Тепловыделяющая сборка

Иллюстрации

Показать все

Изобретение относится к тепловыделяющим сборкам и способам изготовления и применения этих сборок. Тепловыделяющая сборка содержит топливный канал, первую полую конструкцию, имеющую первую геометрию поперечного сечения, по меньшей мере один размер которой изменяется под напряжением, и вторую полую конструкцию, имеющую вторую геометрию поперечного сечения. Вторая полая конструкция расположена снаружи первой полой конструкции, а вторая геометрия поперечного сечения отличается от первой геометрии поперечного сечения. Вторая полая конструкция выполнена с возможностью распределения через себя, по меньшей мере, части напряжения первой полой конструкции без, по существу изменения своего размера и геометрии. Первая полая конструкция и вторая полая конструкция содержат проходки, обеспечивающие возможность протекания текучей среды в пространство, образованное между первой полой конструкцией и второй полой конструкцией. Технический результат – обеспечение различными конструктивными элементами топливного канала совместного распределения механических напряжений, возникающих от давления газа или теплоносителя внутри топливного канала, не допуская при этом существенных конструктивных изменений самого внешнего элемента. 6 н. и 41 з.п. ф-лы, 10 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Приоритет настоящей заявки заявляется по дате подачи предварительной заявки на патент США №61/747064, поданной 28 декабря 2012, и по дате подачи заявки на промышленный образец США №13/794604, поданной 11 марта 2013, которые включены в настоящий документ во всей полноте посредством ссылки.

ПРЕДПОСЫЛКИ

[0002] Настоящее изобретение относится к тепловыделяющим сборкам и способам, связанным с этой сборкой.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0003] Раскрытые варианты выполнения описывают тепловыделяющие каналы, тепловыделяющие сборки, способы их изготовления и использования.

[0004] Вышеуказанное является сущностью изобретения и, таким образом, может содержать упрощения, обобщения, включения и/или исключения из подробного описания; следовательно, специалистам в настоящей области техники будет понятно, что сущность изобретения является только иллюстративной и не предназначена вносить какие-либо ограничения. В дополнение к любым описанным в настоящем документе иллюстративным аспектам, вариантам выполнения и признакам, дополнительные аспекты, варианты выполнения и признаки станут очевидными при ссылке на чертежи и нижеследующее подробное описание. Другие аспекты, признаки и преимущества устройств и/или способов и/или других описанных в настоящем документе объектов изобретения станут очевидны из изложенных далее изобретательских идей.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0005] Специалисту в данной области техники будет понятно, что чертежи, прежде всего, предназначены для иллюстративных целей и не предназначены для ограничения объема описанного в настоящем документе объекта изобретения. Чертежи не обязательно выполнены в масштабе; в некоторых случаях для облегчения понимания различных функций различные аспекты раскрытого в настоящем документе изобретения могут быть показаны на чертежах преувеличенными или увеличенными. На чертежах одинаковые номера позиций в целом относятся к подобным признакам (например, функционально подобные и/или конструктивно подобные элементы).

[0006] Фиг. 1а-1b схематически изображают виды в аксонометрии в частичном разрезе иллюстративной (а) тепловыделяющей сборки ядерного топлива и (b) тепловыделяющего элемента в одном иллюстративном варианте выполнения.

[0007] Фиг. 2а-2b изображают схемы, показывающие распределение давления и набухание тепловыделяющей сборки в ядерном реакторе в одном иллюстративном варианте выполнения.

[0008] Фиг. 3а-3b изображают схемы, показывающие, соответственно, шестигранный канал и двенадцатигранный канал, в тепловыделяющей сборке в одном иллюстративном варианте выполнения.

[0009] Фиг. 4 схематически изображает конструкцию канала тепловыделяющей сборки с несколькими стенками в одном иллюстративном варианте выполнения.

[0010] Фиг. 5 схематически изображает конструкцию, показывающую внутренние конструкционные элементы, используемые в качестве натяжных устройств во внутренней части канала в одном иллюстративном варианте выполнения.

[0011] Фиг. 6а-6d иллюстрируют несколько вариантов конструкции канала с несколькими стенками, с внутренней полой конструкцией и наружной полой конструкцией (и конструктивными элементами в некоторых случаях) в тепловыделяющей сборке в одном иллюстративном варианте выполнения.

[0012] Фиг. 7а-7d иллюстрируют различные варианты выполнения проникновения в первую и/или во вторую полые конструкции тепловыделяющей сборки в одном иллюстративном варианте выполнения.

[0013] Фиг. 8а и 8b-8d, соответственно, схематически изображают блок-схему способа изготовления топливного канала в тепловыделяющей сборке и иллюстративные детали способа в одном иллюстративном варианте выполнения.

[0014] Фиг. 9а и 9b-9е, соответственно, схематически изображают блок-схему способа изготовления топливного канала в тепловыделяющей сборке и иллюстративные детали способа в одном иллюстративном варианте выполнения.

[0015] Фиг. 10а и 10b, соответственно, схематически изображают блок-схему, описывающую процесс, связанный со способом использования описанных в настоящем документе тепловыделяющих сборок, и иллюстративные детали процесса в одном иллюстративном варианте выполнения.

ПОДРОБНОЕ ОПИСАНИЕ

Введение

[0016] В последующем подробном описании ссылки даются на прилагаемые чертежи, которые составляют часть настоящего описания. Использование подобных или одинаковых символов на разных чертежах обычно указывает на подобные или идентичные элементы, если из контекста явным образом не следует иное.

[0017] Иллюстративные варианты выполнения, описанные в подробном описании, показанные на чертежах и заявленные в формуле изобретения, не предназначены быть ограничивающими. Могут быть использованы другие варианты выполнения и могут быть сделаны другие изменения, не отступая от сущности или объема представленного в настоящем документе изобретения.

[0018] Специалисту в данной области техники должно быть очевидно, что описанные в настоящем документе элементы (например, операции), устройства, объекты и сопровождающее их обсуждение используются в качестве примеров ради концептуальной ясности, и что также могут быть предусмотрены различные модификации конфигурации. Следовательно, как он используется в настоящем документе, конкретные изложенные в настоящем документе примеры и сопровождающее описание предназначены быть представителем более общих классов. В целом, использование конкретного примера предназначено быть представителем в своем классе, а не включение конкретных компонентов (например, операций), устройств, и объектов не должны быть восприняты как ограничение.

[0019] При описании настоящего изобретения для ясности изложения используются формальные заголовки разделов. Тем не менее, следует понимать, что заголовки разделов предназначены для представления изложения, и что различные типы объектов изобретения могут обсуждаться во всем описании (например, устройство(а)/конструкция(и) могут быть описаны в разделе процесс(ы)/операция(и), и/или процесс(ы)/операция(и) могут быть описаны в разделе конструкция(и)/процесс(ы); и/или описания отдельных тем может занимать два или большее количество разделов). Следовательно, использование формальных заголовков разделов не предназначено быть ограничивающим.

Обзор

[0020] В качестве обзора, в одном варианте выполнения предусмотрена тепловыделяющая сборка, содержащая: топливный канал, содержащий: первую полую конструкцию, имеющую первую геометрию поперечного сечения, и вторую полую конструкцию, имеющую вторую геометрию поперечного сечения, причем вторая полая конструкция расположена снаружи первой полой конструкции, а вторая геометрия поперечного сечения отличается от первой геометрии поперечного сечения.

[0021] В другом варианте выполнения предусмотрена тепловыделяющая сборка, содержащая: топливный канал, содержащий: первую полую конструкцию, имеющую по меньшей мере одно измерение, которое выполнено с возможностью изменения под напряжением, и вторую полую конструкцию, расположенную снаружи первой полой конструкции, причем первая полая конструкция и вторая полая конструкция ограничивают между собой пространство; при этом вторая полая конструкция выполнена с возможностью распределения через себя по меньшей мере часть напряжения первой полой конструкции.

[0022] В другом варианте выполнения предусмотрена тепловыделяющая сборка, содержащая: топливо, множество тепловыделяющих элементов, и множество топливных каналов, имеющих расположенные в них указанное множество тепловыделяющих элементов, причем по меньшей мере один из указанного множества топливных каналов содержит: первую полую конструкцию, имеющую первую геометрию поперечного сечения, и вторую полую конструкцию, имеющую вторую геометрию поперечного сечения, причем вторая полая конструкция расположена снаружи первой полой конструкции, а вторая геометрия поперечного сечения отличается от первой геометрии поперечного сечения.

[0023] В другом варианте выполнения предусмотрен способ изготовления тепловыделяющей сборки, включающий: формирование первой полой конструкции, выполненной с возможностью изменения по меньшей мере одного своего измерения под напряжением, и второй полой конструкции, выполненной с возможностью распределения через себя по меньшей мере часть напряжения первой полой конструкции; размещение первой полой конструкции внутри второй полой конструкции, чтобы сформировать топливный канал таким образом, что между первой полой конструкцией и второй полой конструкцией образуется пространство.

[0024] В другом варианте выполнения предусмотрен способ изготовления тепловыделяющей сборки, включающий: формирование первой полой конструкции, имеющей первую геометрию поперечного сечения; формирование второй полой конструкции, имеющей вторую геометрию поперечного сечения, которая отличается от первой геометрии поперечного сечения; и размещение первой полой конструкции внутри второй полой конструкции, чтобы сформировать топливный канал.

[0025] В другом варианте выполнения предусмотрен способ использования тепловыделяющей сборки, включающий этапы: генерируют тепло с помощью множества тепловыделяющих элементов, расположенных внутри первой полой конструкции, причем первая полая конструкция расположена внутри второй полой конструкции; подвергают первую полую конструкцию воздействию напряжения; и распределяют напряжение первой полой конструкции через вторую полую конструкцию.

Тепловыделяющая сборка

[0026] Фиг. 1а обеспечивает частичную иллюстрацию тепловыделяющей сборки 10, выполненной в соответствии с одним вариантом выполнения. Тепловыделяющая сборка может представлять собой делящуюся тепловыделяющую сборку или воспроизводящую тепловыделяющую сборку. Сборка может содержать тепловыделяющие элементы (или «тепловыделяющие стержни» или «твэлы») 11. Фиг. 1b обеспечивает частичную иллюстрацию тепловыделяющего элемента 11, выполненного в соответствии с одним вариантом выполнения. Как показано в этом варианте выполнения, тепловыделяющий элемент 11 может содержать материал 13 оболочки, топливо 14 и, в некоторых случаях, по меньшей мере один зазор 15.

[0027] Топливо может быть герметично расположено внутри полости с помощью внешнего материала 13 оболочки. В некоторых случаях несколько топливных материалов могут быть уложены в осевом направлении, как показано на Фиг. 1b, но это не является обязательным. Например, тепловыделяющий элемент может содержать только один топливный материал. В одном варианте выполнения между топливным материалом и материалом оболочки может иметься зазор(ы) 15, однако это не является обязательным. В одном варианте выполнения зазор заполнен газом при повышенном давлении, например, гелием при повышенном давлении.

[0028] Топливо может содержать любые способные к ядерному делению материалы. Способный к ядерному делению материал может содержать металл и/или металлический сплав. В одном варианте выполнения топливо может быть металлическим топливом. Должно быть понятно, что металлическое топливо имеет относительно высокую концентрацию тяжелых металлов и высокий коэффициент полезного использования нейтронов, который очень желателен для процессов на бегущей волне реактора ядерного деления. В зависимости от применения, топливо может содержать по меньшей мере один элемент, выбранный из U, Th, Am, Np и Pu. Термин «элемент», как представлено в настоящем документе химическим символом, может относиться к тому, что находится в Периодической Таблице Элементов, и его не следует путать с «элементом» «тепловыделяющего элемента». В одном варианте выполнения топливо может содержать по меньшей мере приблизительно 90% по массе U - например, по меньшей мере, 95% по массе, 98% по массе, 99% по массе, 99,5% по массе, 99,9% по массе, 99,99% по массе или более U. Топливо может дополнительно содержать огнеупорный материал, который может содержать по меньшей мере один элемент, выбранный из Nb, Mo, Та, W, Re, Zr, V, Ti, Cr, Ru, Rh, Os, Ir и Hf. В одном варианте выполнения топливо может содержать дополнительные выгорающие поглотители нейтронов, такие как бор, гадолиний или индий. В одном варианте выполнения внутренняя часть первой полой конструкции топливного канала может содержать множество тепловыделяющих элементов.

[0029] В одном варианте выполнения металлическое топливо может быть легировано цирконием от приблизительно 3% по массе до приблизительно 10% по массе, чтобы размерно стабилизировать сплав при облучении и предотвратить образование низкотемпературной эвтектики и коррозионное повреждение оболочки. Тепловая связь натрия заполняет зазор, который существует между сплавом топлива и внутренней стенкой трубки оболочки, чтобы обеспечить набухание топлива и эффективную передачу тепла, который может поддерживать низкой температуру топлива. В одном варианте выполнения отдельные тепловыделяющие элементы 11 могут иметь тонкую проволоку 12 диаметром от приблизительно 0,8 мм до приблизительно 1,6 мм, спирально обернутую по окружности трубки оболочки, чтобы обеспечить пространство для теплоносителя и механическое разделение отдельных тепловыделяющих элементов 56 внутри корпуса тепловыделяющих сборок 18 и 20 (которое также служат в качестве канала для теплоносителя). В одном варианте выполнения оболочка 13 и/или обернутая проволока 12 может быть изготовлена из ферритно-мартенситной стали, из-за эффективности ее облучения, как указано набором эмпирических данных.

Тепловыделяющий элемент

[0030] «Тепловыделяющий элемент», такой как элемент 11, показанный на Фиг. 1а-1b, в тепловыделяющей сборке энергетического реактора обычно может иметь форму цилиндрического стержня. Тепловыделяющий элемент может быть частью энергетического реактора, который является частью атомной электростанции. В зависимости от применения, тепловыделяющий элемент может иметь любые соответствующие размеры в отношении его длины и диаметра. Тепловыделяющий элемент может содержать слой 13 оболочки и топливо 14, расположенное внутри слоя 13 оболочки. В случае ядерного реактора топливо может содержать (или представлять собой) ядерное топливо. В одном варианте выполнения ядерное топливо может представлять собой кольцевое ядерное топливо. Тепловыделяющий элемент может дополнительно содержать прокладку, расположенную между ядерным топливом 14 и слоем 13 оболочки, причем прокладка может содержать несколько слоев.

[0031] Топливо может иметь любую геометрию. В одном варианте выполнения топливо имеет кольцевую геометрию. В таком варианте выполнения топливо в кольцевой форме может обеспечивать возможность достижения требуемого уровня плотности топлива после определенного уровня выгорания. Кроме того, такая кольцевая конфигурация может поддерживать силы сжатия между топливом и оболочкой, чтобы способствовать теплопередаче. Топливо может быть адаптировано к различным свойствам, в зависимости от применения. Например, топливо может иметь любой уровень плотности. В одном варианте выполнения желательно иметь более высокую плотность топлива, например, как можно ближе к теоретической плотности урана (в случае, в котором топливо содержит уран), насколько это возможно. В другом варианте выполнения высокая пористость (низкая плотность) может способствовать предотвращению образования дополнительных внутренних пустот во время облучения, снижая давление топлива на конструкционный материал, например, оболочку, в процессе работы ядерного топлива.

[0032] Материал для слоя 13 оболочки может содержать любой подходящий материал, в зависимости от применения. В одном варианте выполнения слой 13 оболочки может содержать по меньшей мере один материал, выбранный из металла, металлического сплава и керамики. В одном варианте выполнения слой 13 оболочки может содержать огнеупорный материал, такой как тугоплавкий металл, включая по меньшей мере один элемент, выбранный из Nb, Mo, Та, W, Re, Zr, V, Ti, Cr, Ru, Rh, Os, Ir, Nd и Hf. В другом варианте выполнения материал оболочки может быть выбран из керамического материала, такого как карбид кремния или оксид алюминия (глинозем).

[0033] Металлический сплав в слое 13 оболочки может, в одном иллюстративном варианте выполнения, представлять собой сталь. Сталь может быть выбрана из аустенитной стали, ферритной-мартенситной стали, стали с дисперсными оксидами, стали Т91, стали Т92, стали НТ9, стали 316 и стали 304. Сталь может иметь любой тип микроструктуры. Например, сталь может содержать по меньшей мере одну фазу из мартенситной фазы, ферритной фазы и аустенитной фазы. В одном варианте выполнения по существу вся сталь имеет по меньшей мере одну фазу, выбранную из мартенситной фазы, ферритовой фазы и аустенитной фазы. В зависимости от применения, микроструктура может быть адаптирована, чтобы иметь определенную фазу (или фазы). Слой 13 оболочки может содержать состав на основе железа, как описано ниже.

[0034] По меньшей мере некоторые из компонентов тепловыделяющих элементов могут быть связаны между собой. Связь может быть физической (например, механической) или химической. В одном варианте выполнения ядерное топливо и оболочка механически соединены. В одном варианте выполнения первый слой и второй слой механически соединены.

Распределение напряжений

[0035] В одном аспекте различные конструкционные компоненты тепловыделяющей сборки, описанные в настоящем документе, могут работать вместе для распределения напряжений. Напряжение может относиться к изгибающему напряжению, растягивающему напряжению, осевому напряжению, напряжению сжатия, касательному напряжению или их комбинации. Напряжение может возникнуть из внутренней части тепловыделяющей сборки, как например, давление газа и/или теплоносителя внутри канала, причем газ имеет тенденцию создавать выталкивающее наружу давление.

[0036] Как показано на Фиг. 2а-2b, перепад давления между внутренней 21 и внешней 22 частями топливного канала 20 может создавать движущую силу, которая вызывает растягивание стенки топливного канала 20, т.е. создание напряжения. Перепад давления может приводить как к вызванной нагревом ползучести, так и к вызванной облучением ползучести (Фиг. 2а и 2b изображают, соответственно, конструкцию без ползучести и конструкцию с ползучестью) в уже существующей конструкции каналов. Также может произойти объемное разбухание конструкционных материалов в области 23 ядерных реакторов. Разбухание может быть независимым от давления теплоносителя и может привести к появлению изгибающих напряжений в конструкции сборки. Еще один компонент внутренних напряжений может появиться из-за разбухания пучков тепловыделяющих элементов, что также может прикладывать силы, действующие стенки сборки.

[0037] Как показано на Фиг. 3а, существующие сборки, такие как те, которые используются в реакторах на быстрых нейтронах с жидкометаллическим теплоносителем, для размещения обернутых проволокой тепловыделяющих элементов используют одностеночный гексагональный топливный канал 31. Один существующий способ ограничения деформаций заключается в создании более толстых стенок шестигранных каналов. Однако это может увеличить соотношение конструкционного материала и топлива в активной зоне реактора, уменьшая коэффициент полезного использования нейтронов в реакторе и увеличивая стоимость и вес всей конструкции. В существующих конструкциях также были предусмотрены каналы с 12-ю сторонами, обозначенные на Фиг. 3b номером позиции 32. Каналы 32 с двенадцатью сторонами имеют сниженную длину стороны и увеличенный внутренний угол между сторонами. Такая конструкция уменьшает напряжение изгиба в канале и, следовательно, уменьшает деформацию. Тем не менее, конфигурация этих сборок с 12-ю сторонами в их самую компактную конфигурацию решетки (додека-упаковки, в отличие от гекса-упаковки; см. Фиг. 3b) может оставлять междоузельные пространства 301, которые должны быть заполнены теплоносителем или топливом. В первом случае отношение теплоносителя к топливу увеличивается. В последнем случае для реактора требуется несколько типов сборки, повышая затраты и сложности управления топливом. Таким образом, ни один из этих существующих подходов не является желательным. Тепловыделяющие сборки, описанные в настоящем документе, преодолевают эти проблемы.

Конфигурация топливного канала

[0038] Другой аспект вариантов выполнения, описанных в настоящем документе, относится к конструктивному элементу тепловыделяющей сборки или к самой тепловыделяющей сборке. Например, один вариант выполнения относится к топливному каналу 16 тепловыделяющей сборки, как показано на Фиг. 1а. Как показано на Фиг. 4, топливный канал, в соответствии с одним вариантом выполнения, может содержать первую полую конструкцию 401, имеющую первую геометрию поперечного сечения, и вторую полую конструкцию 402, имеющую вторую геометрию поперечного сечения. Вторая полая конструкция может быть расположена снаружи и внутри первой полой конструкции, причем Фиг. 4 иллюстрирует первый сценарий. В одном варианте выполнения вторая геометрия поперечного сечения отличается от первой геометрии поперечного сечения. В другом варианте выполнения вторая геометрия поперечного сечения по меньшей мере по существу такая же, что и первая геометрия поперечного сечения. «По существу такая же» геометрия в одном варианте выполнения в настоящем документе может относиться к той же геометрии, но с очень небольшими изменениями, например, (слегка) тупым краем (вместо острого края) или боковой стороной, имеющей по меньшей мере некоторую кривизну. В другом варианте выполнения вторая геометрия поперечного сечения такая же, что и первая геометрия поперечного сечения.

[0039] Термины «первый», «вторая», «третий» и т.д. в настоящем документе лишь обозначают отдельные объекты, причем порядок этих объектов может быть изменен. Таким образом, связь между числами и объектами не является ограничивающей. В некоторых вариантах выполнения полая конструкция может упоминаться как «канал», как, например, в «мульти-канальной конфигурации».

[0040] Термин «геометрия» в настоящем документе может относиться к форме и/или к размеру материала. Например, конструкция, описанная в настоящем документе, может иметь площадь поперечного сечения, имеющую форму, включающую (или из) многоугольную, имеющую множество сторон (или краев), круглую или неправильную форму. Многоугольник может представлять собой треугольник, квадрат, прямоугольник, пятиугольник, шестиугольник, семиугольник, восьмиугольник, девятиугольник, десятиугольник, одиннадцатиугольник, двенадцатиугольник, тринадцатиугольник, четырнадцатиугольник, пятнадцатиугольник или другие геометрии с большим числом сторон. Круглая площадь поперечного сечения в настоящем документе может также относиться к эллиптической площади поперечного сечения. Таким образом, в зависимости от площади поперечного сечения, конструкция в трехмерном смысле может представлять собой куб (или с большим числом сторон), цилиндр и т.д.

[0041] В некоторых вариантах выполнения, как внутренняя (по отношению ко второй конструкции) первая полая конструкция, так и внешняя (по отношению к первой конструкции) вторая полая конструкция в качестве геометрии площади поперечного сечения может иметь многоугольник. В одном варианте выполнения первая геометрия поперечного сечения может содержать многоугольник, имеющий больше сторон, чем вторая геометрия поперечного сечения. В другом варианте выполнения первая геометрия поперечного сечения может содержать многоугольник, имеющий такое же число сторон, что и вторая геометрия поперечного сечения. В другом варианте выполнения первая геометрия поперечного сечения может содержать многоугольник, имеющий меньше сторон, чем вторая геометрия поперечного сечения.

[0042] В случае, в котором первая и вторая полые конструкции имеют многоугольную площадь поперечного сечения, указанные площади могут иметь любую из вышеуказанных многоугольных геометрий. В одном варианте выполнения первая геометрия поперечного сечения может содержать двенадцатиугольник. В одном варианте выполнения вторая геометрия поперечного сечения может содержать шестиугольник. В одном варианте выполнения, в котором первая геометрия поперечного сечения может содержать многоугольник, имеющий больше сторон, чем вторая геометрия поперечного сечения, первая геометрия поперечного сечения может содержать двенадцатиугольник, а вторая геометрия поперечного сечения может содержать шестиугольник. В альтернативном варианте выполнения первая геометрия поперечного сечения может содержать восьмиугольник, а вторая геометрия поперечного сечения может содержать квадрат. В другом варианте выполнения первая геометрия поперечного сечения может содержать круг, а вторая геометрия поперечного сечения может содержать восьмиугольник. В альтернативном варианте выполнения первая геометрия поперечного сечения может содержать многоугольник, имеющий меньше сторон, чем вторая геометрия поперечного сечения, например, первая геометрия поперечного сечения содержит шестиугольник, а вторая геометрия поперечного сечения содержит восьмиугольник.

[0043] Полые конструкции тепловыделяющей сборки могут иметь одинаковую толщину или различную толщину. Толщина не должна быть ограниченной каким-либо конкретным значением и может изменяться в зависимости от применения. Например, толщина первой полой конструкции и/или второй полой конструкции может составлять от приблизительно 0,1 мм до приблизительно 20 мм - например, от приблизительно 0,2 мм до приблизительно 15 мм, от приблизительно 0,3 мм до приблизительно 10 мм, от приблизительно 0,5 мм до приблизительно 5 мм, от приблизительно 1 мм до приблизительно 3 мм, и т.д. Толщина первой и/или второй полых конструкций может быть однородной по периметру их соответствующих геометрий поперечного сечения, хотя это и не обязательно. В одном варианте выполнения указанная по меньшей мере одна из первой полой конструкции и второй полой конструкции имеет толщину стенки, изменяющуюся вдоль по меньшей мере части соответствующих периметров первой и второй геометрии поперечного сечения. В некоторых вариантах выполнения изменение толщины вдоль боковой стороны или нескольких сторон может привести к изменению кривизны. В результате, как описано выше, многоугольник с изменяющейся толщиной и/или кривизной вдоль своих разных сторон может стать не шестиугольником, но будет все еще по существу таким же, как и в геометрии многоугольника. Изменение толщины и/или кривизны может быть оптимизировано для различных целей, например, характеристик расширения.

[0044] Полые конструкции тепловыделяющей сборки могу иметь одинаковый химический состав или различный химический состав. В некоторых вариантах выполнения первая и/или вторая полые конструкции могут содержать по меньшей мере один материал, выбранный из сплава на основе циркония, сплава на основе железа, керамики, тугоплавкого металла, тугоплавкого сплава, композитного материала. Керамика может представлять собой карбид (например, карбид кремния), нитрид, оксинитрид, и т.д. Например, первая и/или вторая полые конструкции могут содержать сплав на основе железа, в том числе сталь. Сталь может быть выбрана по меньшей мере из одной из ферритной стали, мартенситной стали, ферритной мартенситной стали, и не ферритной стали. Могут быть использованы другие материалы, которые могут использоваться в облучаемой среде.

[0045] Как показано на Фиг. 4, внутренняя часть 411 первой полой конструкции может быть герметично закрыта от наружной части первой полой конструкции. В одном варианте выполнения пространство 411 в герметично закрытой внутренней первой полой конструкции может содержать по меньшей мере один теплоноситель во внутреннем пространстве. Теплоноситель может быть расположен в пространстве 412, ограниченном между первой полой конструкции и второй полой конструкции. В одном варианте выполнения первая внутренняя полая конструкция герметично закрыта таким образом, что она наполнена теплоносителем или содержит текучую среду или материал, который отличается от теплоносителя. Текучая среда может представлять собой текучую среду, имеющую требуемые нейтронные свойства - например, размножение, поглощение или эффективную прозрачность для излучения. В одном варианте выполнения внутреннее пространство 411 может быть по существу пустым, так что любой нейтронный эффект может быть сведен к минимуму. В другом варианте выполнения внутреннее пространство 411 первой полой конструкции по существу свободно от теплоносителя. Пространство 411 также может быть использовано для размещения инструментов как для тестирования внутри реактора, так и наблюдения нормальных и ненормальных условий эксплуатации, а также устройств для управления реактором или для обеспечения требуемого воздействия реактивности, как описано выше. В качестве альтернативы, внутренняя часть может быть открыта наружу первой полой конструкции. Внутренняя часть первой полой конструкции может быть пустой или может содержать некоторые материалы. Например, во внутренней части первой полой конструкции может быть размещен по меньшей мере один теплоноситель. Теплоноситель может представлять собой любой подходящий теплоноситель, в зависимости от применения. Например, теплоноситель может содержать натрий.

[0046] Пространство 412, ограниченное первой полой конструкцией и второй полой конструкцией, может быть пустым; в качестве альтернативы, в указанном пространстве могут присутствовать дополнительные элементы. Пространство 412 может быть ограничено наружной стенкой 413 первой полой конструкции и внутренней стенкой 414 второй полой конструкции. Например, в пространстве 412 может находиться теплоноситель, который может быть любым из ранее упомянутых теплоносителей. В качестве альтернативы (и дополнительно), в указанном пространстве может быть расположен по меньшей мере один конструктивный элемент, как описано выше. В другом варианте выполнения в пространстве 412 может быть расположен по меньшей мере один инструмент, который может быть выполнен с возможностью измерения, мониторинга и обеспечения обратной связи относительно рабочих условий (например, тепловыделяющей сборки). Инструмент может быть тем же самым или отличаться от используемого во внутреннем пространстве полой конструкции, как описано выше.

[0047] В одном варианте выполнения, в топливном канале первая полая конструкция может иметь по меньшей мере один размер, который изменяется под напряжением. В зависимости от геометрии первой полой конструкции, этот размер может относиться к ширине, длине, диаметру и т.д. Изменение размера может относиться, например, к его расширению. В одном варианте выполнения вторая полая конструкция выполнена с возможностью распределения через себя по меньшей мере часть напряжения первой полой конструкции.

[0048] Первая полая конструкция может быть выполнена с возможностью расширения в радиальном направлении наружу под напряжением, так что по меньшей мере часть первой полой конструкции физически входит в контакт со второй полой конструкцией. В некоторых случаях расширение не должно происходить. Например, первая полая конструкция может по существу поддерживать по меньшей мере один из своих размеров (например, все свои размеры и геометрию) под напряжением. В одном варианте выполнения первая полая конструкция выполнена с возможностью изменения по меньшей мере одного из своих размеров под напряжением; и вторая полая конструкция выполнена с возможностью распределения по меньшей мере части напряжения первой полой конструкции. В другом варианте выполнения первая полая конструкция не изменяет свой размер и/или геометрию под напряжением, но, тем не менее, вторая полая конструкция может распределять по меньшей мере часть напряжения. Вторая полая конструкция может распределять по меньшей мере часть напряжения первой конструкции с минимальной величиной изменения (например, отсутствием изменения) ее размера и/или геометрии. В одном варианте выполнения вторая полая конструкция выполнена с возможностью по существу поддержания по меньшей мере одного из своих размеров (например, всех размеров и геометрии) при распределении через себя напряжения первой полой конструкции.

[0049] Когда первая полая конструкция не подвержена воздействию напряжений, в частности тех, что возникают благодаря давлению в ее внутренней части, первая полая конструкция не обязана находиться в физическом контакте со второй внешней полой конструкцией (как показано на Фиг. 4), хотя и может. В одном варианте выполнения, когда под напряжением, первая полая конструкция может быть выполнена с возможностью расширения наружу до тех пор, пока по меньшей мере ее часть не будет находиться в физическом контакте со второй полой конструкцией для распределения напряжения. Вторая полая конструкция может быть разработана и/или выполнена с возможностью распределения напряжения без изменения своего размера и/или геометрии. В одном варианте выполнения напряжение может быть (но не обязательно) равномерно распределено по различным сторонам второй полой конструкции.

Конструктивные Элементы

[0050] Как показано на Фиг. 5, внутренняя часть 503 первой полой конструкции 501 может содержать конструктивные элементы 502. Внутреннее пространство 503 первой полой конструкции также может быть секционированы, например, секционированы в осевом направлении. В одном варианте выполнения осевое секционирование может быть достигнуто с помощью отражателя, расположенного ниже топливного сердечника, пустоты по всей длине топливного сердечника и теплоносителя выше топливного сердечника. Конструктивные элементы могут быть расположены любым способом, который подходит для целей применения. Например, один конструктивный элемент может соединяться в точке первой стороны первой внутренней полой конструкции с точкой второй стороны, противоположной первой стороне, как показано на Фиг. 5. Точка может быть любой точкой на стороне, например в средней точке. В одном варианте выполнения конструктивный элемент может соединяться в одном угле (вместо стороны) первой полой конструкции с другим углом (не показан). Термин «соединяться» в настоящем описании может означать быть в контакте, например, физическом контакте (например, механическом соединении). В некоторых других вариантах выполнения контакт может относиться к другим типам контактов, таким как тепловой контакт, электрический контакт, и т.д. Например, когда два элемента соединены друг с другом, в одном варианте выполнения это может относиться к этим двум элементам, соединенным друг с другом посредством физического контакта непосредственно или опосредованно (через третий элемент).

[0051] Эти конструкционные элементы во внутренней части первой полой конструкции могут представлять собой (или выступать в качестве) натягивающих конструктивных элементов. В одном варианте выполнения направленная наружу сила, обусловленная действием внутреннего давления теплоносителя, может, по меньшей мере частично, компенсироваться натяжением в этих внутренних конструктивных элементах, как показано на Фиг. 5. В результате, эта конфигурация может снизить деформации внешней полой конструкции (или «канала») путем уменьшения как нормальных, так и изгибающих напряжений.

[0052] В одном варианте выполнения, как показано на Фиг. 4, первая полая конструкция 401 и вторая полая конструкция 402 могут быть разнесены друг от друга зазором 412, причем контакте между ними может совсем отсутствовать. Другими словами, первая полая конструкция и вторая полая конструкция в этом варианте выполнения ограничивают пространство 412 между ними. В качестве альтернативы, по меньшей мере часть первой полой конструкции может быть соединена с частью второй полой конструкции. Например, со ссылкой на Фиг. 6а, первая полая конструкция 601 и вторая полая конструкция 602 могут содержать между собой пространство 612, тогда как две конструкции находятся в контакте друг с другом.

[0053] Эти конструктивные элементы могут быть одинаковыми или отличаться от внутренних конструктивных элементов во внутренней части некоторой первой внутренней полой конструкции, как описано выше. На Фиг. 6b представлена иллюстрация топли