Регистрирующий лист с улучшенным качеством печати при низких уровнях добавок
Иллюстрации
Показать всеИзобретение относится к листам на бумажной основе, которая имеет двутавровую структуру, и способам их получения. Предложен регистрирующий лист, в котором бумажная основа включает полотно из целлюлозных волокон и композицию, содержащую проклеивающее вещество и соль двухвалентного металла. Бумажная основа и проклеивающее вещество взаимодействуют для формирования двутавровой структуры. Изобретение обеспечивает получение регистрирующего листа, имеющего улучшенный объём цветового охвата и плотность струйной печати, а также позволяет снизить общее количество вводимых добавок без снижения качества листа. 2 н. и 24 з.п. ф-лы, 15 ил., 2 табл., 10 пр.
Реферат
Область техники
Настоящее изобретение относится к регистрирующим листам, например регистрирующим листам на бумажной основе, имеющим улучшенное качество печати. Изобретение также относится к способам изготовления и способам использования регистрирующих листов. Хотя они подходят для использования в любом процессе печати, регистрирующие листы особенно подходят для процессов струйной печати.
Описание уровня техники
Бумажные основы, имеющие так называемую структуру "двутавровой балки", разработаны недавно и по сообщениям имеют улучшенную объемную жесткость и/или высокую размерную стабильность. Смотрите, например, патентную заявку США 2004/0065423, опубликованную 8 апреля 2004 г., в которой раскрыт трехслойный лист с двутавровой структурой, который имеет целлюлозный центральный слой и верхний и нижний слои из покрытий, пропитанных крахмалом в клеильном прессе. Смотрите также патентную заявку США 2008/0035292, опубликованную 14 февраля 2008 г., в которой раскрыты бумажные основы, имеющие высокую размерную стабильность при высокой проклейке поверхности и низкой внутренней проклейке.
Хлорид кальция в настоящее время используют в струйных средствах регистрации для улучшения плотности струйной печати и времени высыхания. Смотрите, например, патентную заявку США 2007/0087138, опубликованную 19 апреля 2007 г., в которой раскрыт регистрирующий лист с улучшенным временем высыхания изображения, который содержит растворимые в воде соли двухвалентных металлов. В струйных средствах регистрации используются другие соли металлов. В патенте США 4,381,185 раскрыта бумага, которая содержит многозарядные катионы металлов. В патенте США 4,554,181 раскрыт регистрирующий лист для струйной печати, имеющий регистрирующую поверхность, которая содержит соль многовалентного металла. В патенте США 6,162,328 раскрыта проклейка бумаги для основы для струйной печати, которая включает катионные соли металлов. В патенте США 6,207,258 раскрыт состав для обработки поверхности основы для струйной печати, который содержит соль двухвалентного металла. В патенте США 6,880,928 раскрыта бумага регистрирующей основы для струйной печати, имеющая покрытие, которое включает соль многовалентного металла.
Авторы настоящего изобретения выяснили, что использование хлорида кальция может быть проблематичным. Высокие уровни хлорида кальция могут создавать проблемы с прохождением в бумагоделательных машинах; хлорид кальция нежелательно гасит оптические осветлители на основе стильбена, которые часто используют в клеильном прессе, и хлорид кальция влияет на pH составов, используемых в клеильных прессах. Крахмалы, используемые в клеильном прессе, требуют узкого диапазона значений pH, чтобы быть эффективными: слишком высокий pH может приводить к пожелтению крахмала; слишком низкий pH может вызывать осаждение и/ гелеобразование крахмала. Хлорид кальция также может взаимодействовать с другими химическими веществами, которые используются в мокрой части, когда бумагу измельчают или перерабатывают.
Таким образом, существует потребность в регистрирующем листе, который сохраняет улучшенную плотность струйной печати и другие преимущества, но который лишен проблем прохождения и влияния на композиции, связанные с наличием хлорида кальция.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Вышеуказанные и другие проблемы решаются настоящим изобретением. Что удивительно, авторы настоящего изобретения выяснили, что регистрирующий лист, содержащий по меньшей мере одну растворимую в воде соль двухвалентного металла и двутавровую структуру имеет значительно улучшенный объем цветового охвата, плотность струйной печати и несколько других преимуществ, упомянутых в настоящем документе. Эти преимущества нельзя было прогнозировать. Без привязки к теории мы полагаем, что эффективная поверхностная концентрация растворимых в воде солей двухвалентных металлов увеличивается при двутавровой структуре, и повышенная эффективная поверхностная концентрация в сочетании с двутавровой структурой позволяет уменьшить общее количество добавок в регистрирующий лист без ущерба для его характеристик. Другие преимущества включают уменьшенный перенос краски сразу же после печати, повышенную плотность черного изображения и улучшенную резкость краев изображения при печати пигментными красками.
Один вариант осуществления настоящего изобретения желательно достигает равной или лучшей плотности печати и времени высыхания при намного более низких уровнях солей металлов. В одном варианте осуществления настоящего изобретения используются меньшие количества соли металла, такой как хлорид кальция; достигнуты улучшенные параметры работы бумагоделательной машины, и желаемо уменьшено взаимодействие с другими химикатами при изготовлении бумаги. Другими преимуществами настоящего изобретения являются уменьшенные количества добавок в бумагоделательной машине, что улучшает параметры работы бумагоделательной машины и снижает расходы без ущерба для эксплуатационных характеристик. В другом варианте осуществления авторы настоящего изобретения выяснили, что добавление поверхностных пигментов, таких как молотый карбонат кальция (МКК), осажденный карбонат кальция (ОКК) и другие, синергически улучшает объем цветового охвата и время высыхания.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Различные варианты осуществления настоящего изобретения описаны в связи с прилагаемыми чертежами, на которых:
На Фиг. 1 показано оцененное с использованием оптического микроскопа проникновение крахмала в сравнительный и иллюстративный варианты осуществления настоящего изобретения.
На Фиг. 2 показано оцененное с использованием оптического микроскопа проникновение крахмала в двутавровую структуру для иллюстративных вариантов осуществления в примерах.
Фиг. 3 - график, показывающий результаты цветового охвата для иллюстративных пигментированных и не пигментированных вариантов осуществления при разных давлениях контактных зон, загруженных количествах пигментов и загруженных количествах солей двухвалентных металлов.
Фиг. 4 - график, показывающий результаты цветового охвата для иллюстративного и сравнительного вариантов осуществления в примерах.
Фиг. 5 - график, показывающий среднее значение цветового охвата по оси y для сравнительного и иллюстративного вариантов осуществления в примерах.
Фиг. 6 - график, показывающий среднее значение цветового охвата по оси y для сравнительного и иллюстративного вариантов осуществления в примерах.
Фиг. 7 - график, показывающий среднее значение цветового охвата по оси y для сравнительного и иллюстративного не пигментированных вариантов осуществления в примерах.
Фиг. 8 - график, показывающий среднее значение цветового охвата по оси y для сравнительного и иллюстративного содержащих пигмент вариантов осуществления в примерах.
Фиг. 9 - график, показывающий среднее значение плотности черного по оси y для сравнительного и иллюстративного содержащего и не содержащего пигмент вариантов осуществления в примерах.
Фиг. 10 - график, показывающий среднее значение плотности черного по оси y для сравнительного и иллюстративного содержащего и не содержащего пигмент вариантов осуществления в примерах.
Фиг. 11 - график, показывающий среднее значение плотности черного по оси y для сравнительного и иллюстративного содержащего и не содержащего пигмент вариантов осуществления в примерах.
Фиг. 12 - график, показывающий среднее значение цветового охвата по оси y для сравнительного и иллюстративного содержащего и не содержащего пигмент вариантов осуществления в примерах.
Фиг. 13 - график, показывающий среднее значение цветового охвата по оси y для сравнительного и иллюстративного содержащего и не содержащего пигмент вариантов осуществления в примерах.
Фиг. 14 - график, показывающий среднее значение плотности черного/плотности струйной печати по оси y для сравнительного и иллюстративного содержащего и не содержащего пигмент вариантов осуществления в примерах.
Фиг. 15 - график, показывающий среднее значение плотности черного/плотности краски по оси y для сравнительного и иллюстративного содержащего и не содержащего пигмент вариантов осуществления в примерах.
ПОДРОБНОЕ ОПИСАНИЕ НЕСКОЛЬКИХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Авторы настоящего изобретения нашли способ достичь равных или улучшенных плотности печати/времени высыхания при гораздо более меньших объемах добавок, в некоторых случаях на уровнях применения (поглощение = фунтов на тонну), которые составляют от половины до трети от объемов, обычно используемых в клеильном прессе. Авторы настоящего изобретения к удивлению обнаружили, что эффективная поверхностная концентрация растворимых в воде солей двухвалентных металлов, например, хлорида кальция, может быть сохранена или повышена путем введения содержащего соль клея в двутавровую структуру. Также было обнаружено, что дальнейшее добавление поверхностных пигментов, таких как МКК, ОКК и др., синергично улучшает объем цветового охвата и время высыхания.
Формирование двутавровой структуры лучше всего осуществлять в дозируемом клеильном прессе, таком как с дозирующим шабером, обычно с использованием композиций с высоким содержанием твердых веществ, шаберами меньшего объема для контроля выщипывания и оптимальным давлением зоны контакта для предотвращения сжатия бумаги. Таким способом удобно контролировать нанесения клеящего вещества и поддерживать целостность двутавровой структуры.
Повышенное содержание твердых частиц, более низкое поглощение или повышенная вязкость композиции клеильного пресса позволяет изменять давление в зонах контактов с меньшим воздействием.
Регистрирующий лист может содержать "эффективное количество" растворимой в воде соли двухвалентного металла в контакте по меньшей мере с одной поверхностью основы. Используемый здесь термин "эффективное количество" определяет количество, которого достаточно для формирования двутавровой структуры с подходящим клеящим веществом или для улучшения времени высыхания изображения. Это общее количество растворимой в воде соли двухвалентного металла в основе может изменяться в широких пределах при условии, что сохраняется или достигается желательная двутавровая структура. Обычно это количество составляет по меньшей мере 0,02 г/м2, хотя можно использовать более низкие или более высокие величины. Количество растворимой в воде соли двухвалентного металла предпочтительно составляет приблизительно от 0,04 г/м2 до 3 г/м2, включая все значения и поддиапазоны между этими значениями, включая 0,04, 0,05, 0,06, 0,07, 0,08, 0,09, 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 1, 1,5, 2, 2,5 и 3 г/м2 или любое сочетание, и наиболее предпочтительно приблизительно от 0,04 г/м2 до 2,0 г/м2. В лучших вариантах осуществления количество растворимой в воде соли двухвалентного металла предпочтительно составляет приблизительно от 0,04 г/м2 до 1,0 г/м2. При осуществлении настоящего изобретения на практике может быть использована любая растворимая в воде соль двухвалентного металла. Подходящие растворимые в воде соли двухвалентного металла включают, без ограничения, соединения, содержащие двухвалентный кальций, магний, барий, цинк или любое их сочетание. Противоположные ионы (анионы) могут быть простыми или сложными и могут изменяться в широких пределах. Примерами таких материалов являются хлорид кальция, хлорид магния и ацетат кальция. Предпочтительными растворимыми в воде солями двухвалентного металла для практического осуществления настоящего изобретения являются растворимые в воде соли кальция, особенно хлорид кальция.
В одном варианте осуществления солью двухвалентного металла может быть соль минеральной или органической кислоты с двухвалентным катионом металла или их сочетание их сочетание. В одном варианте осуществления растворимая в воде соль металла может включать галоид, нитрат, хлорат, перхлорат, сульфат, ацетат, карбоксилат, гидроксид, нитрит и т.п. или их сочетания с кальцием, магнием, барием, цинком (II) и т.п. или их сочетания. Некоторые примеры солей двухвалентных металлов включают, без ограничения, хлорид кальция, хлорид магния, бромид магния, бромид кальция, хлорид бария, нитрат кальция, нитрат магния, нитрат бария, ацетат кальция, ацетат магния, ацетат бария, ацетат кальция-магния, пропионат кальция, пропионат магния, пропионат бария, формиат кальция, 2-этилбутанат кальция, нитрит кальция, гидроксид кальция, хлорид цинка, ацетат цинка и их сочетания.
Возможны смеси или сочетания солей двухвалентных металлов, разных анионов или и тех, и других. Относительная масса катиона двухвалентного металла в соли двухвалентного металла может быть при желании максимально увеличена по отношению к аниону в соли, чтобы обеспечить повышенную эффективность на основе общей массы примененной соли. Следовательно, по этой причине, например, хлорид кальция предпочтительнее, чем бромид кальция. Равные характеристики свойств печати ожидаются, когда в бумаге присутствуют одинаковые дозы катионов двухвалентных металлов в солях двухвалентных металлов, выраженные в молях.
В одном варианте осуществления соль двухвалентного металла растворима в количестве, используемом в водной композиции для проклейки. В одном варианте осуществления она растворима при pH приблизительно от 6 до 9. Водная проклеивающая среда может быть в форме водного раствора, эмульсии, дисперсии, латекса, коллоидного состава, и используемый здесь термин "эмульсия", в обычном значении в данной области, означает или дисперсию типа жидкость-в-жидкости или типа твердое вещество-в-жидкости, а также латексную или коллоидную композицию.
В одном варианте осуществления растворимость соли двухвалентного металла в воде может изменяться от немного или умеренно растворимой до растворимой, измеренной на насыщенном водном растворе соли двухвалентного металла при комнатной температуре. Растворимость в воде может составлять от 0,01 моль/л и выше. Этот диапазон включает все значения и поддиапазоны, включая 0,01, 0,05, 0,1, 0,5, 1, 1,5, 2, 5, 7, 10, 15, 20, 25 моль/л и выше. В одном варианте осуществления, растворимость соли двухвалентного металла в воде составляет 0,1 моль/л или выше.
Бумажная основа содержит некоторое множество целлюлозных волокон. Тип целлюлозного волокна не критичен, и можно использовать любое такое волокно, известное или подходящее для использования при изготовлении бумаги. Например, основа может быть изготовлена из волокон древесной массы, полученной из лиственных деревьев, хвойных деревьев или сочетания лиственных и хвойных деревьев. Волокна могут быть подготовлены для использования в композиции для изготовления бумаги путем одной или нескольких известных операций варки, облагораживания и/или беления, например, известными механическими, термомеханическими, химическими и/или полухимическими и/или другими хорошо известными способами получения древесной массы. Используемый здесь термин "лиственные целлюлозы" включает волокнистые массы, полученные из древесной массы лиственных деревьев (покрытосемянных растений), таких как береза, дуб, бук, клен и эвкалипт. Используемый здесь термин "хвойные целлюлозы" включает волокнистые массы, полученные из древесной массы хвойных деревьев (голосемянных растений), таких как различные пихты, ели и сосны, например, сосна ладанная, сосна карибская, ель колючая, пихта бальзамическая и дугласовая пихта. В некоторых вариантах осуществления по меньшей мере часть волокон древесной массы может быть произведена из недревесных травянистых растений, включая, но без ограничения, кенаф, коноплю, джут, лен, сизаль или абаку, хотя правовые ограничения и другие соображения могут сделать использование конопли и других источников волокон непрактичными или невозможными. Можно использовать беленые или небеленые волокна. Также для использования подходят переработанные волокна.
Бумажная основа может содержать от 1 до 99 мас.% целлюлозных волокон от совокупной массы основы. В одном варианте осуществления бумажная основа может содержать от 5 до 95 мас.% целлюлозных волокон от совокупной массы основы. Эти значения включают все значения и поддиапазоны между ними, например, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 и 99 мас.%.
Бумажная основа может по выбору содержать от 1 до 100 мас.% целлюлозных волокон из хвойных видов от общего количества целлюлозных волокон в бумажной основе. В одном варианте осуществления бумажная основа может содержать от 0 до 60 мас.% целлюлозных волокон из лиственных видов от совокупного количества целлюлозных волокон в бумажной основе. Эти значения включают 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 и 100 мас.% и все диапазоны и поддиапазоны в них от совокупного количества целлюлозных волокон в бумажной основе.
В одном варианте осуществления бумажная основа может альтернативно или перекрывающе содержать от 0,01 до 99 мас.% волокон из лиственных видов от совокупной массы бумажной основы. В другом варианте осуществления бумажная основа может содержать от 10 до 60 мас.% волокон из лиственных видов от совокупной массы бумажной основы. Эти диапазоны включают все значения и поддиапазоны в них. Например, бумажная основа может содержать не более чем 0,01, 0,05, 0,1, 0,2, 0,5, 1, 2, 3, 4, 5, 6, 7, 8,9,10, 12,15,20,25,30, 35, 40, 45, 50, 55, 60,65,70,75, 80, 85, 90,95 и 99 мас.% хвойных волокон от совокупной массы бумажной основы.
Все или часть хвойных волокон могут по выбору быть получены из хвойных видов, имеющих канадскую стандартную степень помола (CSF) от 300 до 750. В одном варианте осуществления бумажная основа содержит волокна из хвойного вида с CSF от 400 до 550. Эти диапазоны включают все значения и поддиапазоны между ними, например, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740 и 750 CSF. Канадскую стандартную степень помола измеряют стандартным методом TAPPI Т-227.
Бумажная основа может по выбору содержать от 1 до 100 мас.% целлюлозных волокон из хвойных видов от совокупного количества целлюлозных волокон в бумажной основе. В одном варианте осуществления бумажная основа может содержать от 30 до 90 мас.% целлюлозных волокон из хвойных видов от совокупного количества целлюлозных волокон в бумажной основе. Эти диапазоны включают 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 и 100 мас.% и все значения и поддиапазоны в них от совокупного количества целлюлозных волокон в бумажной основе.
В одном варианте осуществления бумажная основа может альтернативно или перекрывающе содержать от 0,01 до 99 мас.% волокон из лиственных видов от совокупной массы бумажной основы. В другом варианте осуществления бумажная основа может альтернативно или перекрывающе содержать от 60 до 90 мас.% волокон из лиственных видов от совокупной массы бумажной основы. Эти диапазоны включают все значения и поддиапазоны между ними, включая не более чем 0,01, 0,05, 0,1, 0,2, 0,5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, и 99 мас.% от совокупной массы бумажной основы.
Все или часть лиственных волокон может быть по выбору получена из лиственных видов с канадской стандартной степенью помола от 300 до 750. В одном варианте осуществления бумажная основа может содержать волокна из лиственных видов, имеющих значения CSF от 400 до 550. Эти диапазоны включают 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740 и 750 CSF и все диапазоны и поддиапазоны в них.
Бумажная основа может по выбору содержать менее облагороженные волокна, например, менее облагороженные хвойные волокна, менее облагороженные лиственные волокна, или и те, и другие. Возможны сочетания менее облагороженных и более облагороженных волокон. В одном варианте осуществления бумажная основа содержит волокна, которые по меньшей мере на 2% менее облагороженные чем волокна, используемые в традиционных бумажных основах. Этот диапазон включает все значения и поддиапазоны между ними, включая по меньшей мере 2, 5, 10, 15 и 20%. Например, если традиционная бумага содержит волокна, хвойные и/или лиственные, имеющие Канадскую стандартную степень помола 350, то в одном варианте осуществления бумажная основа может содержать волокна, имеющие CSF 385 (т.е., облагороженные на 10% меньше чем традиционные), и все таки иметь характеристики подобные, если не лучше, чем у традиционной бумаги. Неограничивающие примеры некоторых эксплуатационных качеств бумажной основы описаны ниже. Примеры некоторых уменьшений в облагораживании лиственных и/или хвойных волокон включают, но без ограничения: 1) с 350 до по меньшей мере 385 CSF; 2) с 350 до по меньшей мере 400 CSF; 3) с 400 до по меньшей мере 450 CSF и 4) с 450 до по меньшей мере 500 CSF. В некоторых вариантах осуществления уменьшение в облагораживании волокон может составлять по меньшей мере 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 и 25% по сравнению с волокнами в традиционных бумажных основах.
Если бумажная основа содержит лиственные и хвойные волокна, их массовое отношение может по выбору колебаться от 0,001 до 1000. В одном варианте осуществления отношение лиственных/хвойных волокон может составлять от 90/10 до 30/60. Эти диапазоны включают все значения и поддиапазоны между ними, включая 0,001, 0,002, 0,005, 0,01, 0,02, 0,05, 0,1, 0,2, 0,5, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900 и 1000.
Хвойные волокна, лиственные волокна или и те, и другие могут быть по выбору модифицированы физическими и/или химическими способами. Примеры физических способов включают, но без ограничения, электромагнитные и механические способы. Примеры электрических модификаций включают, но без ограничения, способы, в которых волокна контактируют с источником электромагнитной энергии, например светом и/или электрическим током. Примеры механических модификаций включают, но без ограничения, способы, в которых с волокнами контактирует неодушевленный объект. Примеры таких неодушевленных объектов включают объекты с острыми и/или тупыми кромками. Таким способы также включают, например, резку, растирание, измельчение, прокалывание и т.п. и их сочетания.
Неограничивающие примеры химических модификаций включают традиционные способы обработки волокон, такие как сшивание и/или осаждение на них комплексов. Другие примеры подходящих модификаций волокон включают способы, описанные в патентах США №6592717, 6592712, 6582557, 6579415, 6579414, 6506282, 6471824, 6361651, 6146494, Н1704, 5731080, 5698688, 5698074, 5667637, 5662773, 5531728, 5443899, 5360420, 5266250, 5209953, 5160789, 5049235, 4986882, 4496427, 4431481, 4174417, 4166894, 4075136 и 4,022.965, все содержимое которых включено в настоящий документ самостоятельно путем ссылки. Другие примеры подходящих модификаций волокон можно найти в патентных заявках США №60/654,712 от 19 февраля 2005 г.и 11/358,543 от 21 февраля 2006, которые могут включать добавление оптических осветлителей, как сказано в них, все содержимое которых включено в настоящий документ самостоятельно путем ссылки.
Бумажная основа может по выбору включать "мелочь". Волокна "мелочи" - это волокна, средняя длина которых не превышает 100 мкм. Источниками "мелочи" могут быть волокна SaveAll, оборотные потоки, потоки брака, потоки забракованных волокон и их сочетания. Количество "мелочи", присутствующей в бумажной основе может быть изменено, например, путем регулировки скорости добавления потоков в процессе производства бумаги. В одном варианте осуществления среднее значение длины мелочи не превышает 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 и 100 мкм, включая все диапазоны и поддиапазоны в них.
Если они используются, волокна "мелочи" могут присутствовать в бумажной основе вместе с лиственными волокнами, хвойными волокнами или и теми, и другими.
Бумажная основа может по выбору содержать от 0,01 до 100 мас.% мелочи от совокупной массы бумажной основы. В одном варианте осуществления бумажная основа может содержать от 0,01 до 50 мас.% мелочи от совокупной массы основы. Эти диапазоны включают все значения и поддиапазоны между ними, включая не более чем 0,01, 0,05, 0,1, 0,2, 0,5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 и 100 мас.% мелочи от совокупной массы бумажной основы.
В одном варианте осуществления бумажная основа может альтернативно или перекрывающе содержать от 0,01 до 100 мас.% мелочи от совокупной массы волокон в бумажной основе. Этот диапазон включает все значения и поддиапазоны между ними, включая не более чем 0,01, 0,05, 0,1, 0,2, 0,5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 и 100 мас.% мелочи от совокупной массы волокон в бумажной основе.
Регистрирующий лист содержит по меньшей мере одно проклеивающее вещество, которое взаимодействует с бумажной основой для формирования двутавровой структуры. Поскольку оно содержит по меньшей мере одну растворимую в воде соль двухвалентного металла, проклеивающее вещество практически не ограничено, и можно использовать любое проклеивающее вещество, применяемое в производстве бумаги. Проклеивающее вещество может быть химически активным, химически неактивным или сочетанием неактивного и активного. Проклеивающее вещество может, по выбору, придавать бумажной основе влаго- или водостойкость в разной степени. Неограничивающие примеры проклеивающих веществ содержатся в публикации "Справочник инженера-технолога целлюлозно-бумажного производства (Handbook for Pulp и Paper Technologists)", G.A. Smook (1992), Angus Wilde Publications, которая включена в настоящий документ в полном объеме путем ссылки. Предпочтительно, проклеивающее вещество является поверхностным прок леивающим вещество м. Предпочтительными примерами проклеивающих веществ являются крахмал, димер алкилкетена (AKD), димер алкенилкетена (ALKD), алкенилянтарный ангидрид (ASA), ASA/ALKD, стирол-акриловая эмульсия (SAE), поливиниловый спирт (PVOH), поливиниламин, альгинат, карбоксиметилцеллюлоза и т.д. Однако можно использовать любое проклеивающее вещество. Смотрите, например, проклеивающие вещества, раскрытые в патенте США №6,207,258, все содержание которого включено в настоящий документ путем ссылки.
В данной области известны многие химические неактивные проклеивающие вещества. Примеры включают, без ограничения, химически неактивную полимерную эмульсию для проклейки поверхности BASOPLAST® 335D, выпускаемую BASF Corporation (Маунтин Олив, Нью-Джерси), эмульсию сополимера винилацетата и бутилакрилата FLEXBOND® 325, выпускаемую Air Products and Chemicals, Inc. (Трекслертаун, Пенсильвания) и химически неактивные проклеивающие вещества PENTAPR1NT® (раскрытые, например, в опубликованной международной патентной заявке № WO 97/45590, опубликованной 4 декабря 1997 г., соответствующей патентной заявке США, серийный номер 08/861,925, поданной 22 мая 1997 г., все содержание которой включено в настоящий документ путем ссылки), от имени Hercules Incorporated (Уилмингтон, Делавэр).
Для изготовления бумаги в щелочных условиях производства можно использовать проклеивающие вещества на основе димеров алкилкетена (AKD) или димеров алкенилкетена (ALKD) или мультимеров и алкенилянтарного ангидрида (ASA). Также можно применить сочетания этих и других проклеивающих веществ.
Димеры кетена как проклеивающие вещества для производства бумаги хорошо известны. AKD, содержащие одно Р-лактоновое кольцо, обычно получают димеризацией алкилкетенов, изготовленных из двух хлоридов жирных кислот. Коммерческие проклеивающие вещества на основе димеров алкилкетена часто получают из пальмитиновой и/или стеариновой жирных кислот, например, проклеивающие вещества Hereon® и Aquapel® (оба от Hercules Incorporated).
Проклеивающие вещества на основе димеров алкенилкетена также доступны в продаже, например, проклеивающие вещества Precis® (Hercules Incorporated).
В патенте США №4,017,431, все содержание которого включено в настоящий документ путем ссылки, приведено неограничивающее иллюстративное раскрытие проклеивающих веществ AKD в смеси с воском и растворимыми в воде катионными смолами.
Как проклеивающие вещества также можно использовать мультимеры кетена, содержащие более одного р-лактонового кольца.
Проклеивающие вещества, полученные из смеси моно- и дикарбоновых кислот, раскрыты как проклеивающие вещества для бумаги в не прошедших экспертизу патентных заявках Японии №168991/89 и 168992/89.
В опубликованной европейской патентной заявке №0629741 А1 раскрыты димер и смеси мультимеров алкилкетена как проклеивающие вещества для бумаги, используемой в скоростных машинах для обработки с обращением и репрографии. Мультимеры алкилкетена получают путем реакции монокарбоновой кислоты с молярным избытком, обычно жирной кислоты, с дикарбоновой кислотой. Эти мультимерные соединения твердеют при 25°C.
В опубликованной европейской патентной заявке №0666368 А2 и в патенте США №5,685,815 (Ботторфф и др.), все содержание которых включено в настоящий документ путем ссылки, раскрыта бумага для скоростных или репрографических операций с димером и/или мультимером алкенилкетена как проклеивающим веществом, которая внутри проклеена алкилом или проклеивающим веществом. Предпочтительные 2-оксетаноновые мультимеры получены при отношениях жирной кислоты с дикислотой в диапазоне от 1:1 до 3,5:1.
Коммерческие проклеивающие вещества на основе ASA являются дисперсиями или эмульсиями материалов, которые могут быть получены реакцией малеинового ангидрида с олефином (C14-C18).
Примеры гидрофобных кислотных ангидридов, используемых как проклеивающие вещества для бумаги, включают:
(i) ангидрид смоляной кислоты (смотрите патент США №3,582,464, все содержание которого включено в настоящий документ путем ссылки);
(ii) ангидриды, имеющие структуру (I):
где каждый R - такой же или другой углеводородный радикал; и
(iii) циклические ангидриды дикарбоновой кислоты, имеющие структуру (II):
где R’ - радикал диметилена или триметилена, и R" - углеводородный радикал.
Некоторые примеры ангидридов формулы (I) включают миристоиловый ангидрид, пальмитоиловый ангидрид, олеоиловый ангидрид и стеароиловый ангидрид.
Примерами замещенных циклических ангидридов дикарбоновой кислоты, подпадающих под формулу (II), являются замещенные янтарный и глутаровый ангидриды, i- и n-октадецепилянтарный ангидрид; i- и n-гексадеценилянтарный ангидрид; i- и n-тетрадеценил янтарный ангидрид, додецилянтарный ангидрид; децениляитарный ангидрид; эктенилянтарный ангидрид и гептилглутаровый ангидрид.
Другие примера химически неактивных проклеивающих веществ включают полимерную эмульсию, эмульсию катионного полимера, эмульсию амфотерного полимера, эмульсию полимера, в котором по меньшей мере один мономер выбирают из группы, включающей стирол, а-метилстирол, акрилат с эфирным заместителем с 1-13 атомами углерода, метакрилат, имеющий эфирный заместитель с 1-13 атомами углерода, акрилонитрил, метакрилонитрил, випилацетат, этилен и бутадиен; и по выбору включающей акриловую кислоту, метакриловую кислоту, малеиновый ангидрид, сложные эфиры малеинового ангидрида или их смеси, с кислотным числом меньше 80, и их смеси. По желанию, полимерную эмульсию можно стабилизировать стабилизирующим веществом, предпочтительно включая деградированный крахмал, такой как раскрыт, например, в патентах США №4,835,212, 4,855,343 и 5,358,998, все содержание каждого из которых включено в настоящий документ путем ссылки. По желанию можно использовать полимерную эмульсию, в которой полимер имеет температуру стеклования от -15°C до 50°C.
Для традиционных условий изготовления бумаги с кислым pH можно использовать химически неактивные проклеивающие вещества в форме диспергированных смоляных проклеивающих веществ. Диспергированные смоляные проклеивающие вещества хорошо известны. Неограничивающие примеры смоляных проклеивающих веществ раскрыты, например, в патентах США №3,966,654 и 4,263,182, все содержание каждого из которых включено в настоящий документ путем ссылки.
Смола может быть модифицированной или немодифицированной, диспергируемой или эмульгируемой смолой, подходящей для проклейки бумаги, включая неусиленную смолу, усиленную смолу и расширенную смолу, а также смоляные сложные эфиры, и их смеси. Используемый здесь термин "смола" означает любую из этих форм диспергированной смолы, подходящей в качестве проклеивающего вещества.
Смола в дисперсной форме конкретно не ограничена, и можно использовать любой из имеющихся в продаже типов смолы, такой как древесная смола, живичная канифоль, смола талового масла и смеси любых двух или больше смол в их сыром или очищенном состоянии. В одном варианте осуществления используются смола таллового масла и живичная канифоль. Также можно применять частично гидрогенизированные смолы и полимеризированные смолы, а также смолы, обработанные для ингибирования кристаллизации, например, тепловой обработкой или реакцией с формальдегидом.
Усиленная смола конкретно не ограничена. Одним примером такой смолы является продукт присоединения реакции между смолой и кислотным соединением, содержащий группу
и полученный путем реакции смолы и кислотного соединения при повышенной температуре от 150°C до 210°C.
Количество применяемого кислотного соединения будет таким, которое обеспечит усиленную смолу, содержащую приблизительно от 1 до 16 мас.% присоединенного кислотного соединения от массы усиленной смолы. Способы получения усиленной смолы хорошо известны специалистам в данной области. Смотрите, например, способы, раскрытые в патентах США №2,628,918 и 2,684,300, все содержание каждого из которых включено в настоящий документ путем ссылки.
Примеры кислотных соединений, содержащих группу
которые можно использовать для получения усиленной смолы, включают α-β-ненасыщенные органические кислоты и их ангидриды, конкретные примеры которых включают фумаровую кислоту, малеиновую кислоту, акриловую кислоту, малеиновый ангидрид, итаконовую кислоту, итаконовый ангидрид, цитраконовую кислоту и цитраконовый ангидрид. По желанию для получения усиленной смолы можно использовать смеси кислот.
Так, например, смесь продукта присоединения акриловой кислоты смолы и продукта присоединения фумаровой кислоты можно использовать для получения проклеивающего вещества в форме диспергированной смолы. Также можно использовать усиленную смолу, которая в сущности полностью гидрогенезирована после образования продукта присоединения.
Смоляные сложные эфиры также можно использовать в проклеивающих веществах в форме диспергированной смолы. Примерами подходящих смоляных сложных эфиров могут быть эстерифицированные смолы, как описано в патентах США №4,540,635 (Рондж и др.) и №5,201,944 (Наката и др.), все содержание каждого из которых включено в настоящий документ путем ссылки.
Неусиленная или усиленная смола или смоляные сложные эфиры могут быть по желанию расширены известными наполнителями, такими как воски (в частности, парафиновым воском и микрокристаллическим воском), углеводородные смолы, включая полученные из нефтяных углеводородов и терпенов и др. Этого можно достигнуть смешиванием расплава или смешиванием раствора со смолой или усиленной смолой от 10 до 100 мас.% наполнителя от массы смолы или усиленной смолы.
Можно использовать смеси усиленной смолы и неусиленной смолы, смеси усиленной смолы, неусиленной смолы смоляных сложных эфиров и наполнителя. Смеси усиленной и неусиленной смолы могут включать, например, от 25% до 95% усиленной смолы и от 75% до 5% неусиленной смолы. Смеси усиленной смолы, неусиленной смолы и наполнителя могут включать, например, от 5% до 45% усиленной смолы, от 0 до 50% неусиленной смолы и от 5% до 90% наполнителя.
Также в качестве проклеивающих веществ можно использовать гидрофобные органические изоцианаты, например, алкилированные изоцианаты.
Другие традиционные проклеивающие вещества для бумаги включают алкилкарбамилхлориды, алкилированные меламины, такие как стеарилированные меламины, и стирол-акрилаты.
Возможны смеси проклеивающих веществ.
Можно использовать наружное проклеивающее вещество или и внутреннее, и поверхностное проклеивающие вещества. Если используются оба, они могут присутствовать в любом массовом отношении и могут быть одинаковыми и/или разными. В одном варианте осуществления массовое отношение поверхностного проклеиваю