Легкие гипсовые панели с пониженной плотностью и установленной степенью огнестойкости

Иллюстрации

Показать все

Группа изобретений относится к гипсовым панелям с пониженной массой и плотностью, с улучшенными теплоизоляционными свойствами. Гипсовый средний слой для панели, сформированный из смеси, содержащей: строительный гипс в количестве от примерно 1162 фунтов/тыс. кв. футов (примерно 5,7 кг/м3) до примерно 1565 фунтов/тыс. кв. футов (примерно 7,6 кг/м3); частицы вермикулита с высоким коэффициентом расширения в количестве до примерно 10% по массе строительного гипса, объемное расширение которых составляет примерно 300% или более относительно их начального объема после нагревания в течение примерно одного часа при температуре примерно 1560°F (примерно 850°C); крахмал в количестве до примерно 3% по массе строительного гипса; минеральные волокна, углеродные волокна и/или стекловолокна, при этом гипсовый средний слой, будучи расположенным между облицовочными листами, характеризуется плотностью, составляющей примерно 40 фунтов на кубический фут (примерно 640 кг/м3) или менее, показателем теплоизоляции, составляющим примерно 20 минут или более. Технический результат – получение гипсовых панелей с пониженной массой и плотностью, с улучшенными теплоизоляционными свойствами, устойчивостью к термоусадке и огнестойкостью. 2 н. и 13 з.п. ф-лы, 41 ил., 22 табл., 11 пр.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[001] Настоящая заявка на патент испрашивает приоритет на основании предварительной заявки на патент США №61/446941, поданной 25 февраля 2011 года, и озаглавленной "Lightweight, Reduced Density Fire Rated Gypsum Panels", которая в полном объеме включена в настоящее описание посредством этой ссылки.

УРОВЕНЬ ТЕХНИКИ

[002] Настоящее изобретение в целом относится к гипсовым панелям с пониженной массой и плотностью с улучшенными теплоизоляционными свойствами, устойчивостью к термоусадке и огнестойкостью.

[003] Гипсовые панели, обычно применяемые в зданиях и других сооружениях (такие как гипсокартонные стеновые или потолочные плиты), как правило, содержат гипсовый средний слой, покрытый облицовочными листами из бумаги, стекловолокна или других подходящих материалов. Гипсовые панели обычно получают путем смешивания обожженного гипса, или "строительного гипса", с водой и другими ингредиентами с получением суспензии, используемой для получения среднего слоя панелей. Как, в общем, известно в данной области техники, строительный гипс содержит преимущественно одну или более форм обожженного гипса, т.е. гипса, подвергнутого обезвоживанию (обычно путем нагревания), с получением безводного гипса или полуводного гипса (CaSO4⋅ Н2О). Обожженный гипс может содержать бета-полугидрат сульфата кальция, альфа-полугидрат сульфата кальция, водорастворимый ангидрит сульфата кальция или смеси любых или всех из перечисленных соединений, полученных из природных или синтетических источников. При введении в суспензия, в обожженном гипсе начинает протекать процесс гидратации, который завершается в ходе формирования гипсовых панелей. Такой процесс гидратации, при надлежащем завершении, позволяет получить полностью непрерывную кристаллическую матрицу из отвержденного двуводного гипса в различных кристаллических формах (т.е. формах CaSO4⋅2H2O).

[004] В процессе получения панелей, облицовочные листы обычно используют в виде непрерывных полотен. Гипсовую суспензию наносят на первый из облицовочных листов в виде потока или ленты. Суспензию распределяют по всему первому облицовочному листу с заранее установленной приблизительной толщиной и получают средний слой панели. Второй облицовочный лист помещают поверх суспензии, при этом гипсовый средний слой образует прослойку между облицовочными листами с получением непрерывной панели.

[005] Как правило, непрерывную панель транспортируют по конвейеру, что позволяет продолжить процесс гидратации среднего слоя. После гидратации и затвердевания среднего слоя в достаточной мере, его разрезают на один или более частей требуемого размера с получением отдельных гипсовых панелей. Затем такие панели переносят в обжиговую печь, и они проходят через нее при температурах, достаточных для высушивания панелей до требуемого уровня свободной влаги (обычно сравнительно низкого содержания свободной влаги).

[006] В зависимости от используемого процесса и предполагаемого применения панелей и других соображений такого рода, на первый или второй облицовочные листы можно нанести дополнительные слои, полоски или ленты суспензии, содержащие гипс и другие добавки, для придания готовым панелям специфических свойств, такие как упрочненные края или упрочненная лицевая сторона панели. Подобным образом, в ходе процесса к строительному раствору для получения гипсового среднего слоя и/или другим полоскам или лентам, полученным из суспензии, в одном или более местах можно добавить пену для обеспечения распределения воздушных пустот в среднем гипсовом слое или на отдельных участках среднего слоя готовых панелей.

[007] Готовые панели можно в дальнейшем разрезать и обрабатывать для разнообразного практического применения в зависимости от требуемого размера панели, состава защитного слоя, состава среднего слоя и т.д. Толщина гипсовых панелей обычно меняется от примерно дюйма до примерно одного дюйма в зависимости от предполагаемого использования и практического применения. Панели можно наносить на различные строительные детали, используемые для получения стен, потолков и других подобных систем, с помощью одного или более крепежных элементов, таких как шурупы, гвозди и/или адгезивы.

[008] В случае, если готовые гипсовые панели будут подвергнуты сравнительно высоким температурам, таким как температуры, создаваемые высокотемпературным пламенем или газами, части гипсового среднего слоя могут поглотить достаточное количества тепла, чтобы начать выделять воду из кристаллов двуводного гипса, содержащихся в среднем слое. Поглощение тепла и выделение воды из двуводного гипса может быть достаточным для замедления на некоторое время переноса тепла через панели или внутрь панелей. Гипсовая панель может действовать как барьер для предотвращения прохождения высокотемпературного пламени непосредственно через стеновую систему. Тепла, поглощаемого средним гипсовым слоем, может оказаться достаточным, чтобы по существу повторно обжечь некоторые участки среднего слоя, в зависимости от температур источника тепла и времени воздействия. При определенных уровнях температуры, тепло, воздействующее на панель, также может вызвать фазовые изменения в ангидрите, содержащемся в среднем гипсовом слое, и перегруппировку кристаллических структур. В некоторых случаях, присутствие солей и примесей может понизить температуру плавления кристаллических структур гипсового среднего слоя.

[009] Гипсовые панели могут испытывать усадку размеров панелей в одном или более направлениях в результате действия некоторых или всех из указанных эффектов высокотемпературного нагревания, при этом такая усадка может вызвать разрушение конструктивной целостности панелей. Если панели прикреплены к стене, потолку или другим несущим конструкциям, усадка панели может привести к отделению панелей от других панелей, прикрепленных к тем же конструкциям, и от их опор, и, в некоторых случаях, вызвать обрушение панелей или опор (или и тех и других). В результате высокотемпературное пламя или газы могут пройти непосредственно в стеновую или потолочную структуру или через нее.

[010] Были изготовлены гипсовые панели, которые оказывают сопротивление действию сравнительно высоких температур в течение определенного периода времени, что может по существу замедлить прохождение высоких уровней тепла через панели или между ними, а также замедлить прохождение высоких уровней тепла в (или через) системы, в которых используют указанные панели. Гипсовые панели, в дальнейшем именуемые огнестойкими или "с установленной степенью огнестойкости", обычно получают для усиления способности панелей замедлять прохождение тепла через конструкции стен или потолка и играют важную роль в управлении скоростью распространения огня в зданиях. В результате органы власти, устанавливающие строительные нормы и правила, и другие заинтересованные общественные и частные организации обычно устанавливают строгие стандарты в отношении показателей огнестойкости гипсовых панелей с установленной степенью огнестойкости.

[011] Способность гипсовых панелей сопротивляться огню и связанной экстремальной жаре можно оценить путем проведения соответствующих испытаний. Примеры таких испытаний регулярно используют в строительной промышленности, например, методики, опубликованные Лабораторией по технике безопасности США ("UL"), такие как методики и протоколы испытаний UL U305, U419 и U423, а также методики, описанные в технических требованиях Е119, опубликованных Американским обществом специалистов по испытаниям и материалам (ASTM). Указанные испытания могут включать строительство опытных конструкций для испытаний с использованием гипсовых панелей, обычно однослойное наложение панелей на каждую лицевую сторону каркасной стены, изготовленной из деревянных или стальных стоек. В зависимости от испытания, конструкцию можно подвергнуть или не подвергать нагружающим силам. Лицевую сторону одной из сторон конструкции, такой как конструкция, построенная согласно стандартам UL U305, U419 и U423, например, подвергают воздействию возрастающих температур в течение определенного периода времени в соответствии с кривой нагрева, такой как кривые, описанные в методиках, приведенных в стандарте ASTM Е119.

[012] Во время испытаний контролируют температуру вблизи нагреваемой стороны и температуру на поверхности ненагреваемой стороны конструкции для оценки температур, которые испытывают открытые гипсовые панели, и тепла, передаваемого через конструкцию неподвергаемым воздействию панелям. Испытания прекращают после одного или более конструктивных разрушений панелей и/или при превышении температуры на неподвергаемой воздействию стороне конструкции заранее установленного порога. Как правило, такие пороговые температуры основаны на максимальной температуре, измеренной любым из указанных датчиков, и/или среднем значении температурных датчиков на ненагреваемой стороне конструкции.

[013] Методики испытаний, такие как методики, приведенные в стандартах UL U305, U419 и U423 и ASTM E119, касаются стойкости конструкции в отношении переноса тепла через указанную конструкцию в целом. Указанные испытания также позволяют определить, в одном аспекте, показатель стойкости гипсовых панелей, используемых в конструкции, в отношении усадки в направлении по осям X-Y (ширины и длины) при воздействии на конструкцию высокотемпературного нагревания. Такие испытания также позволяют определить показатель стойкости панелей к потерям конструктивной целостности, которые приводят к раскрытию зазоров или промежутков между панелями в стеновой конструкции, в результате чего внутренняя полость конструкции достигает высоких температур. В другом аспекте, указанные испытания позволяют определить показатель способности гипсовых панелей сопротивляться переносу тепла через панели и конструкцию. Полагают, что такие испытания отражают способность указанной системы предоставить жителям здания и системам управления пожарными/противопожарным системам окно возможности для принятия мер при пожаре или избежания условий возникновения пожара.

[014] В прошлом использовали различные стратегии для улучшения огнестойкости гипсовых панелей с установленной степенью огнестойкости. Например, изготавливали более толстые, более плотные средние слои панелей, в которых использовали большие количества гипса по сравнению с менее плотными гипсовыми панелями и которые, соответственно, содержали повышенное количество воды, химически связанной внутри гипса (дигидрата сульфата кальция), что позволяет действовать как теплоотвод, уменьшить усадку панелей и увеличить структурную стабильность и прочность панелей. Альтернативно, в гипсовый средний слой вводили различные ингредиенты, в том числе стекловолокно и другие волокна, для усиления огнестойкости гипсовой панели за счет увеличения предела прочности на разрыв среднего слоя и распределения усадочных напряжений по всей матрице указанного слоя. Подобным образом, в прошлом, для обеспечения повышенной огнестойкости (и стойкости к высокотемпературной усадке) гипсового среднего слоя панели использовали определенные количества некоторых глин, таких как глины с размером частиц менее примерно одного микрона, и добавки коллоидного оксида кремния или оксида алюминия, такие как добавки с размером частиц менее примерно одного микрона. Однако было признано, что снижение массы и/или плотности среднего слоя гипсовых панелей за счет уменьшения количества гипса в среднем слое будет неблагоприятным образом воздействовать на конструктивную целостность панелей и их стойкость при пожаре и в условиях высоких температур.

[015] Еще один подход заключался в добавлении нерасширенного вермикулита (также называемого вермикулитовой рудой) и минерального волокна или стекловолокна в средний слой гипсовых панелей. В таких подходах, как предполагают, вермикулит будет расширяться в условиях нагревания, что позволит скомпенсировать усадку гипсовых компонентов среднего слоя. Как полагали, минеральное волокно/стекловолокно будет удерживать части гипсовой матрицы вместе.

[016] Такой подход описан в патентах США №№2526066 и 2744022, в которых описано применение раздробленного невспученного вермикулата и минерального волокна и стекловолокна в пропорциях, достаточных для подавления усадки гипсовых панелей в условиях высоких температур. Однако в обеих ссылках опираются на высокую плотность среднего слоя, которая обеспечивается достаточным количеством гипса, который действует как теплоотвод. В указанных патентах описано получение гипсовых панелей с толщиной дюйма и массой от 2 до 2,3 фунтов на квадратный фут (от 2000 до 2300 фунтов на тысячу квадратных футов ("фунтов/тыс. кв. футов")) при плотности плит примерно 50 фунтов на кубический фут ("фунтов/фут3") или больше.

[017] В патенте '066 сообщалось, что толщина деталей, нарезанных из таких панелей (содержащих 2 процента минерального волокна и 7,5% вермикулита размером минус 28 меш) увеличивалась вплоть до 19,1% при нагревании при 1400°F (760°С) в течение 30 минут, но не предоставлялось какой-либо информации об усадке указанных образцов в направлении по осям X-Y. В патенте '066 также содержалось предупреждение, что в зависимости от состава панели и содержания вермикулита расширение вермикулита может вызвать разрушение панелей вследствие их панелей и/или образования в них трещин и отверстий.

[018] Патент 022 направлен на увеличение содержания гипса (и, таким образом, плотности и массы) панелей, описанных в патенте '066, путем снижения содержания минерального волокна/стекловолокна в указанных панелях для придания гипсу большей теплопоглощающей способности. В ссылках, таких как патент '022, было также признано, что в условиях высоких температур способность вермикулита расширяться, если ее не ограничить, приведет к отслаиванию (то есть, фрагментированию, расслоению или шелушению) среднего слоя и разрушению стеновой конструкции за сравнительно короткое время.

[019] В другом примере, в патенте США №3454456, описано введение нерасширенного вермикулита в средний слой гипсокартонных стеновых панелей с установленной степенью огнестойкости для придания панелям стойкости к усадке. Патент 456 также основан на относительно высоком содержании гипса и высокой плотности, которые обеспечивают требуемую теплопоглощающую способность. В патенте '456 приведены массы плит готовых дюймовых гипсовых панелей с минимальной массой примерно 1925 фунтов/тыс. кв. футов и плотностью плиты примерно 46 фунтов/фут3. Такая плотность, сопоставима с плотностью более толстых и более тяжелых гипсовых панелей с толщиной 5/8 дюйма (примерно 2400 фунтов/тыс. кв. футов), предлагаемых в настоящее время промышленностью для практических применений с установленной степенью огнестойкости.

[020] В патенте '456 также указано, что применение вермикулита в среднем гипсовом слое панели для повышения предела огнестойкости панели имеет значительные ограничения. Например, в патенте 456 отмечается, что расширение вермикулита внутри среднего слоя может вызвать разрушение указанного слоя вследствие выкрашивания и других разрушающих эффектов. В патенте 456 также отмечается, что частицы невспученного вермикулита могут так ослабить структуру среднего слоя, что указанный слой станет слабым, мягким и хрупким. Патент 456 направлен на решение таких значительных характерных недостатков, связанных с применением в гипсовых панелях вермикулита, путем использования «уникального» невспученного вермикулита с относительно узким распределением по размерам частиц (более 90% нерасширенных частиц меньше, чем размер сита №50 (с отверстиями приблизительно 0,0117 дюйма (0,297 мм)), при этом менее 10% частиц имеют размер несколько больший, чем размер сита №50). Такой подход предположительно позволил подавить неблагоприятное воздействие на панель расширения вермикулита, как описано в столбце 2, строки 52-72, патента '456.

[021] Кроме того, в патенте 456 показано, что невспученный вермикулит, характеризующийся описанным выше распределением частиц по размеру, соответствует продукту, известному на рынке в качестве нерасширенного вермикулита "марки №5". Невспученный вермикулит марки №5 использовали по меньшей мере с начала 1970-х в коммерческих огнестойких панелях/панелях с установленной степенью огнестойкости, средние гипсовые слои которых имели обычные плотности (например, от примерно 45 фунтов/фут3 более, чем примерно 55 фунтов/фут3). По причинам, осаждавшимся выше, применение невспученного вермикулита, содержащего значительное количество частиц с размерами, большими, чем типичные размеры невспученного вермикулита марки №5, считалось потенциально деструктивным в случае огнестойких панелей вследствие упомянутого выше отслаивания и других эффектов, возникающих при расширении вермикулита в среднем гипсовом слое в условиях высоких температур.

[022] В еще одном подходе, патент США №3616173 относится к огнестойким гипсовым панелям со гипсовым средним слоем, характеризующимся согласно патенту '173 более легкой массой или более низкой плотностью. В патенте '173 проводили отличие предложенных в нем панелей от 1/2 дюймовых панелей, применяемых на известном уровне техники, масса которых составляла примерно 2000 фунтов/тыс. кв. футов или более, а плотности средних слоев составляли более, чем примерно 48 фунтов/фут3. Таким образом, в патенте '173 описаны панели толщиной дюйма с плотностью примерно 35 фунтов/фут3 или выше и, предпочтительно, примерно от 40 фунтов/фут3 до примерно 50 фунтов/фут3. В патенте '173 указанные плотности средних слоев достигают путем введения в гипсовый средний слой значительных количеств неорганического материала с маленьким размером частиц, представляющего собой глину, коллоидный кремнезем или коллоидный глинозем, а также стекловолокно в количествах, необходимых для предотвращения усадки гипсовых панелей в условиях высоких температур.

[023] В патенте '173 описана возможность дополнительного добавления в композицию гипсового среднего слоя невспученного вермикулита вместе с необходимыми количествами неорганических материалов с маленьким размером частиц. Однако даже с указанными добавками, приведенные результаты испытаний каждой из панелей, предложенных в патенте '173', показали, что они подвергались значительной усадке. Такая усадка происходила, несмотря на тот факт, что плотности средних слоев каждой из тестируемых и описанных панелей составляли примерно 43 фунтов/фут3 или больше.

[024] В случае гипсовых панелей толщиной 1/2 дюйма, "стойкость к усадке" панелей, описанных в патенте '173, составляла от примерно 60% до примерно 85%. "Стойкость к усадке" согласно патенту '173 представляет собой меру доли или процента от площади в направлении по осям X-Y (ширина-длина) участка среднего слоя, который остается после нагревания среднего слоя до определенной температуры на протяжении определенного периода времени, как описано в патенте '173. См., например, столбец 12, стр. 41-49.

[025] Также были сделаны другие попытки повысить прочность и конструктивную целостность гипсовых панелей и уменьшить массу панели с помощью различных способов. Примеры таких легких гипсовых плит включают патенты США №№7731794 и 7736720 и публикации заявок на патент США №№2007/0048490 А1, 2008/0090068 А1 и 2010/0139528 А1.

[026] В заключении, следует отметить, что в отсутствие водостойких добавок, при погружении в воду, отвержденный гипс может поглощать воду в количестве до 50% относительно его массы. И, когда гипсовые панели - в том числе огнестойкие гипсовые панели - поглощают воду, они могут набухать, деформироваться и терять прочность, что может привести к ухудшению их огнестойких свойств. Огнестойкие панели с низкой массой содержат гораздо больше воздушных пустот и/или пустот, заполненных водой, чем общепринятые, более тяжелые огнестойкие панели. Можно было бы предположить, что такие пустоты увеличивают скорость и степень водопоглощения, и ожидать, что указанные огнестойкие панели с низкой массой будут больше поглощать воду, чем общепринятые более тяжелые огнестойкие панели.

[027] В прошлом было сделано много попыток улучшить водостойкость гипсовых панелей в целом. В суспензию, применяемую для получения гипсовых панелей, добавляли различные углеводороды, в том числе, воск, смолы и асфальт, для придания панелям водостойкости. Кроме того, в гипсовых суспензиях использовали силоксаны для придания указанным растворам водостойкости за счет образования кремнийорганических смол в situ. Однако не следует ожидать, что силоксаны надежно защищают панели с низкой массой. Соответственно, в данной области техники существует потребность в способе производства огнестойких гипсовых панелей с низкой массой и плотностью и с улучшенной водостойкостью при разумной стоимости путем усиления водостойкости, обычно придаваемой силоксанами.

0. КРАТКОЕ ОПИСАНИЕ

[028] Согласно некоторым вариантам реализации, в настоящем изобретении предложена гипсовая панель с пониженной массой и пониженной плотностью - и способы получения таких панелей - имеющая огнестойкие свойства, сравнимые со свойствами более тяжелых, более плотных гипсовых панелей, обычно применяемых в строительных изделиях, которым необходим предел огнестойкости. Согласно некоторым вариантам реализации изобретения, панели, полученные в соответствии с принципами настоящего изобретения, содержат отвержденный гипсовый средний слой с плотностью менее примерно 40 фунтов на кубический фут ("фунтов/фут3"), расположенный между двумя облицовочными листами. В вариантах реализации таких панелей, толщина которых составляет 5/8-дюйма, масса приблизительно составляет менее примерно 2100 фунтов/тыс. кв. футов.

[029] Согласно некоторым вариантам реализации изобретения, в гипсовый средний слой можно ввести твердые частицы с высоким коэффициентом расширения, такие как, например, вермикулит с высоким коэффициентом расширения, в количествах, эффективно обеспечивающих огнестойкость с точки зрения стойкости к усадке, соизмеримую с огнестойкостью промышленных гипсовых панелей типа X и других гораздо более тяжелых и более плотных гипсовых панелей. При нагревании частицы с высоким коэффициентом расширения могут иметь первую нерасширенную фазу и вторую расширенную фазу. Такие панели позволяют дополнительно обеспечить огнестойкость в отношении высокотемпературной усадки в направлении по осям X-Y (ширина-длина) и теплоизоляционные свойства, а также высокотемпературное увеличение толщины в направлении по оси Z (толщина), соизмеримые или значительно лучшие, чем такие же свойства промышленных гипсовых панелей типа X и других гораздо более тяжелых и более плотных промышленных панелей, в том числе промышленных гипсовых панелей, содержащих вермикулит марки №5. Согласно еще другим вариантам реализации, панели, полученные в соответствии с принципами настоящего изобретения, позволяют обеспечить пожарные рабочие характеристики в конструкциях, таких как конструкции, подвергаемые стандартам отраслевым испытаниям на огнестойкость, соизмеримые с характеристиками по меньшей мере промышленных гипсовых панелей типа X и других более тяжелых и более плотных промышленных панелей. Указанные стандартные отраслевые испытания на огнестойкость включают, без ограничения, испытания, изложенные в методиках и технических требованиях испытаний на огнестойкость в натурных условиях, описанных в стандартах UL U305, U419 и U423, и другие испытания, эквивалентных перечисленным.

[030] Согласно другим вариантам реализации изобретения, гипсовые панели с пониженной массой и плотностью, полученные в соответствии с принципами настоящего изобретения и способами их получения, позволяют обеспечить высокотемпературную усадку (при температурах примерно 1560°F (850°С)), составляющую менее примерно 10% в направлении по осям X-Y, и расширение в направлении по оси Z, составляющее больше, чем примерно 20%. Согласно некоторым вариантам реализации изобретения, отношение высокотемпературного увеличения толщины в направлении по оси Z к высокотемпературной усадке больше, чем примерно 0,2, больше, чем примерно 2 согласно другим вариантам реализации изобретения, согласно некоторым вариантам реализации изобретения больше, чем примерно 3, согласно другим вариантам реализации изобретения больше, чем примерно 7, согласно еще другим вариантам реализации изобретения, больше, чем примерно 17, и согласно еще другим вариантам реализации изобретения, от примерно 2 до примерно 17. Согласно другим вариантам реализации изобретения, гипсовые панели с пониженной массой и плотностью, полученные в соответствии с принципами настоящего изобретения и способами их получения, позволяют обеспечить стойкость к усадке, большую, чем примерно 85% в направлении по осям X-Y при температурах свыше примерно 1800°F (980°С).

[031] Согласно другим вариантам реализации изобретения, огнестойкая гипсовая панель, полученная в соответствии с принципами настоящего изобретения и способами ее получения, может содержать гипсовый средний слой, расположенный между двух облицовочных листов. Гипсовый средний слой может содержать кристаллическую матрицу отвержденного гипса и частицы с высоким коэффициентом расширения, способные расширяться до примерно 300% или более относительно их начального объема после нагревания в течение примерно одного часа при температуре примерно 1560°F (примерно 850°С). Плотность (D) гипсового среднего слоя может составлять примерно 40 фунтов на кубический фут или менее, а твердость среднего слоя может составлять по меньшей мере примерно 11 фунтов (5 кг). Гипсовый средний слой позволяет эффективно обеспечить показатель теплоизоляции (TI), составляющий примерно 20 минут или больше.

[032] Согласно другим вариантам реализации изобретения, при проведении испытаний в соответствии с методиками испытаний на огнестойкость, описанными в стандартах UL U305, U419 и U423, конструкции, изготовленные с применением гипсовых панелей с пониженной массой и плотностью и толщиной 5/8 дюйма, полученных в соответствии с принципами настоящего изобретения, позволяют обеспечить огнестойкость, соизмеримую (или лучше) с огнестойкостью конструкций, при изготовлении которых применяют гораздо более тяжелые и более плотные гипсовые панели. Огнестойкость панелей, полученных в соответствии с принципами настоящего изобретения, можно оценить с помощью максимальной измеренной датчиком единичной температуры или средней измеренной датчиками температуры на неподвергаемой воздействию поверхности таких конструкций, изготовленными в соответствии с методиками испытаний на огнестойкость, приведенными в стандартах UL U305, U419 и U423 (и эквивалентными методиками испытаний на огнестойкость). Согласно некоторым вариантам реализации изобретения, конструкции, изготовленные с применением панелей, полученных в соответствии с принципами настоящего изобретения и испытанных согласно стандарту UL U419, обеспечивают максимальную единичную измеренную датчиком температуру, составляющую менее примерно 500°F (260°С), и/или среднюю измеренную датчиками температуру, составляющую менее примерно 380°F (195°С), по истечении примерно 60 минут. Согласно некоторым вариантам реализации изобретения, конструкции, изготовленные с применением панелей, полученных в соответствии с принципами настоящего изобретения и испытанных согласно стандарту UL U419, обеспечивают максимальную единичную измеренную датчиком температуру, составляющую менее примерно 260°F, и/или среднюю измеренную датчиками температуру, составляющую менее примерно 250°F по истечении примерно 50 минут. Согласно другим вариантам реализации изобретения, конструкции, в которых использовали панели, полученные в соответствии с принципами настоящего изобретения, в испытаниях, описанных в стандарте UL U419, позволяют обеспечить через примерно 55 минут максимальную единичную измеренную датчиком температуру, составляющую менее примерно 410°F, и/или среднюю измеренную датчиками температуру, составляющую менее примерно 320°F. Согласно еще другим вариантам реализации изобретения, конструкции, в которых использовали панели, полученные в соответствии с принципами настоящего изобретения, по истечении примерно 55 минут позволяют в указанных испытаниях обеспечить максимальную единичную измеренную датчиком температуру, составляющую менее примерно 300°F, и/или среднюю измеренную датчиками температуру, составляющую менее примерно 280°F.

[033] Согласно другим вариантам реализации изобретения, конструкция из гипсовых панелей, полученных в соответствии с принципами настоящего изобретения, при испытании согласно методикам, описанным в стандарте UL U419, по истечении примерно 60 минут может проявлять огнестойкость, которую можно оценить с помощью максимальной единичной измеренной датчиком температуры, составляющей менее примерно 500°F, и/или средней измеренной датчиками температуры, составляющей менее примерно 380°F. Согласно еще другим вариантам реализации изобретения, конструкции, в которых использовали панели, полученные в соответствии с принципами настоящего изобретения, в таких испытаниях по истечении примерно 60 минут могут проявлять максимальную единичную измеренную датчиком температуру, составляющую менее примерно 415°F, и/или среднюю измеренную датчиками температуру, составляющую менее примерно 320°F. Согласно некоторым из таких вариантов реализации изобретения, плотность среднего слоя гипсовых панелей, полученных в соответствии с принципами настоящего изобретения, может составлять менее примерно 40 фунтов/фут3, что соответствует требованиям в отношении гипсовой панели с установленным 60 минутным пределом огнестойкости согласно одной или более из методик испытаний на огнестойкость, описанных в стандартах UL U305, U419 и U423, и согласно другим методикам, эквивалентным любой из перечисленных выше методик испытаний на огнестойкость.

[034] Согласно еще другим вариантам реализации изобретения, состав панелей с пониженной массой и плотностью, полученных в соответствии с принципами настоящего изобретения и способами их получения, позволяет получить гипсовые панели с описанными выше свойствами огнестойкости, плотностью менее примерно 40 фунтов/фут3 и сопротивлением протаскиванию гвоздей, которое может соответствовать стандартам ASTM С 1396/С 1396/М-09. Более конкретно, сопротивление протаскиванию гвоздей у таких панелей с номинальной толщиной 5/8-дюйма может составлять по меньшей мере 87 фунтов. Кроме того, согласно другим вариантам реализации изобретения, указанные панели обеспечивают характеристики звукопередачи, по существу такие же, что и характеристики гораздо более тяжелых и более плотных панелей. Согласно некоторым вариантам реализации изобретения, коэффициенты звукопередачи панелей с толщиной 5/8 дюйма, полученных в соответствии с принципами настоящего изобретения, могут составлять по меньшей мере примерно 35 при установке на конструкцию из стальных стоек в соответствии с испытаниями и методиками, изложенными в стандарте ASTM Е90-99.

[035] Согласно еще другим вариантам реализации изобретения, композицию среднего слоя из отвержденного гипса для получения панели с номинальной толщиной 5/8-дюйма и с установленной степенью огнестойкости получают с применением гипсосодержащей суспензии, состоящей по меньшей мере из воды, строительного гипса и вермикулита с высоким коэффициентом расширения. Согласно одному из таких вариантов реализации изобретения, плотность среднего слоя из отвержденного гипса составляет от примерно 30 фунтов/фут3 до примерно 40 фунтов/фут3, при этом средний слой содержит строительный гипс в количестве от примерно 1162 фунтов/тыс. кв. футов до примерно 1565 фунтов/тыс. кв. футов, вермикулит с высоким коэффициентом расширения в количестве от примерно 5% до примерно 10% по массе строительного гипса и минеральное волокно или стекловолокно в количестве от примерно 0,3% до примерно 0,9% по массе строительного гипса. (Если не указано иное, процентные содержания компонента гипсового среднего слоя устанавливают по массе в пересчете на массу строительного гипса, применяемого для получения суспензии для получения среднего слоя). Согласно другому варианту реализации изобретения, плотность среднего слоя из отвержденного гипса составляет от примерно 30 фунтов/фут3 до примерно 40 фунтов/фут3, при этом средний слой содержит строительный гипс в количестве от примерно 1162 фунтов/тыс. кв. футов до примерно 1565 фунтов/тыс. кв. футов, вермикулит с высоким коэффициентом расширения в количестве от примерно 5% до примерно 10% по массе строительного гипса, крахмал в количестве от примерно 0,3% до примерно 3% по массе строительного гипса, минеральное волокно или стекловолокно в количестве от примерно 0,3% до примерно 0,9% по массе строительного гипса и фосфат в количестве от примерно 0,03% до примерно 0,4% по массе строительного гипса.

[036] Согласно другим вариантам реализации изобретения, плотность гипсового среднего слоя панелей с толщиной 5/8 дюйма, полученных в соответствии с принципами настоящего изобретения, может составлять от примерно 32 до примерно 38 фунтов на кубический фут и масса гипсового среднего слоя может составлять от примерно 1500 до примерно 1700 фунтов/тыс. кв. футов. Согласно некоторым вариантам реализации изобретения, гипсовый средний слой может содержать от примерно 5,5% до примерно 8% вермикулита с высоким коэффициентом расширения, от примерно 0,4% до примерно 0,7% минерального волокна или стекловолокна и от примерно 0,07% до примерно 0,25% фосфата. Согласно другим вариантам реализации изобретения, гипсовый средний слой может содержать от примерно 5,5% до примерно 8% вермикулата с высоким коэффициентом расширения, от примерно 0,5% до примерно 2,5% крахмала, от примерно 0,4% до примерно 0,7% минерального волокна или стекловолокна и от примерно 0,07% до примерно 0,25% фосфата. Согласно еще другим вариантам реализации изобретения, содержание каждого из компонентов гипсового среднего слоя, например, содержание крахмала, волокна и фосфата, можно дополнительно регулировать для обеспечения требуемых свойств панели и с учетом состава и массы облицовочных листов, других добавок в средний слой панели и качества гипсовой штукатурки.

[037] Как будет понятно специалисту в данной области техники, в случае панелей с другой толщиной содержание каждого из составных частей гипсового среднего слоя, описанных в настоящей заявке, также может варьироваться соответствующим образом. Например, в случае 1/2 дюймовых панелей масса гипса в фунтов/тыс. кв. футов может составлять примерно 80% от заявленных значений, а в случае 3/4 дюймовых панелей масса гипса в фунтов/тыс. кв. футов может составлять примерно 120% от заявленных значений. Согласно некоторым вариантам реализации изобретения, указанные пропорции могут меняться в зависимости от технических требований к физическим свойствам панелей различной толщины. Другие аспекты и различные панели и составы среднего слоя в соответствии с принципами настоящего изобретения обсуждены в настоящей заявке ниже.

[038] В строительных растворах и композициях гипсового среднего слоя описанных в настоящей заявке, можно также использовать другие общепринятые добавки в привычных количествах для придания среднему слою требуемых свойств и облегчения производственных процессов. Примерами таких добавок являются: ускорители схватывания, замедлители схватывания, ингибиторы обезвоживания, связующие, адгезивы, диспергаторы, выравнивающие или невыравнивающие агенты, загустители, бактерициды, фунгициды, регуляторы рН, красители, средства для придания водоотталкивающих свойств, наполнители, водные пены и их смеси.

[039] В случае панелей, полученных в соответствии с принципами настоящего изобретения, и способов их получения, в суспензию среднего слоя можно добавить водную пену в количестве, эффективном для обеспечения требуемых плотностей гипсового среднего слоя, с применением способов, дополнительно рас