Оптимизированная процедура синхронизации для удлиненных периодов ожидания

Иллюстрации

Показать все

Изобретение относится к беспроводной связи. Беспроводное устройство и способ описываются в настоящем документе для того, чтобы осуществлять процедуры синхронизации, когда беспроводное устройство действует, используя режим удлиненного ожидания в сотовой сети, при этом процедуры синхронизации обладают преимуществом сокращения потребления энергии электрической батареи беспроводного устройства. 2 н. и 10 з.п. ф-лы, 8 ил.

Реферат

ЗАЯВЛЕНИЕ ПРАВА НА ПРИОРИТЕТ

Эта заявка на патент испрашивает преимущество приоритета по заявке на патент Индии №1349/DEL/2014, зарегистрированной 22 мая 2014, и предварительной заявке на патент США №62/021,967, зарегистрированной 8 июля 2014.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение связано, в общем смысле, с процедурами синхронизации в беспроводных устройствах и, более конкретно, с методиками реализации энергосбережения при процедурах синхронизации в беспроводных устройствах, которые действуют, используя режим удлиненного ожидания (prolonged sleep mode).

УРОВЕНЬ ТЕХНИКИ

Настоящее изобретение связано, в общем смысле, с процедурами синхронизации в беспроводных устройствах и, более конкретно, с методиками реализации энергосбережения при процедурах синхронизации в беспроводных устройствах, которые действуют, используя режим удлиненного ожидания (prolonged sleep mode).

УРОВЕНЬ ТЕХНИКИ

Следующие сокращения, в качестве приложения, определяются, и, по меньшей мере, некоторые из них упоминаются в пределах последующего описания уровня техники и настоящего изобретения.

3GPP - международный партнерский проект третьего поколения.

ВСС - цветовой код базовой станции.

ВССН - широковещательный канал управления.

BSIC - идентификационный код базовой станции.

СССН - общий канал управления.

DB - фиктивный пакет.

DRX - прерывистый прием.

FB - частотный пакет.

FCCH - канал частотной коррекции.

FDMA - множественный доступ с частотным разделением.

FO - смещение частот.

GERAN - сеть GSM EDGE радиодоступа.

GSM - глобальная система мобильной связи.

ID - идентификатор.

М2М - межмашинный.

MS - мобильная станция.

МТС - информационное взаимодействие машинного типа.

N - количества пакетов.

NB - нормальный пакет.

PSM - режим энергосбережения.

RACH - канал произвольного доступа.

RAU - обновление области маршрутизации.

RSSI - индикатор мощности принимаемого сигнала.

SB - пакет синхронизации.

SCH - канал синхронизации.

TBF - поток кратковременных блоков.

TDMA - множественный доступ с временным разделением.

TSC - код тренировочной последовательности.

В случае беспроводных устройств, особенно мобильных устройств или мобильных станций (MS, mobile station), емкость электрической батареи, возможно, является жестко ограниченной, вследствие ограничений на размер и вес устройства. Так как емкость электрической батареи лимитируется, обеспечение оптимальной схемы управления электропитанием для этих устройств является крайне важным, в особенности для случая таких устройств, как устройства информационного взаимодействия машинного типа (МТС), предназначенные для межмашинного информационного взаимодействия (М2М) без внешнего источника питания. С первоочередной целью исследования различных возможностей для реализации энергосбережения в случае устройств МТС, новый предмет изучения "Энергосбережение для устройств МТС" ("Power Saving for МТС Devices") был согласован на рабочей встрече GERAN #60 Группы технических спецификаций (TSG) 3GPP (3GPP Technical Specification Group (TSG) GERAN Meeting #60).

Поскольку сети и беспроводные устройства управляются независимыми временными устройствами, размещенными в соответствующих компонентах, надлежащая синхронизация является необходимой для организации эффективного информационного взаимодействия между компонентами. Глобальная система мобильной связи (GSM) является основанной на множественном доступе с временным разделением (TDMA) и на множественном доступе с частотным разделением (FDMA), и, в результате, синхронизация времени и частот является необходимой для надлежащей передачи и надлежащего приема информации беспроводными устройствами, действующими на GSM. В дополнение к этому, в связи с внедрением устройств МТС в беспроводных сетях, вообще говоря, существенно снизилась потребность в том, насколько часто таким устройствам МТС следует быть достижимыми для информационных взаимодействий в нисходящем канале. Иначе говоря, устройства МТС не поддерживают унаследованную операцию внутреннего вызова (paging operation), в которой беспроводные устройства могут вызываться настолько часто, как каждые несколько секунд. Это существенное сокращение в частоте достижимости для устройств МТС предоставляет благоприятную возможность для значительных энерго-сбережений, поскольку эти типы беспроводных устройств могут претерпевать удлиненный период ожидания (prolonged period of sleep) между любыми двумя, следующими друг за другом, моментами достижимости. Несколько способов для реализации удлиненных периодов ожидания рассматриваются, в настоящий момент, в пределах 3GPP, такие как:

длительный цикл (long cycle) внутренних вызовов (длительный прием DRX),

режим энергосбережения (PSM, Power Saving Mode),

мобильное отключение питания.

Однако использование таких удлиненных периодов ожидания увеличивает риск того, что беспроводное устройство (например, устройство МТС) потеряет синхронизацию с сетью из-за того, что, чем большее время беспроводное устройство остается в режиме ожидания, тем больше накапливаются погрешности синхронизации (то есть, беспроводное устройство прекращает выполнять многократную проверку синхронизации, после входа в режим ожидания). По этой причине, выявление новых способов того, как беспроводные устройства (например, устройства МТС) будут, быстро и эффективно, заново устанавливать синхронизацию с сетью, как только беспроводные устройства приближаются к периоду достижимости (period of reachability) (который начинается с первого пакета (burst) блока внутреннего вызова (paging block), сопутствующего с номинальным циклом DRX беспроводного устройства), будет представлять собой важный аспект схемы управления электропитанием, необходимой для этих устройств. Унаследованные способы для того, чтобы заново устанавливать синхронизацию, считаются излишне энергетически интенсивными, и они должны быть объектом существенной оптимизации, принимая во внимание сниженную мобильность, предусмотренную для многих устройств МТС.

Общеупотребительный способ для того, чтобы устанавливать синхронизацию в течение времени, которое известно как цикл синхронизации, когда беспроводное устройство пробуждается после цикла ожидания (sleep cycle), перед тем как войти в период достижимости, известный как цикл достижимости (то есть, перед тем как войти в порцию своего цикла DRX, в течение которого беспроводное устройство может принимать сообщение внутреннего вызова (paging message)), может упоминаться как "длительная синхронизация (long sync)", и способ включает в себя следующее:

Выполняют полную процедуру синхронизации (sync up procedure), в которой сначала беспроводное устройство будет считывать канал частотной коррекции (FCCH), корректировать базу частот (и границу сегментов (slot boundary)), и затем считывать канал синхронизации (SCH) для номера временных кадров и правильной идентификации соты.

- Считывают сообщения широковещательного канала управления (ВССН) или общего канала управления (СССН). Однако, из-за того, что пакеты (bursts) каналов FCCH и SCH появляются весьма нечасто в 51-мультикадре GSM (то есть, один раз на каждые 10 кадров TDMA), беспроводное устройство будет проводить много времени, разыскивая FCCH и SCH и, затем, используя FCCH и SCH, чтобы регулировать/проверять синхронизацию.

Однако этот общеупотребительный способ синхронизации является слишком сложным, интенсивным по времени обработки, и энерго-потребляющим, принимая во внимание ограниченную мобильности, ожидаемую для большого количества устройств МТС, и, в результате, этот общеупотребительный способ синхронизации может рассматриваться как не оптимизированный. Более того, если беспроводное устройство (например, устройство МТС) находилось в состоянии ожидания в течение долгого времени, смещение частот (FO) может оказаться слишком значительным (например, >10 кГц), чтобы позволять успешно принимать блок внутреннего вызова беспроводного устройства, как это определяется согласно номинальному циклу DRX беспроводного устройства. В этом случае, беспроводное устройство вынуждено делать несколько приемов FCCH, прежде чем беспроводное устройство сможет принимать FCCH надлежащим образом, если FO приближается к <100 Гц, что является необходимым для того, чтобы впоследствии выполнять надлежащее декодирование SCH. Если беспроводное устройство не способно завершать процедуру синхронизации, перед приемом блока внутреннего вызова беспроводного устройства, как это определяется согласно номинальному циклу DRX беспроводного устройства, тогда беспроводное устройство упустит возможность приема блока внутреннего вызова, для которого беспроводное устройство пробуждалось.

Заявка на патент США 2013.0301501 А1 раскрывает устройство информационного взаимодействия машинного типа (МТС) для обращения с удлиненными циклами прерывистого приема (DRX) и/или удлиненными длительностями ожидания. Устройство МТС использует период окна согласования и/или длительность окна приема в качестве времени, которое требуется устройству МТС для того, чтобы пробуждаться и синхронизироваться с сетью, и оно может заканчиваться, когда устройство сможет получить внутренний вызов или может заканчиваться после некоторого периода времени (такого как длительность окна приема). Устройство МТС может генерировать период окна согласования, используя удлиненную длительность ожидания, скорость дрейфа временного устройства и время пробуждения.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Беспроводное устройство и способ, которые справляются с проблемами, сопутствующими общеупотребительному способу синхронизации, описываются в настоящей патентной заявке. Представляющие интерес варианты воплощения беспроводного устройства и способа, в дальнейшем, описываются в настоящей заявке.

В одном аспекте, беспроводное устройство выполняется с возможностью цикла DRX, который содержит цикл достижимости (reachability cycle), цикл ожидания (sleep cycle), и цикл синхронизации (synchronization cycle). Беспроводное устройство содержит процессор, и запоминающее устройство, которое сохраняет исполняемые процессором предписания, при этом процессор взаимодействует с запоминающим устройством, чтобы исполнять исполняемые процессором предписания, посредством которых беспроводное устройство становится задействованным так, чтобы осуществлять операцию вычисления (compute operation) и операцию настройки (set operation). При операции вычисления, беспроводное устройство вычисляет, в течение цикла достижимости, время (TW) для цикла синхронизации, в течение которого должна выполняться процедура синхронизации. При операции настройки, беспроводное устройство настраивает таймер, с помощью времени (Td), на основе вычисляемого времени (TW), чтобы пробуждаться от цикла ожидания и выполнять процедуру синхронизации. Цикл достижимости происходит перед циклом ожидания, и цикл ожидания происходит перед циклом синхронизации. В одном варианте осуществления, то, что беспроводное устройство становится задействованным так, чтобы вычислять время (TW) для цикла синхронизации, включает в себя то, что его задействуют так, чтобы: (1) оценивать совокупный накапливаемый дрейф частоты цикла ожидания, при этом совокупный накапливаемый дрейф частоты равен Δf*TS при этом Δf представляет собой дрейф частоты, на единицу времени, локального генератора колебаний в беспроводном устройстве, и, при этом TS представляет собой оцениваемую продолжительность цикла ожидания; (2) вычислять количества пакетов FB, SB, и NB, которые следует принимать для того, чтобы сделать возможной коррекцию оцениваемого совокупного накапливаемого дрейфа частоты; и (3) вычислять время (TW) для цикла синхронизации на основе (i) известной структуры кадра, которая указывает, сколько пакетов FB, SB, и NB ожидается в течение некоторого периода времени, (ii) известного объема дрейфа частоты, который может корректироваться при каждом приеме пакета FB, SB, и NB, и (iii) вычисляемых количеств пакетов FB, SB, и NB, которые следует принимать для того, чтобы сделать возможной коррекцию оцениваемого совокупного накапливаемого дрейфа частоты. Беспроводное устройство, действующее в такой манере, обладает преимуществом сокращения потребления энергии электрической батареи беспроводного устройства.

В другом аспекте, способ осуществляется в беспроводном устройстве, выполненном с возможностью цикла DRX, который содержит цикл достижимости, цикл ожидания, и цикл синхронизации. Способ содержит этап вычислений и этап настроек. На этапе вычислений, беспроводное устройство вычисляет, в течение цикла достижимости, время (TW) для цикла синхронизации, в течение которого должна выполняться процедура синхронизации. На этапе настроек, беспроводное устройство настраивает таймер, с помощью времени (Td), на основе вычисляемого времени (TW), чтобы пробуждаться от цикла ожидания и выполнять процедуру синхронизации. Цикл достижимости происходит перед циклом ожидания, и цикл ожидания происходит перед циклом синхронизации. В одном варианте осуществления, вычисление времени (TW) для цикла синхронизации, дополнительно, содержит: (1) оценивают совокупный накапливаемый дрейф частоты цикла ожидания, при этом совокупный накапливаемый дрейф частоты равен Δf*TS, при этом Δf представляет собой дрейф частоты, на единицу времени, локального генератора колебаний в беспроводном устройстве, и, при этом TS представляет собой оцениваемую продолжительность цикла ожидания; (2) вычисляют количества пакетов FB, SB, и NB, которые следует принимать для того, чтобы сделать возможной коррекцию оцениваемого совокупного накапливаемого дрейфа частоты; и (3) вычисляют время (TW) для цикла синхронизации на основе (i) известной структуры кадра, которая указывает, сколько пакетов FB, SB, и NB ожидается в течение некоторого периода времени, (ii) известного объема дрейфа частоты, который может корректироваться при каждом приеме пакета FB, SB, и NB, и (iii) вычисляемых количеств пакетов FB, SB, и NB, которые следует принимать для того, чтобы сделать возможной коррекцию оцениваемого совокупного накапливаемого дрейфа частоты. Способ обладает преимуществом сокращения потребления энергии электрической батареи беспроводного устройства.

Дополнительные аспекты изобретения будут изложены, частично, в подробном описании, чертежах и в любом из пунктов формулы изобретения, которые последуют, и частично будут выводиться из подробного описания, или могут быть поняты из практического применения изобретения. Должно предполагаться, что как вышеупомянутое общее описание, так и последующее подробное описание являются, всего лишь, образцовыми и объяснительными и они не являются ограничительными для изобретения, как оно раскрыто.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Более полное понимание настоящего изобретения может быть получено посредством ссылки на последующее подробное описание, когда оно используется в сочетании с сопроводительными чертежами:

Фиг. 1 представляет собой схему образцовой сети беспроводного информационного взаимодействия, в соответствии с настоящим изобретением;

Фиг. 2 представляет собой схему последовательных действий способа, осуществляемого беспроводным устройством, в соответствии с вариантом воплощения настоящего изобретения;

Фиг. 3 представляет собой блок-схему, демонстрирующую структуры образцового беспроводного устройства, выполненного с возможностями в соответствии с вариантом воплощения настоящего изобретения;

Фиг. 4 представляет собой схему, демонстрирующую периодичность DRX, продолжительность ожидания, и динамический интервал сокращенной синхронизации (short sync up interval), сопутствующий с беспроводным устройством, в соответствии с вариантом воплощения настоящего изобретения;

Фиг. 5А и 5В представляют собой схему последовательных действий другого способа, осуществляемого беспроводным устройством, в соответствии с вариантом воплощения настоящего изобретения;

Фиг. 6 представляет собой схему, демонстрирующую процедуру промежуточной сокращенной синхронизации (в момент времени Tint), которая осуществляется, когда совокупное накапливаемое смещение F0, за время продолжительности ожидания Ts, больше, чем пороговая величина "X", для каждого способа, демонстрирующегося на чертежах, от Фиг. 5А до Фиг. 5В, в соответствии с вариантом воплощения настоящего изобретения; и,

Фиг. 7 представляет собой схему, демонстрирующую сокращенную синхронизацию (short sync), перед приемом СССН, использующую пакеты FB, пакеты SB, или пакеты NB, за временной промежуток TW, для каждого способа, демонстрирующегося на чертежах, от Фиг. 5А до Фиг. 5В, в соответствии с вариантом воплощения настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Чтобы объяснить технические признаки настоящего изобретения, сначала предоставляется обсуждение для того, чтобы описать образцовую сеть 100 беспроводного информационного взаимодействия, которая включает в себя разнообразные беспроводные устройства 1041, 1042, 1043 … 104n, каждое из которых выполняется с возможностями в соответствии с настоящим раскрытием (смотрите Фиг. 1). Затем, обсуждение предоставляется для того, чтобы объяснить функциональные возможности и конфигурацию беспроводных устройств 1041, 1042, 1043 … 104n, в соответствии с настоящим раскрытием (смотрите чертежи, от Фиг. 2 до Фиг. 3). После этого, обсуждение предоставляется для того, чтобы объяснить, более подробно, различные концепции, сопутствующие с функциональными возможностями и конфигурацией беспроводных устройств 1041, 1042, 1043 … 104n настоящего раскрытия (смотрите чертежи, от Фиг. 4 до Фиг. 7).

Образцовая сеть 100 беспроводного информационного взаимодействия

Со ссылкой на Фиг. 1, там демонстрируется образцовая сеть 100 беспроводного информационного взаимодействия, в соответствии с настоящим изобретением. Сеть 100 беспроводного информационного взаимодействия включает в себя разнообразные узлы, 1021 и 1022, беспроводного доступа (только два демонстрируются), разнообразные беспроводные устройства 1041, 1042, 1043 … 104n, и базовую сеть 106 (например, базовая сеть 106 EGPRS). Сеть 100 беспроводного информационного взаимодействия, и ее сопутствующие компоненты, также включают в себя много хорошо известных компонент, но, для ясности изложения, только компоненты, необходимые для того, чтобы описывать признаки настоящего изобретения, описываются в настоящем документе. В дальнейшем, сеть 100 беспроводного информационного взаимодействия описывается, в настоящем документе, как представляющая собой сеть 100 GSM/EGPRS беспроводного информационного взаимодействия, которая также известна как сеть 100 EDGE беспроводного информационного взаимодействия. Однако специалисты в данной области техники без труда оценят по достоинству то, что методики настоящего изобретения, которые применяются к сети 100 GSM/EGPRS беспроводного информационного взаимодействия, вообще говоря, являются приспособляемыми и к другим типам систем беспроводного информационного взаимодействия, включающие в себя, например, WCDMA, LTE, и системы WiMAX.

Сеть 100 беспроводного информационного взаимодействия включает в себя узлы, 1011 и 1022, беспроводного доступа (только два демонстрируются), которые предоставляют сетевой доступ к беспроводным устройствам 1041, 1042, 1043 … 104n. В этом примере, узел 1021 беспроводного доступа предоставляет сетевой доступ к беспроводному устройству 1041, в то время как узел беспроводного доступа 1022 предоставляет сетевой доступ к беспроводным устройствам 1042, 1043 … 104n. Узлы, 1021 и 1022, беспроводного доступа соединяются с базовой сетью 106 (например, базовая сеть 106 EGPRS). Базовая сеть 106 соединяется с внешней сетью 108 передачи пакетных данных (PDN), такой как сеть Интернет, и сервером 110 (только один демонстрируется). Беспроводные устройства 1041, 1042, 1043 … 104n могут информационно взаимодействовать с одним, или больше серверов 110 (только один демонстрируется), соединенных с базовой сетью 106 и/или PDN 108.

Беспроводные устройства 1041, 1042, 1043 … 104n могут относиться, в общем смысле, к оконечному терминалу (пользователю), который присоединяется к сети беспроводного информационного взаимодействия 100, и могут относиться либо к устройству МТС, либо к устройству без МТС. В дальнейшем, термин "беспроводное устройство", в общем смысле, предназначается, чтобы быть синонимическим с термином "устройство пользователя", или UE, так как этот термин используется международным партнерским проектом 3его поколения (3GPP), и включает в себя автономные беспроводные устройства, такие как терминалы, сотовые телефоны, смартфоны, планшеты, и цифровые персональные секретари с беспроводным оснащением, так же как и платы беспроводной связи или модули беспроводной связи, которые разрабатываются для присоединения к другому электронному устройству (или для вставки в него), такому как персональный компьютер, электроизмерительный прибор, и т.д.

Аналогичным образом, узлы, 1021 и 1022, беспроводного доступа могут относиться, в общем смысле, к базовой станции, или к центральному узлу, в сети 100 беспроводного информационного взаимодействия, и могут относиться к узлам, 1021 и 1022, беспроводного доступа, которыми управляет физически обособленный контроллер радиосети, так же как и к более автономным точкам доступа, таким как, так называемые, развитые узлы В (eNodeBs) в сети долгосрочного развития (LTE).

Каждое беспроводное устройство 1041, 1042, 1043 … 104n может включать в себя контур приемопередатчиков 1101, 1102, 1103 … 110n, для того, чтобы информационно взаимодействовать с узлами, 1021 и 1022, беспроводного доступа, и контур обработки данных 1121, 1122, 1123 … 112n, для того, чтобы обрабатывать сигналы, принимаемые контуром приемопередатчиков 1101, 1102, 1103 … 110n (и передаваемые от него), для того, чтобы управлять деятельностью соответствующего беспроводного устройства 1041, 1042, 1043 … 104n. Контур приемопередатчиков 1101, 1102, 1103 … 110n может включать в себя передатчик 1141, 1142, 1143 … 114n и приемник 1161, 1162, 1163 … 116n, которые могут действовать согласно любому стандарту, например, стандарту GSM/EDGE. Контур обработки данных 1121, 1122, 1123 … 112n может включать в себя процессор 1181, 1182, 1183 … 118n и запоминающее устройство 1201, 1202, 1203 … 120n, для того, чтобы сохранять программную инструкцию для того, чтобы управлять деятельностью соответствующего беспроводного устройства 1041, 1042, 1043 … 104n. Программная инструкция может включать в себя инструкцию, для того, чтобы выполнять процедуры (например, вычисление интервала сокращенной синхронизации (short sync up interval), прогнозирование отклонения локального временного устройства, определение того, имеются ли в наличии пакеты FCCH или SCH, выявление ожидаемой частотной коррекции, определение того, превышает ли накапливаемый дрейф частоты пороговую величину, и определение того, выполнять ли промежуточную сокращенную синхронизацию (несколько синхронизаций) или расширенную сокращенную синхронизацию) как это описывается в настоящем документе в дальнейшем (например, смотрите Фиг. 2).

Каждый узел беспроводного доступа, 1021 и 1022, может включать в себя контур приемопередатчиков, 1221 и 1222, для того, чтобы информационно взаимодействовать с беспроводными устройствами 1041, 1042, 1043 … 104n, контур обработки данных, 1241 и 1242, для того, чтобы обрабатывать сигналы, принимаемые контуром приемопередатчиков, 1221 и 1222 (и передаваемые от него) и для того, чтобы управлять деятельностью соответствующего узла беспроводного доступа, 1021 и 1022, и сетевой интерфейс, 1261 и 1262, для того, чтобы информационно взаимодействовать с базовой сетью 106. Контур приемопередатчиков, 1221 и 1222, может включать в себя передатчик, 1281 и 1282, и приемник 1301 и 1302, которые могут действовать на основании любого стандарта, например, стандарта GSM/EDGE. Контур обработки данных, 1241 и 1242, может включать в себя процессор, 1321 и 1322, и запоминающее устройство, 1341 и 1342, для того, чтобы сохранять программную инструкцию, для того, чтобы управлять эксплуатацией соответствующего узла беспроводного доступа, 1021 и 1022 Программная инструкция может включать в себя инструкцию для того, чтобы выполнять, одну, или больше, из процедур, как описано в настоящем документе.

Функциональные возможности и конфигурация беспроводных устройств 1041, 1042, 1043 … 104n

Со ссылкой на Фиг. 2, там представлена схема последовательных действий способа 200 в беспроводном устройстве 1041 (например), которое выполняется с возможностью цикла 400 прерывистого приема (DRX), который содержит цикл 402 достижимости, цикл 404 ожидания, и цикл 406 синхронизации, в соответствии с вариантом воплощения настоящего раскрытия (смотрите Фиг. 4, для графической демонстрации цикла 400 DRX, содержащего цикл 402 достижимости, цикл 404 ожидания, и цикл 406 синхронизации). Начиная с этапа 202, беспроводное устройство 1041, в течение цикла 402 достижимости, вычисляет время (TW) (например, количество времени TW, необходимого) для цикла 406 синхронизации, в течение которого должна выполняться процедура 201 синхронизации (также упоминаемая в настоящем документе как сокращенная синхронизация (short syncup, short sync, short synch, и/или short sync). В одном примере, этап 202 вычисления содержит этапы 202а, 202b, и 202с, хотя другие примеры процедуры 201 синхронизации могут содержать подмножество или надмножество этих этапов, возможно, в комбинации с другими этапами. На этапе 202а, беспроводное устройство 1041 оценивает совокупный накапливаемый дрейф частоты цикла 404 ожидания (например, совокупный накапливаемый дрейф частоты, который происходит в течение цикла 404 ожидания), при этом совокупный накапливаемый дрейф частоты равен Δf*TS, при этом Δf представляет собой дрейф частоты, на единицу времени, локального генератора 205 колебаний (LO) (например, дрейф частоты, свойственный эксплуатационным показателям генератора 205 колебаний) в беспроводном устройстве 1041, и при этом TS представляет собой оцениваемую продолжительность цикла 404 ожидания. Дрейф частоты также упоминается в настоящем документе как "смещение частот", "FO", "погрешность частот", и/или "отклонение частот". Продолжительность времени также упоминается в настоящем документе как "временное окно", "временной период" и/или "временной интервал". Следует обратить внимание, что значение, оцениваемое для TS, может регулироваться для следующей итерации способа 200, на основе того, что, как беспроводное устройство 1041 определяет, как являющееся номинальным количеством времени TW, требующимся для цикла 406 синхронизации. На этапе 202b, беспроводное устройство 1041 вычисляет количества пакетов FB, SB, и NB (например, количества пакетов FB, SB, и NB, которые необходимо), которые следует принимать для того, чтобы сделать возможной коррекцию оцениваемого совокупного накапливаемого дрейфа частоты. На этапе 202 с, беспроводное устройство 1041 вычисляет время (TW) для цикла 406 синхронизации на основе (1) известной структуры кадра, которая указывает, сколько пакетов FB, SB, и NB ожидается (например, количество, которое, как можно ожидать, произойдет, появится, или следует принимать) в течение некоторого периода времени, (2) известного объема дрейфа частоты, который может корректироваться при каждом приеме пакета FB, SB, и NB, и (3) вычисляемых количеств пакетов FB, SB, и NB, которые следует принимать для того, чтобы сделать возможной коррекцию оцениваемого совокупного накапливаемого дрейфа частоты. Цикл 402 достижимости происходит перед циклом 404 ожидания, который происходит перед циклом 406 синхронизации. Этап 202 вычисления обсуждается более подробно ниже, по отношению к чертежам, от Фиг. 4 до Фиг. 7.

На этапе 204, беспроводное устройство 1041 настраивает таймер, с помощью времени (Td), на основе вычисляемого времени Tw, чтобы пробуждаться от цикла 404 ожидания и выполнять процедуру 201 синхронизации. В одном примере, процедура 201 синхронизации содержит этапы 204а, 204b, 204с, 204d, 204е, и 204f, хотя другие примеры процедуры 201 синхронизации могут содержать подмножество или надмножество этих этапов, возможно, в комбинации с другими этапами. На этапе 204а, беспроводное устройство 1041 синхронизирует частоту и время с сотой дислокации (например, узел беспроводного доступа 1021 на Фиг. 1). На этапе 204b, беспроводное устройство 1041 определяет, принимает ли беспроводное устройство 1041 сигнал, сопутствующий с сотой предшествующей дислокации или с сотой новой дислокации, проверяя SB (то есть, более определенно, проверяя значение порции цветового кода базовой станции (ВСС) идентификационного кода Базовой станции (BSIC) пакета SB, которое указывает номер кода тренировочной последовательности (TSC)), или проверяя номер TSC в любом принимаемом пакете NB. На этапе 204с, беспроводное устройство 1041 принимает синфазно-квадратурную (I, Q) выборку. На этапе 204d, беспроводное устройство 1041 оценивает значение индикатора мощности принимаемого сигнала (RSSI), используя принимаемую синфазно-квадратурную выборку (I, Q). На этапе 204е, беспроводное устройство 1041 проверяет, удовлетворяется ли критерий С1/С2, используя оцениваемое значение RSSI. На этапе 204f, беспроводное устройство 1041 регламентирует считывание общего канала управления (СССН) или обновление области маршрутизации (RAU), в течение следующего цикла 402 достижимости, если критерий С1/С2 будет удовлетворен. С1 является параметром потерь в тракте передачи, являющимся критерием для выбора соты, и С2 является параметром потерь в тракте передачи, являющимся критерием для повторного выбора соты, параметры получаются путем исчисления уровня приема и некоторого количества параметров. Критерий С1/С2 представляет собой потери в тракте передачи для критерия выбора/повторного выбора соты. С1 и С2 обсуждаются, например, в технических спецификациях (TS) 3GPP 43.022 V11.0.0, с названием "Функциональные возможности, относящиеся к мобильной станции (MS) в нерабочем режиме и в режиме группового приема" (Выпуск 11) (3GPP Technical Specification (TS) 43.022 V11.0.0, entitled "Functions related to Mobile Station (MS) in idle mode and group receive mode (Release 11)"). Процедура 201 синхронизации обсуждается ниже, более подробно, по отношению к чертежам, от Фиг. 4 до Фиг. 7.

На этапе 206, беспроводное устройство 1041 пробуждается один, или больше, раз в течение цикла 404 ожидания, чтобы выполнять, одну, или больше, из процедур 203 промежуточных синхронизаций (также упоминаемых в настоящем документе как "intermediate short sync up", "intermediate short synch" и/или "intermediate short sync"), когда оцениваемый совокупный накапливаемый дрейф частоты, определенный на этапе 202а, превышает заранее определяемую пороговую величину "X". В одном случае, на этапе 206а, беспроводное устройство 1041 может определять, когда выполнять каждую, из одной, или больше процедур 203 промежуточных синхронизаций, на основе мобильности беспроводного устройства 1041. Определение того, когда пробуждаться, чтобы выполнять процедуру 203 промежуточных синхронизаций, обсуждается ниже, более подробно, по отношению к чертежам, от Фиг. 4 до Фиг. 7.

Со ссылкой на Фиг. 3, там представлена блок-схема, демонстрирующая структуры образцового беспроводного устройства 1041 (например), которое выполняется с возможностями в соответствии с вариантом воплощения настоящего раскрытия. В варианте воплощения, беспроводное устройство 1041 может содержать модуль 302 вычисления TW, модуль 304 настройки таймера с помощью времени Td, и модуль 306 промежуточных пробуждений. Модуль 302 вычисления TW может выполняться с возможностью вычислять, в течение цикла 402 достижимости, время (TW) (например, количество времени TW, необходимое) для цикла 406 синхронизации, в течение которого должна выполняться процедура 201 синхронизации. В одном примере, модуль 302 вычисления TW может выполняться с возможностью (1), оценивать совокупный накапливаемый дрейф частоты цикла 404 ожидания (например, совокупный накапливаемый дрейф частоты, который происходит в течение цикла 404 ожидания), при этом совокупный накапливаемый дрейф частоты равен Δf*TS, при этом Δf представляет собой дрейф частоты, на единицу времени, генератора 205 колебаний (например, дрейф частоты, свойственный эксплуатационным показателям генератора 205 колебаний) в беспроводном устройстве 1041, и при этом TS представляет собой оцениваемую продолжительность цикла 404 ожидания; (2) вычислять количества пакетов FB, SB, и NB (например, количества пакетов FB, SB и NB, которые необходимо), которые следует принимать для того, чтобы сделать возможной коррекцию оцениваемого совокупного накапливаемого дрейфа частоты; и (3) вычислять время (TW) для цикла 406 синхронизации на основе (i) известной структуры кадра, которая указывает, сколько пакетов FB, SB, и NB ожидается (например, количество, которое, как можно ожидать, происходит, появляется, или следует принимать) в течение некоторого периода времени, (ii) известного объема дрейфа частоты, который может корректироваться при каждом приеме пакета FB, SB, и NB, и (iii) вычисляемых количеств пакетов FB, SB, и NB, которые следует принимать для того, чтобы сделать возможной коррекцию оцениваемого совокупного накапливаемого дрейфа частоты. Модуль 304 настройки таймера, с помощью времени Td, может выполняться с возможностью настраивать таймер, с помощью времени (Td), на основе вычисляемого времени (TW), чтобы пробуждаться от цикла 404 ожидания и выполнять процедуру 201 синхронизации. Следует обратить внимание, что длительность TW определяется на основе потребности того, чтобы процедура 201 синхронизации в течение TW, с высокой вероятностью, достигала успеха, избегая обращения к использованию процедуры длительной синхронизации (long sync procedure) (то есть, к общеупотребительному способу для того, чтобы устанавливать синхронизацию). Модуль 306 промежуточных пробуждений может конфигурировать таймер, с помощью времени Tint, чтобы пробуждаться один, или больше, раз в течение цикла 404 ожидания, чтобы выполнять, одну, или больше, из процедур 203 промежуточных синхронизаций, когда оцениваемый совокупный накапливаемый дрейф частоты, претерпеваемый в течение TS, превышает заранее определяемую пороговую величину "X". Это затем поможет обеспечивать то, что, с высокой вероятностью, совокупный накапливаемый дрейф частоты, который существует в конце цикла 404 ожидания, может успешно корректироваться в течение TW, избегая того, что беспроводное устройство 1041, будет вынуждено обращаться к использованию процедуры длительной синхронизации.

Как оценят по достоинству специалисты в данной области техники, вышеописанные модули 302, 304, и 306 из беспроводного устройства 1041 (например) могут осуществляться, по отдельности, как подходящие специализированные контуры. Дополнительно, модули, 302, 304 и 306, могут также осуществляться, используя любое количество специализированных контуров, с помощью функционального комбинирования или разделения. В некоторых вариантах воплощения, модули, 302, 304 и 306, могут даже объединяться в единственной специализированной интегральной микросхеме (ASIC). В качестве альтернативного, основанного на программном обеспечении, варианта осуществления, беспроводное устройство 1041 (например) может содержать запоминающее устройство 1201 и процессор 1181 (включающие в себя, и, не ограничиваясь этим, микропроцессор, микроконтроллер или процессор обработки цифровых сигналов (DSP, digital signal processor), и т.д.), и приемопередатчик 1101. Запоминающее устройство 1201 сохраняет машиночитаемую программную инструкцию, исполняемую процессором 1181, чтобы побуждать беспроводное устройство 1041 (например) выполнять вышеописанный способ 200. Следует оценивать по достоинству то, что другое беспроводное устройство 1042, 1043 … 104n может также выполняться с подобными возможностями и выполнять вышеописанный способ 200.

Подробные функционал