Устройство для испарения жидкости

Иллюстрации

Показать все

Изобретение относится к области приборостроения, в частности, может быть использовано в устройствах дозирования газов, а также может быть использовано в химической, нефтеперерабатывающей и других областях промышленности. В устройстве для испарения жидкости, содержащем мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, согласно изобретению в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы. Технический результат - повышение интенсивности испарения, снижение металлоемкости испарителей. 2 ил.

Реферат

Изобретение относится к области приборостроении, в частности, может быть использовано в устройствах дозирования газов, а также может быть использовано в химической, нефтеперерабатывающей и других областях промышленности.

В ряде случаев в промышленности необходимо при относительно невысокой температуре испарить некоторый объем жидкости. Часто такое испарение происходит в поток газа другой жидкости или в воздух. Так, в дозаторах газа к основному потоку газа, например азота, воздуха или аргона, подмешивается строго определенная концентрация другого газа, например водяного пара, этилового спирта или фреона. Причем последний образуется за счет испарения некоторого количества жидкости.

Наиболее близкое техническое решение описано в статье (Lyulin Y.V. and Kabov О.А., Measurement of the Evaporation Mass Flow Rate in a Horizontal Liquid Layer Partly Opened into Flowing Gas, Technical Physics Letters, vol. 39, No. 9, pp.795-797, 2013; Scheid В., Margerit J., Iorio C.S., Joannes L., Heraud M., Queeckers P., Dauby P.C., Colinet P. // Experiments in Fluids. 2012. V. 52. P. 1107-1119), в котором газ прокачивается в плоском мини- или микроканале, в нижней стенке которого имеется каверна с жидкостью. Уровень жидкости либо поддерживается постоянным с помощью специальных устройств, либо может изменяться и быть выпуклым в газовую фазу или вогнутым в каверну.

Недостатком данного устройства является сравнительно низкая интенсивность удельного испарения (кг/м2с), которая слабо зависит от скорости газа и снижается с увеличением размера каверны (Yu. V. Lyulin, D.V. Feoktistov, I.A. Afanas'ev, E.S. Chachilo, O.A. Kabov and G.V. Kuznetsov, Measuring the Rate of Local Evaporation from the Liquid Surface under the Action of Gas Flow, Technical Physics Letters, vol. 41, No. 7, pp. 665-667, 2015.). Например, в работе (Lyulin Y.V. and Kabov O.A., Evaporative convection in a horizontal liquid layer under shear-stress gas flow, Int. J. of Heat and Mass Transfer, Vol. 70, pp. 599-609, 2014) получена зависимость расхода испарения Q от скорости газа U:

Q ~ U0.15

Другим недостатком этого устройства является то, что оно может работать только при положении, близком к горизонтальному. При существенном отклонении от горизонтального положения жидкость может вытекать из каверны, что приводит к нестационарному испарению.

Задачей заявляемого изобретения является повышение интенсивности испарения, повышение эффективности системы в целом, снижение металлоемкости испарителей, обеспечение их работы на транспортных средствах.

Поставленная задача решается тем, что в устройстве для испарения жидкости, содержащем мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, согласно изобретению в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы.

Решетка разделяет относительно большую поверхность границы раздела газ-жидкость на микро- или мини-ячейки и тем самым интенсифицирует испарение. Интенсификация достигается за счет образования значительного количества контактных линий газ-жидкость-твердое тело.

На фиг. 1 показано устройства для испарения жидкости (вид сверху). На фиг. 2 показан поперечный разрез ребер решетки.

1 - поток газа, 2 - каверна с жидкостью, 3 - ребра решетки (n=5), 4 - выход парогазовой смеси, 5 - испаряющаяся жидкость, 6 - мениск жидкости, 7 - контактная линия газ-жидкость-твердое тело, 8 - продольная канавка.

Устройство работает следующим образом.

Поток газа 1 поступает в мини- или микроканал. Решетка 3 разделяет относительно большую поверхность границы раздела газ-жидкость на микро- или мини-ячейки и тем самым интенсифицирует испарение. Интенсификация достигается за счет образования значительного количества контактных линий газ-жидкость-твердое тело 7 (фиг. 2б). Как показано в работах (М. Potash Jr., P. Wayner Jr., Evaporation from a twodimensional extended meniscus, Int. J. HeatMassTransfer, 15(10), pp. 1851-1863, 1972; P. Stephan, C. Busse, Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, Int. J. Heat Mass Transfer, 35(2), pp. 383-391, 1992), именно в этой локальной области происходит существенная интенсификация теплообмена и испарения. Интенсификация связана с наличием сверхтонкой пленки жидкости в данной области, а также интенсивной микроциркуляцией жидкости, вызванной поверхностными силами в данной области. Данная область часто называется микрорегионом. В некоторых работах интенсификация теплообмена в микрорегионе достигалась до 10 и более раз (Vladimir S. Ajaev, Oleg A. Kabov, Heat and mass transfer near contact lines on heated surfaces, Int. J. of Heat and Mass Transfer, 2017). В работе авторов (A.L. Karchevsky, I.V. Marchuk and O.A. Kabov, Calculation of the heat flux near the liquid-gas-solid contact line, Applied Mathematical Modeling, 40, pp. 1029-1037, 2016) экспериментально получена нитрификация теплообмена в 3-5 раз.

Степень увеличения длины контактных линий определяется параметром:

N=(2(A+B)+2nA)/(2(А+В)

Здесь А и В - размеры полости с жидкостью, n - число ребер в решетке. Если А=В и n=10, то N=1+n/2=6.

В случае недостаточного уровня испаряющейся жидкости 5 (фиг. 2а) мениск 6 находится между ребрами. В случае переполнения каверны жидкости, пульсаций расхода, существенного отклонения устройства от горизонтального и т.п. точки контактной линии фиксируются на канавке, фиг. 2б. При этом мениск жидкости становится выпуклым.

Механизм смачивания капиллярной канавки и «зацепления» контактных линий на поверхности с микроканавками рассмотрен в работе (Gibbs, J.W. The Collected Works of J. Willard Gibbs; Yale University Press: New Haven, CT, 1961; vol. 1, p. 326). Установлено, что жидкость зацепляется за микроканавку, если краевой угол смачивания не превышает θс. Критический краевой угол смачивания можно определить по следующей формуле:

θс=(180°-ϕ)+θе

Здесь ϕ - угол между верхней гранью ребра и гранью микроканавки, θе - краевой угол смачивания жидкостью плоской поверхности ребра. Приведенная формула была подтверждена в работе авторов (Grishaev V., Amirfazli A., Chikov S., Lyulin Y., Kabov O., Study of edge effect to stop liquid spillage for microgravity application, Microgravity sci. technol., vol. 25, pp. 27-33, 2013). Таким образом, использование решетки препятствует вытеканию жидкости за пределы каверны и обеспечивает работу подобных устройств на транспортных средствах. Решетка может быть изготовлена из любого достаточно хорошо смачиваемого материала. Изготовление решетки из металла с высокой теплопроводностью приведет к дополнительной интенсификации испарения. Оптимальная ширина канавки составляет 50-100 микрон. Оптимальный размер толщины ребра решетки составляет 150-300 микрон. Высота ребра решетки должна быть много меньше размеров каверны с жидкостью.

Данное устройство повышает интенсивность испарения, снижает металлоемкость испарителя, обеспечивает его работу на транспортных средствах - автомобили, скоростные поезда, морские суда, самолеты.

Устройство для испарения жидкости, содержащее мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, отличающееся тем, что в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы.