Системы и способы выбора и конфигурирования схемы модуляции и кодирования
Иллюстрации
Показать всеИзобретение относится к области технологии беспроводной мобильной связи и предназначено для увеличения зоны покрытия, используя устройство пользователя (UE) в схемах развертывания малой соты, и обеспечения возможности использования схем модуляции более высокого порядка для передачи данных по нисходящей линии связи. Устройство для использования в UE содержит один или более блоков обработки для декодирования сообщения уровня управления радиоресурсами (RRC), указывающего на наличие вторичной таблицы модуляции и схемы кодирования (MCS), причем вторичная MCS таблица содержит запись, соответствующую схеме 256-квадратурной амплитудной модуляции (QAM); декодирования управляющей информации нисходящей линии связи (DCI) в физическом канале управления нисходящей линии связи (PDCCH), причем DCI имеет DCI формат; и выбора одной из MCS таблицы по умолчанию и вторичной MCS таблицы на основании наличия вторичной MCS таблицы и DCI формата. 5 н. и 20 з.п. ф-лы, 8 табл., 9 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к выбору и конфигурированию схемы модуляции и кодирования для осуществления коммуникации по сети мобильной связи.
Краткое описание чертежей
Фиг. 1 представляет собой блок-схему, иллюстрирующую примерную систему беспроводной связи.
Фиг. 2 представляет собой блок-схему примерных компонентов устройства пользователя (UE).
Фиг. 3 представляет собой блок-схему примерных компонентов базовой станции.
Фиг. 4 иллюстрирует блок-схему, показывающую период неоднозначности
Фиг. 5 представляет собой блок-схему алгоритма, иллюстрирующую способ определения и отчетности индикатора качества канала.
Фиг. 6 схематично изображает блок-схему алгоритма, иллюстрирующую способ конфигурирования схемы модуляции и кодирования для беспроводной связи.
Фиг. 7 схематично изображает блок-схему алгоритма, иллюстрирующую способ индикации качества канала.
Фиг. 8 схематично изображает блок-схему алгоритма, иллюстрирующую способ конфигурирования схемы модуляции и кодирования во время периода неоднозначности.
Фиг. 9 показывает блок-схему беспроводного устройства (например, UE) в соответствии с примером.
Подробное описание предпочтительных вариантов осуществления
Далее приведено подробное описание систем и способов в соответствии с вариантами осуществления настоящего изобретения. Хотя описаны только некоторые варианты осуществления, следует понимать, что настоящее изобретение не ограничено каким-либо одним вариантом осуществления, но вместо этого, включает в себя многочисленные альтернативные варианты, модификации и эквиваленты. Кроме того, многочисленные конкретные детали изложены в последующем описании для обеспечения полного понимания вариантов осуществления, раскрытых в данном документе, однако, некоторые варианты осуществления могут применяться на практике без некоторых или всех этих деталей. Более того, с целью ясности, некоторые технические материалы, которые известны в предшествующем уровне техники, не были описаны подробно, с целью упрощения описания.
Технология беспроводной мобильной связи используют различные стандарты и протоколы для передачи данных между узлом (например, передающая станция или приемопередатчик узла) и беспроводным устройством (например, устройство мобильной связи). Некоторые устройства беспроводной связи используют множественный доступ с ортогональным частотным разделением каналов (OFDMA) при передаче данных по нисходящей линии связи (DL) и множественный доступ с частотным разделением на одной несущей (SC-FDMA) при передаче данных по восходящей линии связи (UL). Стандарты и протоколы, которые используют мультиплексирование с ортогональным частотным разделением каналов (OFDM) для передачи сигналов, включают в себя стандарт проекта партнерства третьего поколения (3GPP) долгосрочного развития (LTE) релиз 8, 9 и 10, Институт инженеров по электротехнике и электронике (IEEE) 802.16 (например, 802.16e, 802.16m), который обычно известен промышленным группам, как стандарт WiMAX (глобальная совместимость для микроволнового доступа), и стандарт IEEE 802.11-2012, который широко известен промышленным группам, как Wi-Fi.
В 3GPP сети радиодоступа (RAN) LTE системы, узел может представлять собой комбинацию узла Bs усовершенствованной универсальной наземной сети радиодоступа (E-UTRAN) (также обычно называется, как развитый узел Вs, усовершенствованный узел Bs, eNodeBs, или еNBs) и контроллеров радиосети (RNCs), которые поддерживают связь с беспроводным устройством, известным как устройство пользователя (UE). Передачи данных по нисходящей линии связи (DL) могут осуществляться от узла (например, еNB) на беспроводное устройство (например, UE), и передачи данных по восходящей линии связи (UL) могут осуществляться от беспроводного устройства к узлу.
В однородных сетях узел, называемый также макроузел или макросота, может обеспечить основное покрытие беспроводной связи для беспроводных устройств в соте. Сота может быть областью, в которой беспроводные устройства выполнены с возможностью устанавливать связь с макроузлом. Гетерогенные сети (HetNets) могут быть использованы для обработки повышенной нагрузки трафика на макроузлах благодаря увеличению использования и функциональности беспроводных устройств. HetNets может включать в себя уровень запланированных макроузлов высокой мощности (макро-еNBs или макросоты), с перекрытием уровней узлов малой мощности (малые соты, малые еNBs, микро-еNBs, пико-еNBs, фемто-еNBs или исходные еNBs [ HeNBs]), которые могут быть развернуты в менее хорошо спланированной, или даже полностью не координируемой в пределах зоны покрытия (соты) макроузла. Узлы малой мощности обычно могут упоминаться как "малые соты", малые узлы или маломощные узлы.
В дополнение к увеличению зоны покрытия и/или уровня нагрузки, близость к узлу и благоприятная геометрия, используемая UEs в некоторых схемах развертывания малой соты, обеспечивается возможность использования схем модуляции более высокого порядка для передачи данных по нисходящей линии. Например, современные схемы модуляции в 3GPP обеспечивают пиковую скорость передачи при 64 квадратурной амплитудной модуляции (QAM), в то время, как улучшенная близость и геометрия может позволить осуществить 256-QAM. Тем не менее, поддержка дополнительной схемы модуляции может, в некоторых предложениях, включать в себя изменения в форматах управляющей сигнализации нисходящей линии связи для индикации схемы модуляции и кодирования (MCS) 256-QAM, а также изменение в форматах сигнализации информации управления восходящей линии связи (UCI) для сообщения индикатора качества канала (CQI) для качества линии связи, соответствующей 256-QAM. В некоторых случаях прямое расширение существующей сигнализации путем добавления дополнительных битов в соответствующие поля информации управления нисходящей и восходящей линии связи не желательно, из-за наличия дополнительной служебной сигнализации и потенциального негативного влияния на покрытие восходящей линии связи для некоторых управляющих сообщений восходящей линии связи (например, физический канал управления восходящей линии связи [PUCCH]).
Система беспроводной связи может значительно повысить свою производительность, например, увеличить пропускную способность и уменьшить задержку передачи пакетов, путем адаптации MCS в соответствии с текущим состоянием канала. Например, MCS может учитывать отношение сигнал-шум (SNR) или отношение сигнал-помеха-плюс-шум (SINR) при определении того, который MCS нужно использовать. Адаптивный выбор MCS часто называют адаптивной модуляцией и кодированием (AMC).
В настоящее время в FTE UT оценивает текущее состояние канала и выбирает значение CQI, соответствующее текущему состоянию. Четырех-разрядная CQI таблица, которая содержит 16 MCSs, определяется в спецификации в таблице 7.2.3-1 3GPP TS 36.213. UE выбирает один MCS из 16 MCSs, который считается наиболее подходящим (или максимально поддерживаемым) для текущего состояния канала нисходящей линии связи. UE обеспечивает выбранное CQI значение для еNB, которое соответствует выбранному MCS. Индексы CQI для каждого из 16 MCSs определены в CQI таблице.
еNB затем использует CQI индекс для выбора MCS для передачи данных, такой как передача по физическому совместно используемому каналу нисходящей линии связи (PDSCH). еNB выбирает MCS из таблицы MCS, определенной в таблице 7.1.7.1-1 3GPP TS 36.213. MCS индекс (IMCS), соответствующий выбранному MCS, передается в UE по физическому каналу управления нисходящей линии связи (PDCCH) и использует MCS для соответствующей коммуникации. UE использует IMCS значение, принятое в формате информации управления нисходящей линии связи (DCI) совместно с таблицей, закодированной в спецификации (в частности, таблица 7.1.7.1-1), для определения порядка (Qm) модуляции и размера транспортного блока (TBS), используемого в PDSCH. UE может затем принимать и декодировать PDSCH на основании определенного порядка модуляции и размера транспортного блока.
Как уже упоминалось выше, развертывание малых сот, как ожидается, повышает пропускную способность системы LTE за счет разделения величины эффективности соты, и обеспечивает для HOM, например, 256-QAM для PDSCH. Тем не менее, в настоящее время (или унаследованный вариант), CQI таблица (таблица 7.2.3-1) и текущая (или унаследованная) MCS таблица (7.1.7.1-1) поддерживают только до 64 QAM. Таким образом, новая CQI таблица и новая таблица MCS должны быть определены для поддержки более высоких MCSs с 256 QAM в новой версии спецификации LTE. Используемые здесь термины "НОМ-CQI таблица" и "НОМ-MCS таблица" могут использоваться для ссылки на новые или улучшенные таблицы, которые поддерживают 256 QAM. Обратите внимание, что изменение текущей CQI таблицы и текущей MCS таблицы может ингибировать работу унаследованных UEs и унаследованных еNBs, которые не знают о существовании НОМ-CQI таблицы и HOM-MCS таблицы.
На основании вышеизложенного и в свете настоящего описания, можно видеть, что прямое расширение существующего MCS и CQI таблиц с дополнительными записями, соответствующими 256-QAM, потребует дополнительного бита для каждого из IMCS и CQI параметров. Тем не менее, это изменение потребует изменений в форматах управляющей сигнализации нисходящей линии связи и восходящей линии связи. В настоящем описании, мы предлагаем различные способы, которые обеспечивают конфигурацию 256-QAM сигнализации между базовой станцией и UE. В одном варианте осуществления размеры таблиц, используемые для индикации IMCS и CQI, поддерживаются таким образом, что нет необходимости в определении нового DCI формата и CQI отчетности. В одном варианте осуществления определяются два набора CQI таблиц и MCS таблиц.
В одном варианте осуществления UE включает в себя компонент таблицы, компонент выбора таблицы, компонент информации управления и компонент связи. Компонент таблицы выполнен с возможностью поддерживать две таблицы или более, каждая из которых имеет записи для множества доступных схем модуляции. Две таблицы или более включают в себя таблицу по умолчанию (такую как CQI унаследованную таблицу или MCS таблицу) и вторичную таблицу (такую как HOM-CQI таблицу или HOM-MCS таблицу), в котором таблица по умолчанию и вторичная таблица имеют одинаковое число записей. Вторичная таблица может содержат запись, соответствующую 256-QAM схеме. Компонент выбора таблицы выполнен с возможностью выбирать выбранную таблицу из одной из таблиц по умолчанию и вторичной таблицы. Компонент выбора таблицы использует таблицу по умолчанию как стандарт и выбирает вторичную таблицу в ответ на передачу сообщения из eNB, указывающее на выбор вторичной таблицы, например, посредством сигнализации уровня управления радиоресурсами (RRC) или сигнализацией уровня управления доступом к среде (МАС). Компонент выбора таблицы дополнительно выполнен с возможностью выбирать таблицу по умолчанию на основании формата информации управления для информации управления, принятой из eNB. Компонент информации управления выполнен с возможностью принимать информацию управления, указывающую на MCS, из выбранной таблицы, и компонент связи выполнен с возможностью принимать и обрабатывать сообщения от еNB, на основании MCS из выбранной таблицы.
В некоторых вариантах осуществления настоящего изобретения UE или еNB поддерживают весь спектр схем модуляции (от QPSK до 256-QAM) без каких-либо изменений в формате сигнализации для каналов управления нисходящей линии связи и восходящей линии связи (т.е. без нового DCI и UCI форматов). Кроме того, предложенные варианты осуществления обеспечивают эффективный механизм переключения между унаследованными и НОМ таблицами в зависимости от состояния канала нисходящей линии связи. Например, они устойчивы к ситуациям, в которых состояние канала UE внезапно ухудшается. В одном варианте осуществления предложен способ MCS индексации, который обеспечивает еNB большую гибкость при выборе MCSs для PDSCH передач и устраняет потенциальное несоответствие таблиц во время RRC или MCS периода неоднозначности. В одном варианте осуществления осуществляются CQI отчеты о несоответствии, основанные на раскрытых правилах индексации для таблицы НОМ-CQI таблицы. Кроме того, один из вариантов осуществления позволяет использовать максимальный размер памяти софт-буфера UE, сконфигурированного для НОМ, который может повысить производительность за счет дополнительных преимуществ кодирования.
В данном описании термины "узел" и "сота" оба предназначены для использования как синонимы и относятся к точке беспроводной передачи, выполненной с возможностью устанавливать связь с множеством устройств пользователя, таким как еNB, маломощный узел или другая базовая станция.
На фиг. 1 представлена схема, иллюстрирующая узлы в RAN. RAN включает в себя еNB 102, который предоставляет услуги беспроводной связи в пределах зоны 104 покрытия макросоты. В пределах зоны 104 покрытия макросоты находятся две малые соты 106, 108, которые могут быть использованы для улучшения функциональных возможностей в зонах интенсивного использования, позволяя макросоте разгрузить нагрузку сот 106, 108. Другая малая сота 110 показана, как находящаяся на границе зоны 104 покрытия. Малые соты 106, 108 и 110 обеспечивают покрытие в зонах 114 покрытия малой соты, которые могут быть использованы для заполнения пробела в зоне 104 покрытия макросоты, и на краю границ между зоной 104 покрытия макросоты, как показано на фиг. 1. еNB 102 и малые соты обеспечивают услуги связи для одного или более UEs 112. В одном варианте осуществления еNB 102 и малые соты 106, 108 и 110 координирует связь, выполняют процедуру хендовера и другие услуги связи, как показано стрелками 116.
Несмотря на то что проиллюстрированы только три малые соты 106, 108, 110 в зоне 104 покрытия макросоты еNB 102, зона покрытия макросоты может включать в себя сотни малых узлов. Например, малые узлы, сконфигурированные как HeNBs, могут быть расположены в сотнях домов, которые находятся в пределах зоны покрытия одного макроузла. Аналогичным образом, в пределах одной RAN может быть комбинация из разреженных и плотных схем развертываний малых сот. В одном варианте осуществления одна или более малых сот 106, 108, 110 развернуты независимо от макроузла. Аналогичным образом, одна или несколько малых сот могут быть расположены таким образом, что не существует никакого перекрытия с зоной 104 покрытия макроузла.
В соответствии с одним из вариантов осуществления еNB 102 или другие контроллеры для макросоты, малые соты 106, 108 и 110 выполнены с возможностью варьировать МCS, используемый для связи с UEs 112. Например, МCS, используемый для связи с конкретным UE 112, может изменяться в зависимости от текущего качества канала. Как уже говорилось выше, из-за уменьшения расстояния и улучшения геометрии UEs 112 могут быть способны осуществлять связь с использованием схемы модуляции высшего порядка в пределах малых сот, чем в пределах макросоты. В одном варианте осуществления UE 112 и еNB 102 (или другой RNC), поддерживают или конфигурируют альтернативные таблицы для выбора или указания МCS. Например, еNB 102 может послать сообщение в UE 112, конфигурируя новую таблицу, которая будет использоваться вместо унаследованной таблицы. Новая таблица может включать в себя MCS, который имеет более высокую спектральную эффективность, чем унаследованная таблица. UE 112 может определить, какую таблицу следует использовать для отправки индикаторов качества канала и для интерпретации индикации MCS, который используется для обработки принятых сообщений. Более подробное описание работы и примеры будут обсуждены со ссылкой на оставшиеся чертежи.
На фиг. 2 представлена блок-схема одного варианта осуществления UE 112. UE 112 включает в себя компонент 202 таблицы, компонент 204 выбора таблицы, компонент 206 информации управления, компонент 208 оценки канала, софт-буфер 210, компонент 212 размера софт-буфера, компонент 214 связи. Компоненты 202-214 приведены в качестве только примера и могут быть не включены в состав всех вариантов осуществления изобретения. Некоторые варианты осуществления могут включать в себя любой один или любую комбинацию двух или более компонентов 202-214.
Компонент 202 таблицы выполнен с возможностью сохранять или поддерживать множество таблиц. В одном варианте осуществления компонент 202 таблицы выполнен с возможностью поддерживать таблицы для выбора и указания схем модуляции, скоростей кодирования, размера транспортного блока или тому подобное. В одном варианте осуществления компонент 202 таблицы поддерживает две различные таблицы, которые используются для той же цели. Например, компонент 202 таблицы может хранить таблицу по умолчанию и вторичную таблицу, которая может быть использована вместо таблицы по умолчанию. Таблица по умолчанию может соответствовать предшествующей версии стандарта связи или схемам модуляции, где некоторые UEs 112, которые используют сеть мобильной связи, способны использовать. Например, несколько типов и версий UEs 112 могут быть использованы для получения доступа к сети мобильной связи, и различные типы и варианты могут иметь различные пиковые значения скорости передачи данных или порядок модуляции. В одном из вариантов осуществления, в данном субкадре на данной соте используется только одна из таблиц для конкретного UE. Например, все PDSCHs в пределах данного субкадра могут интерпретироваться на основе той же таблицы для конкретного UE.
Каждая таблица может включать в себя множество записей для различных схем модуляции, которые могут быть использованы UE 112 или еNB 102. В одном варианте осуществления количество записей в каждой таблице соответствует, таким образом, записям, которые могут быть использованы вместо друг друга. В одном варианте осуществления количество записей во вторичной таблице меньше или равно количеству записей в таблице по умолчанию. В одном варианте осуществления таблица по умолчанию включает в себя схемы, которые могут быть использованы любым подключенным UE 112, тогда как вторичная таблица включает в себя схемы модуляций более высокого порядка или схемы, которые могут быть использованы только определенными UEs 112. В одном варианте осуществления вторичная таблица включает в себя схему модуляции, которая имеет НОМ, чем любая из схем в таблице по умолчанию. Например, максимальный порядок модуляции в таблице по умолчанию может быть 64-QAM, в то время как модуляция высокого порядка во вторичной таблице может быть 256- QАМ.
В то время как настоящее изобретение рассматривает таблицы для хранения, конфигурирования и/или выбора схем модуляции, следует понимать, что могут быть использованы и другие типы структур данных или блоки организации, такие как матрицы, массивы или тому подобное. Например, любая структура данных, которая включает в себя наборы модуляции (например, набор схем модуляции по умолчанию и вторичный набор модуляции) может быть использована, которая может быть выбрана для выбора MCS и конфигурации.
В одном из вариантов осуществления таблица по умолчанию и вторичная таблица включают в себя ряд совместно используемых записей. Совместно используемые записи могут соответствовать одной и той же схеме модуляции, такой, по меньшей мере, некоторым схемам модуляции, которые являются общими для обеих таблиц. В одном из вариантов осуществления совместно используемые записи индексируются или располагаются таким образом, что записи, соответствующие тому же MCS, имеют такое же положение или индекс. Индексация того же MCS может помочь избежать возможных недостатков с RRC или неоднозначности MCS, который будет обсуждаться ниже. В одном варианте осуществления вторичная таблица и таблицы по умолчанию включают в себя одну или несколько отдельных записей. Например, запись во вторичной таблице может соответствовать схеме HOM, недоступной из таблицы по умолчанию. Кроме того, таблица по умолчанию может включать в себя схему модуляции, которая не доступна из вторичной таблицы. Разделенные записи могут быть упорядочены по отношению друг к другу. Например, разделенные записи в таблице по умолчанию могут быть организованы в порядке возрастания или убывания по отношению, как к разделенным записям, так и к общим записям таблицы по умолчанию. В качестве примера, CQI значение или значение IMCS может быть одинаковым для той же MCS в обеих таблицах. В одном из вариантов осуществления разделенные записи во вторичной таблице расположены не в порядке возрастания или в порядке убывания по отношению к общим записям, но упорядочены по отношению к другим общим записям. Например, разделенные записи могут быть организованы в порядке возрастания или убывания, или на основании любого другого произвольного правила, основанного на размере транспортного блока и/или порядке модуляции по отношению друг к другу.
В одном варианте осуществления компонент 202 таблицы хранит или поддерживает MCS таблицу. MCS таблица может включать в себя таблицу, используемую для выбора порядка (Qm) модуляции и размера транспортного блока (с использованием ITBS) на основании MCS индекса. Один из примеров MCS таблицы включает в себя таблицу модуляции и TBS индекса для PDSCH (таблица 7.1.7.1-1), определенного в 3GPP TS 36.213, которая была упомянута ранее и представлена ниже как таблица 1.
Таблица 1
MCS Индекс (Imcs) | Порядок модуляции (Qm) | TBS Индекс (Itbs) |
0 | 2 | 0 |
1 | 2 | 1 |
2 | 2 | 2 |
3 | 2 | 3 |
4 | 2 | 4 |
5 | 2 | 5 |
6 | 2 | 6 |
7 | 2 | 7 |
8 | 2 | 8 |
9 | 2 | 9 |
10 | 4 | 9 |
11 | 4 | 10 |
12 | 4 | 11 |
13 | 4 | 12 |
14 | 4 | 13 |
15 | 4 | 14 |
16 | 4 | 15 |
17 | 6 | 15 |
18 | 6 | 16 |
19 | 6 | 17 |
20 | 6 | 18 |
21 | 6 | 19 |
22 | 6 | 20 |
23 | 6 | 21 |
24 | 6 | 22 |
25 | 6 | 23 |
26 | 6 | 24 |
27 | 6 | 25 |
28 | 6 | 26 |
29 | 2 | резерв |
30 | 4 | резерв |
31 | 6 | резерв |
Следует отметить, что таблица 1 индексирована и организована в порядке возрастания (от 0 до 31), основываясь на порядке (Qm) модуляции и индексе (ITBS) размера транспортного блока. В одном из вариантов осуществления, таблица 1 используется в качестве таблицы по умолчанию или как унаследованная таблица, в то время как новая таблица используется в качестве усовершенствованной или вторичной таблицы. Использование таблицы 1 может обеспечить обратную совместимость с существующими UEs 112, которые работают в соответствии с действующими стандартами. В одном варианте осуществления вторичная таблица используется для обеспечения схем модуляции, которые могут быть использованы новыми UEs 112 и последующими версиями. В одном варианте осуществления вторичная таблица включает в себя 256-QAM порядок модуляции (QM = 8). В одном варианте осуществления общее количество записей в каждой таблице по умолчанию и вторичной таблице не превышает 32 для размещения индикации с использованием IMCS в 5-битовое поле.
В одном варианте осуществления несколько вторичных таблиц указываются или поддерживается. Например, любая из вторичных таблиц может быть кандидатом для вторичной (или новой) таблицы. В одном из вариантов осуществления сообщение управления радиоресурсами (RRC) из обслуживающей соты указывает на то, какую таблицу из множества вторичных таблиц следует использовать в качестве вторичной таблицы. В одном из вариантов осуществления один из вторичных таблиц определяются как вторичная таблица по умолчанию. UE 112 может использовать вторичную таблицу по умолчанию в качестве вторичной таблицы, если обслуживающая сота или еNB 102 не указывают иное.
В одном варианте осуществления вторичная таблица включает в себя таблицу MCS, аналогичную таблице 1, с одним или несколькими из записей (например, строки), выгруженную для другой конфигурации. Таблица 2 иллюстрирует один вариант осуществления вторичной таблицы MCS, которая включает в себя общие данные с таблицей 1 (IMCS значения 1, 2, 4, 6, 8, 9, 11-16, 18-26 и 29-31) и раздельные записи (IMCS значения 1, 3, 5, 7, 10, 17, 27 и 28).
Таблица 2
MCS индекс | Порядок модуляцииуляциимоммодуляции | TBS индекс |
(Imcs) | (Om) | (Itbs) |
0 | 2 | 0 |
1 | 8 | 27 |
2 | 2 | 2 |
3 | 8 | 28 |
4 | 2 | 4 |
5 | 8 | 29 |
6 | 2 | 6 |
7 | 8 | 30 |
8 | 2 | 8 |
9 | 2 | 9 |
10 | 8 | 31 |
11 | 4 | 10 |
12 | 4 | 11 |
13 | 4 | 12 |
14 | 4 | 13 |
15 | 4 | 14 |
16 | 4 | 15 |
17 | 8 | 32 |
18 | 6 | 16 |
19 | 6 | 17 |
20 | 6 | 18 |
21 | 6 | 19 |
22 | 6 | 20 |
23 | 6 | 21 |
24 | 6 | 22 |
25 | 6 | 23 |
26 | 6 | 24 |
27 | 8 | 33 |
28 | 8 | резерв |
29 | 2 | резерв |
30 | 4 | резерв |
31 | 6 | резерв |
Таблица 2 иллюстрирует один из вариантов осуществления вторичной или усовершенствованной MCS таблицы, где неразделяемые записи упорядочены по отношению друг к другу, сохраняя при этом тот же индекс для общих записей по отношению к таблице 1. Неразделенные записи неупорядочены по отношению к общим записям, но по-прежнему организованы по отношению друг к другу в порядке возрастания. Таблица 3 иллюстрирует один из вариантов осуществления вторичной или усовершенствованной MCS таблицы, проиндексированной обычным способом (например, все записи переупорядочены/расположены, основываясь на восходящем порядке модуляции и TBS индекса).
Таблица 3
MCS индекс | Порядок | TBS индекс |
(Imcs) | модуляции (Om) | (Itbs) |
0 | 2 | 0 |
1 | 2 | 2 |
2 | 2 | 4 |
3 | 2 | 6 |
4 | 2 | 8 |
5 | 2 | 9 |
6 | 4 | 10 |
7 | 4 | 11 |
8 | 4 | 12 |
9 | 4 | 13 |
10 | 4 | 14 |
11 | 4 | 15 |
12 | 6 | 16 |
13 | 6 | 17 |
14 | 6 | 18 |
15 | 6 | 19 |
16 | 6 | 20 |
17 | 6 | 21 |
18 | 6 | 22 |
19 | 6 | 23 |
20 | 6 | 24 |
21 | 8 | 27 |
22 | 8 | 28 |
23 | 8 | 29 |
24 | 8 | 30 |
25 | 8 | 31 |
26 | 8 | 32 |
27 |