Смесительная головка камеры жидкостного ракетного двигателя

Иллюстрации

Показать все

Изобретение относится к ракетной технике, а именно к жидкостному ракетному двигателю, работающему на двухкомпонентном топливе. Смесительная головка камеры жидкостного ракетного двигателя, работающего по схеме с дожиганием генераторного газа, содержит подвод генераторного газа, корпус, имеющий каналы для подачи жидкого компонента в полость смесительных элементов, смесительные элементы, состоящие из концентрически соединенных между собой колец, на выходе из которых выполнены наклонные отверстия, соединенные с полостью подвода генераторного газа, поступающего через отверстия в корпусе, отверстие в центре для расположения запального устройства, при этом корпус со смесительными элементами представляют собой единую цельную конструкцию, изготовленную методом послойного порошкового лазерного спекания гранул, с постоянным по площади трактом для поступления компонента топлива. Изобретение обеспечивает снижение трудоемкости и оснащаемости, исключение операции пайки сварки и фрезеровки и повышение надежности смесительной головки. 4 ил.

Реферат

Изобретение относится к ракетной технике, а именно к жидкостному ракетному двигателю (ЖРД), работающему на двухкомпонентном топливе.

Известна конструкция смесительной головки камеры ЖРД, содержащая корпус, огневое днище и смесительные элементы, расположенные по концентрическим окружностям (патент РФ №2127820 от 13.08.1997 г.).

Известна конструкция смесительной головки камеры сгорания ЖРД (патент РФ №2170841 С1 от 15.11.1999 г.), принятая за прототип. В данной конструкции смесительные элементы выполнены в виде концентрических колец.

Недостатком данной конструкции является:

- сложность изготовления (около 160 сборочных единиц и деталей);

- высокая трудоемкость и оснащаемость;

- выполнение пайки и сварки;

- проведение большого количества испытаний;

- увеличенное сопротивление из-за больших гидравлических потерь на входе и выходе по проточной части головки.

Данное изобретение устраняет указанные недостатки прототипа за счет применения технологии лазерного спекания гранул, которая позволяет изготовить цельную конструкцию смесительной головки.

Поставленная техническая задача решается с помощью смесительной головки камеры жидкостного ракетного двигателя, работающего по схеме с дожиганием генераторного газа, содержащей подвод генераторного газа, корпус, имеющий каналы для подачи жидкого компонента в полость смесительных элементов, смесительные элементы, состоящие из концентрически соединенных между собой колец, на выходе из которых выполнены наклонные отверстия, соединенные с полостью подвода генераторного газа, поступающего через отверстия в корпусе, отверстие в центре для расположения запального устройства, согласно изобретению корпус со смесительными элементами представляют собой единую цельную конструкцию, изготовленную методом послойного порошкового лазерного спекания гранул, с постоянным по площади трактом для поступления компонента топлива.

Такое исполнение конструкции позволяет уйти от сложных и трудоемких операций, существенно снижает сроки изготовления и повышает надежность работы смесительной головки камеры ЖРД. Кроме того, с постоянной площадью (из-за исключения входных и выходных потерь) позволяет понизить гидравлическое сопротивление на головке и повысить ее эффективность.

Сущность предлагаемого изобретения поясняется схемами, показанными на фиг. 1, 2, 3, 4.

На фиг. 1 показана смесительная головка камеры, выполненная методом послойного порошкового лазерного спекания гранул. Смесительная головка включает в себя внутреннюю корпус 1, смесительные элементы 2, отверстия для подачи генераторного газа 3 в кольцевую полость 4, каналы для подачи жидкого компонента 5 в кольцевую полость 6, отверстие 7 для установки запального устройства. Вся конструкция представляет собой единую твердотельную деталь без пайки и сварки.

На фиг. 2 показан вид со стороны смесительных элементов 2. На виде представлена конструкция расположения отверстий подвода генераторного газа 3 относительно каналов подачи жидкого компонента 5.

На фиг. 3 представлен вид, на котором показана форма подводных каналов жидкого компонента 5.

На фиг.4 показан фрагмент смесительного элемента 2 с расположенными в нем наклонными отверстиями 8, через которые из полости 6 жидкий компонент попадает в полость 4 генераторного газа.

Смесительная головка работает следующим образом.

Генераторный газ после турбины поступает в газовод (не показан) и через отверстия 3 в корпусе 1 подается в кольцевые полости 4.

Жидкий компонент поступает в смесительную головку из входного коллектора (не показан) и через подводные каналы 5, соединенные со смесительными элементами 2 поступает в кольцевую полость 6. После этого жидкий компонент через наклонные отверстия 8 поступает на выходе в кольцевую полость 4 генераторного газа, где происходит их смешение и воспламенение от запального устройства (не показан), установленного в отверстие 7.

Таким образом, изготовление смесительной головки методом послойного порошкового лазерного спекания гранул позволяет снизить трудоемкость и оснащаемость, исключить операции пайки, сварки и фрезеровки, а также существенно снизить гидравлическое сопротивление и сроки изготовления и повысить надежность работы смесительной головки камеры ЖРД.

Смесительная головка камеры жидкостного ракетного двигателя, работающего по схеме с дожиганием генераторного газа, содержащая подвод генераторного газа, корпус, имеющий каналы для подачи жидкого компонента в полость смесительных элементов, смесительные элементы, состоящие из концентрически соединенных между собой колец, на выходе из которых выполнены наклонные отверстия, соединенные с полостью подвода генераторного газа, поступающего через отверстия в корпусе, отверстие в центре для расположения запального устройства, отличающаяся тем, что корпус со смесительными элементами представляют собой единую цельную конструкцию, изготовленную методом послойного порошкового лазерного спекания гранул, с постоянным по площади трактом для поступления компонента топлива.