ, называемый концентрированием тяжелой воды электролизом, включающий приготовление раствора образца, содержащего растворенный электролит, и проведение электролиза на плоской пластине. Наряду с H2O раствор электролита включает HDO или НТО в виде воды. Они разлагаются на водород и кислород в соответствии с общими правилами электролиза воды. Однако, благодаря изотопному эффекту, разложение H2O происходит до разложения HDO или НТО, и, таким образом, по мере повышения концентрации дейтерия или трития в растворе электролита, происходит концентрирование раствора. При концентрировании электролизом в качестве материала анода применяют никель. В качестве материала катода применяют сталь, железо, никель и подобные материалы. Эти электроды очищают, и помещают в стеклянный контейнер вместе с образцом воды, который получают добавлением разбавленного раствора гидроксида натрия, представляющего собой вспомогательное вещество, в водный раствор, содержащий тяжелую воду. Затем, пропуская электрический ток, выполняют электролиз. При проведении электролиза плотность тока устанавливают равной от 1 до 10 А/дм2 или приблизительно на указанном уровне, и температуру раствора поддерживают на уровне 5°C или менее для предотвращения испарения воды при нагревании; электролиз обычно продолжают до тех пор, пока количество жидкости не уменьшится до приблизительно 1/10 (от первоначальной величины), что приводит к концентрированию дейтерия.
Фактически концентрирование трития электролизом основано на том его свойстве, что, как и в случае дейтерия, электролиз тритиевой воды протекает с большими затруднениями, чем электролиз воды, содержащей легкий водород. Способ электролиза, включающий помещение металлических электродов в водный щелочной раствор, был уже многократно и всесторонне исследован, и стандартизованный способ имеется в официальном руководстве. Согласно этому способу, концентрацию трития повышают одностадийным способом. Однако на практике концентрирование электролизом согласно предшествующему уровню техники не лишено определенных проблем, а именно: проведение рабочих операций затруднено, скорость концентрирования трития ограничена верхним пределом концентрации электролита, получаемая смесь газообразных водорода и кислорода взрывоопасна, электролиз занимает много времени, и способ не подходит для проведения крупномасштабной обработки.
Поскольку методика была разработана для отделения и улавливания материала с очень низким содержанием с помощью одностадийного способа, указанные выше проблемы в основном вызваны необходимостью проведения электролиза водного щелочного раствора согласно предшествующему уровню техники, согласно которому работа со щелочным электролитическим водным раствором затруднительна, отделение газа, образующегося на аноде также затруднительно, повышение тока электролиза осложняется образованием пузырьков воздуха на поверхности металла и т.д.
В этом отношении в качестве способа электролиза воды, который в последние годы привлек внимание специалистов, может быть упомянут электролиз воды с использованием твердого полимерного электролита (далее называемый "SPE электролизом воды", где "SPE" означает "твердый полимерный электролит" от англ. "solid polymer electrolyte"). Впервые SPE электролиз воды был проведен General Electric Company, США, с применением технологии топливной ячейки в начале 1970 гг. Конструкция электролизной части отличается тем, что обе поверхности SPE мембраны помещают между пористыми металлическими электродами, и при погружении их в чистую воду и приложении электрического тока на пористых электродах в результате электролиза начинает выделяться получаемый при разложении газ. SPE представляет собой один из видов катионообменной смолы, в структуре которой группа сульфоновой кислоты или подобная ей группа, способная к переносу ионов, химически присоединена к полимерной цепочке. При протекании электрического тока между двумя электродами, на аноде происходит разложение воды и выделение газообразного кислорода, и образуются ионы водорода. После перемещения по сульфоновым кислотным группам SPE эти ионы водорода мигрируют к катоду и, после присоединения электронов, образуют газообразный водород. Очевидно, что сам SPE не подвергается изменениям и остается в твердой фазе.
Ожидается, что применение SPE для концентрирования трития электролизом позволит получить следующие преимущества по сравнению со способом согласно предшествующему уровню техники:
1) Может быть произведено прямое разложение дистиллированной воды. При этом отпадает необходимость в растворении, нейтрализации и удалении электролита, которые необходимо производить при электролизе водного щелочного раствора, и, в принципе, скорость уменьшения объема образца воды не имеет ограничений;
2) Поскольку поверхность электрода не покрывается пузырьками воздуха, электролиз можно проводить при высоких значениях электрического тока, что может позволить сократить продолжительность проведения электролиза;
3) Выделение газообразного водорода и газообразного кислорода по отдельности по разные стороны SPE мембраны облегчает обработку газов и значительно повышает безопасность по сравнению со способом согласно предшествующему уровню техники, в котором необходимо работать с взрывоопасной смесью газов.
Дополнительно способ концентрирования тяжелой воды электролизом, основанный на SPE электролизе воды, рассмотрен в Патентных Документах 1 и 2, поданных Компанией-заявителем настоящего изобретения, и в непатентном документе 1.
Однако как Патентные документы 1 и 2, так и непатентный документ 1 относятся к устройству для анализа или концентрирования в набольших масштабах, но они не относятся к крупномасштабной обработке по следующим причинам. Поскольку используемый раствор электролита представляет собой чистую воду, то для того, чтобы в растворе электролита не протекал электрический ток, такой конструкционный элемент, как твердая полимерная мембрана, должен быть прочно закреплен на аноде и катоде, так что поверхностное давление при этом составляет приблизительно 20-30 кг/см2. Это означает, что каждый элемент электролитической ванны должен иметь высокую прочность. Однако, наличие реакционной площади, составляющей 1 м2 или более, непрактично с экономической или функциональной точек зрения. Кроме того, рассмотренная в цитируемых документах обработка не подходит для концентрирования электролизом или фракционирования сырой воды, содержащей большие объемы тяжелой воды, из-за высокой стоимости оборудования и связанных с ним затрат.
ЦИТИРУЕМАЯ ЛИТЕРАТУРА
Патентные документы
Патентный документ 1: JP 8-26703 А (Патент No. 3406390)
Патентный документ 2: JP 8-323154 А (Патент No. 3977446)
Непатентные документы
Непатентный документ 1: Tritium Electrolytic Enrichment using Solid Polymer Electrolyte (Электролитическое обогащение тритием с применением твердого полимерного электролита) (RADIOISOTOPES, Vol. 45, No. 5, May 1996 (опубликовано Japan Radioisotope Association)).
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Техническая задача
Задача настоящего изобретения состоит в устранении проблем предшествующего уровня техники и предоставлении способа обработки сырой воды, содержащей тритиевую воду, который подходит для крупномасштабной обработки с применением электролиза. В частности, задача настоящего изобретения состоит в предоставлении способа снижения концентрации трития до 1/1244 посредством превращения в газ сырой воды, содержащей тритиевую воду, в результате проведения непрерывного электролиза щелочной воды при непрерывной подаче сырой воды для превращения в тритийсодержащий газообразный водород и газообразный кислород с целью снижения влияния трития на живые организмы. Другая задача настоящего изобретения состоит в предоставлении способа извлечения трития в количестве, составляющем 1/20 или менее от величины норматива допустимых сбросов в атмосферный воздух, и его выведения на значительную высоту без контакта с живыми организмами. Другая задача настоящего изобретения состоит в предоставлении способа извлечения трития в виде водного концентрата, содержащего тритиевую воду, по реакции превращенного в газ тритийсодержащего газообразного водорода с водяным паром. Задача настоящего изобретения также состоит в предоставлении способа непрерывного электролиза в том случае, если тритийсодержащая сырая вода представляет собой сырую воду, практически не содержащую загрязняющих примесей, таких как хлорид-ионы, где осуществление способа приводит к снижению концентрации трития и понижению объема сырой воды, содержащей тритиевую воду. Задача настоящего изобретения также состоит в предоставлении способа, в котором после проведения непрерывного электролиза сырой воды, содержащей тритиевую воду, проводят обработку сырой воды, содержащей тритиевую воду, и дополнительно проводят электролиз щелочной воды с периодической подачей при одновременном извлечении щелочного компонента, применяемого для электролиза, одновременно снижая, таким образом, концентрацию трития и понижая объем сырой воды, содержащей тритиевую воду. Задача настоящего изобретения также состоит в предоставлении способа проведения вышеупомянутого непрерывного электролиза, в котором в качестве сырой воды, содержащей тритиевую воду, используют сырую воду, содержащую загрязняющие примеси, такие как большие количества хлорид-ионов, после проведения предварительного этапа, состоящего в удалении загрязняющих примесей, где выполнение способа приводит к снижению концентрации трития и понижению объема сырой воды, содержащей тритиевую воду. Задача настоящего изобретения также состоит в предоставлении способа, в котором при осуществлении указанных способов, после проведения непрерывного электролиза сырой воды, содержащей тритиевую воду, дополнительно проводят обработку сырой воды, содержащей тритиевую воду, электролизом щелочной воды с периодической подачей при одновременном извлечении щелочного компонента, применяемого для электролиза, одновременно снижая, таким образом, концентрацию трития и понижая объем сырой воды, содержащей тритиевую воду.
Решение поставленной задачи
Для решения поставленных выше задач, согласно первому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, согласно которому сырую воду, содержащую тритиевую воду, подвергают обработке в первом этапе электролиза щелочной воды, который включает следующие этапы:
(1) подачу части сырой воды, содержащей тритиевую воду, и щелочной воды в циркуляционный резервуар;
(2) смешивание сырой воды со щелочной водой в циркуляционном резервуаре с образованием электролита, имеющего требуемую концентрацию щелочи, подачу электролита в устройство для электролиза щелочной воды и проведение электролитической обработки;
(3) непрерывную подачу сырой воды в циркуляционный резервуар в количестве, соответствующем объему сырой воды, израсходованной при проведении указанной электролитической обработки, для сохранения установленной изначально концентрации щелочи, и продолжение электролитической обработки при циркуляции электролита для проведения непрерывного электролиза щелочной воды;
(4) превращение сырой воды в тритийсодержащий газообразный водород и газообразный кислород, в результате чего концентрация трития снижается до 1/1244 от концентрации трития в сырой воде; и
(5) снижение объема сырой воды.
Для решения поставленных выше задач, согласно второму аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, в котором тритийсодержащий газообразный водород, образующийся в первом этапе электролиза щелочной воды, выводят в атмосферный воздух.
Для решения поставленных выше задач, согласно третьему аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, в котором тритийсодержащий газообразный водород, образующийся в первом этапе электролиза щелочной воды, направляют в колонну, содержащую катализатор, где тритийсодержащий газообразный водород реагирует с водяным паром на катализаторе, которым заполнена колонна, и тритий извлекают в виде водного концентрата, содержащего тритиевую воду.
Для решения поставленных выше задач, согласно четвертому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, где способ включает:
первый этап электролиза щелочной воды, предназначенный для проведения непрерывного электролиза щелочной воды;
второй этап дистилляции, в котором после завершения первого этапа электролиза щелочной воды все количество электролита, оставшееся после выполнения первого этапа электролиза щелочной воды, направляют в испаритель, находящийся в электролите щелочной компонент извлекают в виде щелочной солевой суспензии и одновременно получают воду, содержащую тритиевую воду, отогнанную в испарителе; и
второй этап электролиза щелочной воды, в котором в циркуляционный резервуар направляют воду, содержащую тритиевую воду, полученную во втором этапе дистилляции, и свежую щелочную воду; воду, содержащую тритиевую воду, смешивают в циркуляционном резервуаре со свежей щелочной водой с образованием раствора электролита, имеющего требуемую концентрацию щелочи; электролитическую емкость устройства для электролиза щелочной воды устанавливают равной величине, подходящей для обработки заданного количества электролита; выполняют электролиз щелочной воды и последующую обработку в периодическом режиме; воду, содержащую тритиевую воду превращают в газ, то есть в тритийсодержащий газообразный водород и газообразный кислород, и при этом концентрация трития снижается до 1/1244 от концентрации трития в воде, содержащей тритиевую воду, и уменьшается объем сырой воды;
при необходимости способ дополнительно включает этап многократного повторения второго этапа дистилляции и второго этапа электролиза щелочной воды до завершения обработки в периодическом режиме, причем во время многократного повторения емкость устройства для электролиза щелочной воды, применяемого для проведения второго этапа электролиза щелочной воды, постепенно понижают, и обработку повторяют.
Для решения поставленных выше задач с учетом рассмотренного выше первого аспекта, согласно пятому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, согласно которому в том случае, если в качестве сырой воды, содержащей тритиевую воду, используют сырую воду, которая содержит загрязняющие примеси, включающие большое количество хлорид-ионов, то в первый этап электролиза щелочной воды дополнительно включают предварительный этап, а именно первый этап дистилляции для удаления загрязняющих примесей, и при проведении первого этапа дистилляции сырую воду, которая содержит загрязняющие примеси, включающие хлорид-ионы, направляют в испаритель, и загрязняющие примеси удаляют в виде солевой суспензии, и при этом одновременно отводят сырую воду, содержащую тритиевую воду, полученную после удаления загрязняющих примесей, которую непрерывно направляют на обработку в первый этап электролиза щелочной воды.
Для решения поставленных выше задач с учетом рассмотренного выше четвертого аспекта, согласно шестому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, в котором, если в качестве сырой воды, содержащей тритиевую воду, используют сырую воду, которая содержит загрязняющие примеси, включающие большое количество хлорид-ионов, то в первый этап электролиза щелочной воды включают предварительный этап, а именно первый этап дистилляции для удаления загрязняющих примесей, и при проведении первого этапа дистилляции сырую воду, которая содержит загрязняющие примеси, включающие хлорид-ионы, направляют в испаритель, и загрязняющие примеси удаляют в виде солевой суспензии, и при этом одновременно отводят сырую воду, содержащую тритиевую воду, полученную после удаления загрязняющих примесей, которую непрерывно направляют на обработку в первый этап электролиза щелочной воды.
Для решения поставленных выше задач с учетом рассмотренных выше пятого или шестого аспектов, согласно седьмому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, в котором при проведении первого этапа дистилляции производят концентрирование солевой суспензии, которую затем отделяют и извлекают в виде твердого вещества.
Для решения поставленных выше задач с учетом рассмотренного выше четвертого аспекта, согласно восьмому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, в котором при проведении второго этапа дистилляции производят концентрирование щелочной солевой суспензии, которую затем отделяют и извлекают в виде твердого вещества.
Для решения поставленных выше задач с учетом рассмотренного выше четвертого аспекта, согласно девятому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, в котором при проведении первого этапа электролиза щелочной воды в качестве щелочной воды используют воду с относительно высокой концентрацией щелочи, и электролитическую обработку проводят при относительно высокой плотности тока, а при проведении второго этапа электролиза щелочной воды в качестве щелочной воды используют воду с относительно низкой концентрацией щелочи, и электролитическую обработку проводят при относительно низкой плотности тока.
Для решения поставленных выше задач с учетом рассмотренного выше первого аспекта, согласно десятому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, в котором при проведении первого этапа электролиза щелочной воды в качестве щелочной воды используют щелочную воду с концентрацией щелочи 15% масс. или более, и электролитическую обработку проводят при плотности тока, составляющей 15 А/дм2 или более.
Для решения поставленных выше задач с учетом рассмотренного выше четвертого аспекта, согласно одиннадцатому аспекту настоящего изобретения предложен способ обработки сырой воды, содержащей тритиевую воду, в котором при проведении второго этапа электролиза щелочной воды в качестве щелочной воды используют щелочную воду с концентрацией щелочи от 2 до 10% масс. или более, и электролитическую обработку проводят при плотности тока, составляющей от 5 до 20 А/дм2.
Полезный эффект изобретения
(1) Согласно настоящему изобретению, при превращении сырой воды, содержащей тритиевую воду, в газ, то есть в тритийсодержащий газообразный водород и газообразный кислород, концентрация трития может быть снижена до 1/1244, и может быть понижено влияние трития на живые организмы.
Кроме того и предпочтительно, все количество сырой воды, содержащей тритиевую воду, подвергают обработке посредством электролиза щелочной воды. Если объем тритиевой воды слишком велик или имеется другая причина, связанная с экономической эффективностью или подобными соображениями, то электролиз щелочной воды может быть проведен в виде нескольких отдельных этапов.
(2) Согласно настоящему изобретению, при превращении в газ сырой воды, содержащей тритиевую воду, концентрация трития может быть снижена до 1/1244, и, таким образом, тритий может быть выведен в атмосферный воздух на значительную высоту без контакта с живыми организмами в количестве, составляющем 1/20 или менее от величины норматива допустимых сбросов.
(3) Согласно настоящему изобретению, в способе непрерывного электролиза щелочной сырой воды, содержащей тритиевую воду, при проведении первого этапа электролиза щелочной воды, по мере того, как получаемый тритиевый газ, содержащий газообразный водород, реагирует с водяным паром, обработанный продукт может быть извлечен в виде водного концентрата, содержащего тритиевую воду.
(4) Согласно настоящему изобретению, если сырая вода, содержащая тритиевую воду, содержит загрязняющие примеси, такие как большое количество хлорид-ионов, то первый этап дистилляции, включающий непрерывную подачу в дистиллятор, представляет собой предварительный этап удаления загрязняющих примесей в виде солевой суспензии, что позволяет достичь результата, рассмотренного выше. Далее обработка в первом этапе электролиза щелочной воды, а также обработка, состоящая в проведении первого этапа дистилляции, представляющего собой предварительный этап, и первого этапа электролиза щелочной воды, названы "системой (I) электролиза щелочной воды".
(5) Согласно четвертому аспекту настоящего изобретения, после завершения непрерывного электролиза первого этапа электролиза щелочной воды в системе (I) электролиза щелочной воды, раствор электролита (щелочную воду), оставшийся после проведения первого этапа электролиза щелочной воды, подвергают обработке в периодическом режиме, состоящей из второго этапа дистилляции и второго этапа электролиза щелочной воды, проводимого после завершения второго этапа дистилляции, и, таким образом, щелочной компонент может быть извлечен в виде щелочной солевой суспензии при проведении второго этапа дистилляции, и одновременно может быть извлечена дистиллированная вода, содержащая тритиевую воду.
(6) Согласно четвертому аспекту настоящего изобретения, после завершения непрерывного электролиза первого этапа электролиза щелочной воды в системе (I) электролиза щелочной воды, раствор электролита (щелочную воду), остающуюся после проведения первого этапа электролиза щелочной воды, подвергают электролитической обработке; при этом воду, содержащую тритиевую воду, которая была извлечена после завершения второго этапа дистилляции, используют как раствор электролита, и раствор электролита подают в устройство для электролиза щелочной воды; при этом электролитическую емкость устройства для электролиза щелочной воды приводят к величине, подходящей для обработки в периодическом режиме того количества раствора электролита, которое имеется во втором этапе электролиза щелочной воды. Таким образом, воду, содержащую тритиевую воду, остающуюся после обработки системой (I) электролиза щелочной воды, разбавляют до норматива допустимых сбросов трития или менее и затем удаляют, что может приводить к дополнительному понижению объема сырой воды, содержащей тритиевую воду.
(7) Согласно четвертому аспекту настоящего изобретения, для проведения достаточной обработки в периодическом режиме, может быть произведено снижение объема до тех пор, пока объем воды, содержащей тритиевую воду, не станет практически нулевым; таким образом, объем устройства для электролиза щелочной воды постепенно снижают (т.е. отключают оборудование), выполняя этап повторения второго этапа дистилляции и второго этапа электролиза щелочной воды третий, четвертый и т.д. раз. Далее обработка, состоящая из второго этапа дистилляции (проводимая в виде третьего этапа дистилляции и последующего этапа дистилляции), и второго этапа электролиза щелочной воды (проводимая в виде третьего этапа электролиза щелочной воды и последующего этапа электролиза щелочной воды) называется "системой (II) электролиза щелочной воды".
(8) Согласно пятому или шестому аспекту настоящего изобретения, в том случае, когда в качестве сырой воды, содержащей тритиевую воду, используют сырую воду, содержащую загрязняющие примеси, такие как большое количество хлорид-ионов, загрязняющие примеси удаляют в виде солевой суспензии проведением первого этапа дистилляции, который включают в качестве предварительного этапа первого этапа электролиза щелочной воды в систему (I) электролиза щелочной воды. Таким образом, при осуществлении первого этапа электролиза щелочной воды в растворе электролита не накапливаются загрязняющие примеси, и непрерывный электролиз щелочной воды может гладко протекать в устойчивом режиме в течение длительного периода времени.
(9) Согласно настоящему изобретению, в том случае, когда электролит, остающийся после завершения первого этапа электролиза щелочной воды в системе (I) электролиза щелочной воды, подвергают обработке системой (II) электролиза щелочной воды, оставшаяся щелочь может быть при необходимости извлечена в виде щелочной соли каждый раз в течение третьего, четвертого и т.д. этапов дистилляции, проводимых в качестве второго этапа дистилляции посредством многократного повторения второго этапа электролиза щелочной воды и последующего этапа электролиза щелочной воды. В качестве оборудования для проведения второго, третьего и следующих этапов дистилляции также может быть применено оборудование первого этапа дистилляции, используемое для проведения предварительного этапа удаления из сырой воды, содержащей тритиевую воду, загрязняющих примесей, таких как большое количество хлорид-ионов - это может привести к значительной экономии средств.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
На Фиг. 1 представлена технологическая схема первого аспекта осуществления (соответствующая рассмотренному выше первому аспекту) системы (I) электролиза щелочной воды согласно настоящему изобретению, которую применяют для обработки сырой воды, содержащей тритиевую воду, которая содержит лишь небольшое количество загрязняющих примесей, таких как хлорид-ионы, в первом этапе электролиза щелочной воды для непрерывного электролиза щелочной воды с циркуляцией электролита при поддержании концентрации щелочи на постоянном уровне.
На Фиг. 2 представлена технологическая схема четвертого аспекта осуществления (соответствующая рассмотренному выше четвертому аспекту) системы электролиза щелочной воды согласно настоящему изобретению, которую применяют в системе (II) электролиза щелочной воды, состоящей из второго этапа дистилляции, предназначенного для выделения, извлечения и обработки в периодическом режиме щелочного компонента электролита, остающегося после проведения первого этапа электролиза щелочной воды и второго этапа электролиза щелочной воды, состоящего в проведении электролитической обработки с приведением электролитической емкости устройства для электролиза щелочной воды к величине, подходящей для обработки того количества раствора электролита, которое остается после проведения первого этапа электролиза щелочной воды.
На Фиг. 3 представлена блок-схема четвертого аспекта осуществления способа обработки сырой воды, содержащей тритиевую воду, с помощью системы (II) электролиза щелочной воды, изображенной на Фиг. 2, в которой: остающийся электролит дополнительно обрабатывают во втором этапе дистилляции; из дистиллятора извлекают щелочной компонент в виде щелочной солевой суспензии; и воду, содержащую тритиевую воду, получаемую при дистилляции, направляют в циркуляционный резервуар и вводят во второй этап электролиза щелочной воды, после чего рассмотренное выше извлечение и электролиз повторяют до достижения удовлетворительного результата обработки в периодическом режиме, где указанный способ осуществляют для обработки раствора электролита, остающегося после первого этапа электролиза щелочной воды в системе (I) электролиза щелочной воды.
На Фиг. 4 представлена технологическая схема шестого аспекта осуществления (соответствующая рассмотренному выше пятому и шестому аспектам) системы электролиза щелочной воды согласно настоящему изобретению, включающая систему (II) электролиза щелочной воды, которую применяют в том случае, когда в качестве обрабатываемой сырой воды, содержащей тритиевую воду, используют сырую воду, содержащую большое количество загрязняющих примесей, таких как хлорид-ионы; система (II) электролиза щелочной воды состоит из первого этапа дистилляции, который представляет собой предварительный этап удаления загрязняющих примесей в виде солевой суспензии; первого этапа электролиза щелочной воды, который состоит в непрерывном электролизе щелочной воды с циркуляцией электролита в системе (I) электролиза щелочной воды при поддержании постоянной концентрации щелочи; второго этапа дистилляции для извлечения щелочного компонента из раствора электролита, остающегося после проведения первого этапа электролиза щелочной воды, в виде щелочной солевой суспензии; и второго этапа электролиза щелочной воды, который состоит в электролитической обработке с приведением электролитической емкости устройства для электролиза щелочной воды к величине, подходящей для обработки того количества раствора электролита, которое остается после проведения первого этапа электролиза щелочной воды.
На Фиг. 5 представлена блок-схема шестого аспекта осуществления способа обработки, в котором применяют систему электролиза щелочной воды, представленную на Фиг. 4, и в качестве обрабатываемой сырой воды, содержащей тритиевую воду, используют сырую воду, содержащую большое количество загрязняющих примесей, таких как хлорид-ионы.
СВЕДЕНИЯ. ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ
ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
На первом блоке атомной электростанции Фукусима произошла утечка большого количества загрязненной воды, содержащей тритий, и в будущем количество загрязненной воды, которое должно быть отправлено на хранение, может достичь 800000 м3. Задача настоящего изобретения состоит в создании методики, с помощью которой тритий может быть отделен от хранящейся загрязненной тритием воды, количество которой составляет 800000 м3, с производительностью обработки, составляющей 400 м3/сутки, в результате чего объем загрязненной тритием воды может быть снижен до 1 м3 или менее и в конечном итоге до 0; при реализации этой методики также следует учитывать площадь для размещения установки, а также расходы на строительство и эксплуатацию установки. В одном из примеров осуществления методики тритиевую воду, содержащуюся в тритийсодержащей воде, превращают в тритиевый газ непрерывным электролизом и, после обезвреживания и выведения в атмосферный воздух, его выбрасывают на значительную высоту без контакта с живыми организмами.
Как рассмотрено ниже, согласно настоящему изобретению, тритиевую воду (НТО) превращают в газ, содержащий тритий (НТ) таким образом, чтобы его концентрация была низкой, например, 1/20 или менее от величины норматива допустимых сбросов, и установленное значение составляло 1 мЗв (микроЗиверт) или менее в год. Согласно приведенной ниже формуле для расчета, коэффициент разделения составляет 1244.
Реакции электролиза приведены ниже:
H2O(ж)→H2(г)+1/2O2(г)
HTO(ж)→HT(г)+1/2O2(г)
Так, поскольку объем 1 моля молекулярного газа в стандартных условиях составляет 22,4 л, при электролитическом разложении 1 л (прибли