Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты

Иллюстрации

Показать все

Настоящее изобретение относится к биотехнологии, в частности к композиции для продукции целевого полипептида в клетке или ткани млекопитающего и способу получения указанного полипептида в клетке или ткани млекопитающего in vitro с применением такой композиции. Указанная композиция содержит состав в виде наночастиц, содержащих катионный липид, фузогенный липид, холестерин и ПЭГ липид. Указанный состав содержит модифицированную мРНК, кодирующую целевой полипептид. Причём мРНК модифицируют таким образом, что уридин заменяют 1-метилпсевдоуридином. Настоящее изобретение позволяет повысить эффективность доставки мРНК в целевую клетку и при этом снизить иммунный ответ. 2 н. и 12 з.п. ф-лы, 3 ил., 154 табл., 98 пр.

Реферат

ССЫЛКА НА ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

[0001] Настоящая заявка подана вместе с Перечнем последовательностей в электронном формате. Файл с Перечнем последовательностей под названием M11PCTSQLST.txt, был создан 14 декабря 2012 года, и его размер составляет 25579 байт. Информация в электронном формате Перечня последовательностей включена в настоящий документ в полном объеме посредством ссылки.

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0002] Настоящая заявка заявляет приоритет Предварительной заявки США №61/576705, поданной 16 декабря 2011 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/618957, поданной 2 апреля 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/648244, поданной 17 мая 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/681712, поданной 10 августа 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», и Предварительной заявки США №61/696381, поданной 4 сентября 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/709303, поданной 3 октября 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», Предварительной заявки США №61/712490, поданной 11 октября 2012 года, под названием «Составы на основе модифицированного нуклеозида, нуклеотида и нуклеиновой кислоты», и Международной публикации PCT/US 2012/058519, поданной 3 октября 2012 года, под названием «Модифицированные нуклеозиды, нуклеотиды и нуклеиновые кислоты, и их применение», содержание которых включено в данное описание в полном объеме посредством ссылки.

УРОВЕНЬ ТЕХНИКИ

[0003] В общем, экзогенные немодифицированные молекулы нуклеиновой кислоты, конкретно нуклеиновые кислоты вирусов, введенные в клетку, индуцируют природный иммунный ответ, что приводит к выработке цитокинов и интерферона (EFN) и, в конечном итоге, к гибели клетки. Большой интерес в сфере терапевтического, диагностического применения, реагентов и биологических анализов представляет возможность доставлять нуклеиновую кислоту, например, рибонуклеиновую кислоту (РНК), в клетку, например, вызывать внутриклеточную трансляцию нуклеиновой кислоты и выработку кодируемого белка вместо генерации природного иммунного ответа. Таким образом, существует потребность в создании составов препаратов, содержащих агент доставки, который может эффективно облегчать доставку нуклеиновых кислот in vivo в целевые клетки, без генерации природного иммунного ответа.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0004] В настоящем описании раскрываются, среди прочего, составы препаратов, содержащих модифицированные молекулы нуклеиновой кислоты, которые могут кодировать белок, прекурсор белка или частично или полностью процессированную форму белка или прекурсора белка. Составы препаратов могут дополнительно содержать модифицированную молекулу нуклеиновой кислоты и агент доставки. В настоящем изобретении дополнительно раскрываются нуклеиновые кислоты, пригодные для кодирования полипептидов, способных модулировать клеточную функцию и/или активность.

[0005] В одном из аспектов раскрывается способ выработки целевого полипептида в клетке или ткани млекопитающего. Способ включает приведение клетки или ткани млекопитающего в контакт с препаратом, содержащим модифицированную мРНК, кодирующую целевой полипептид. Препарат может представлять собой, без ограничений, наночастицы, микросферы поли(молочной-со-гликолевой кислоты) (ПМГК), липидоиды, липоплекс, липосому, полимеры, углеводы (в том числе, простые сахара), катионные липиды, фибриновый гель, фибриновый гидрогель, фибриновый клей, фибриновый герметик, фибриноген, тромбин, быстро элиминирующиеся липидные наночастицы (бэЛНЧ) и их комбинации. Модифицированная мРНК может содержать очищенный IVT транскрипт.

[0006] В одном варианте реализации состав, содержащий модифицированную мРНК, представляет собой наночастицу, которая может содержать по меньшей мере один липид. Липид может быть выбран из, без ограничений, ДЛин-ДМА, ДЛин-K-ДМА, 98N12-5, С12-200, ДЛин-МС3-ДМА, ДЛин-KC2-ДМА, ДОДМА, ПМГК, ПЭГ, ПЭГ-ДМГ и пегилированных липидов. В другом аспекте липид может представлять собой катионный липид, такой как, без ограничений, ДЛин-ДМА, ДЛин-D-ДМА, ДЛин-МС3-ДМА, ДЛин-KC2-ДМА и ДОДМА.

[0007] Соотношение липида к модифицированной мРНК в составе может составлять от 10:1 до 30:10. Средний размер наночастицы препарата, которая может содержать модифицированную мРНК, составляет от 60 до 225 нм. ИПД наночастиц препарата, содержащего модифицированную мРНК, составляет от 0,03 до 0,15. Зета потенциал липида при рН 7,4 может составлять от -10 до +10.

[0008] Препараты модифицированной мРНК могут содержать фузогенный липид, холестерин и ПЭГ липид. Препарат может содержать молярное соотношение 50:10:38,5:1,5-3,0 (катионный липид:фузогенный липид:холестерин:ПЭГ липид). ПЭГ липид может быть выбран из, без ограничений ПЭГ-к-ДМПО, ПЭГ-ДМГ. Фузогенный липид может представлять собой ДСФХ.

[0009] Приведение в контакт клетки или ткани млекопитающего может быть осуществлено с использованием устройства, например, без ограничений, шприцевого насоса, внутреннего осмотического насоса и внешнего осмотического насоса.

[0010] Препарат модифицированной мРНК может представлять собой микросферы ПМГК, размер которых может составлять от 4 до 20 мкм. Модифицированная мРНК высвобождаться из состава со скоростью менее 50% за период 48 часов. Препарат микросфер ПМГК может быть стабильным в сыворотке. Стабильность можно определить как 90% относительно свободной модифицированной мРНК.

[0011] Массовый процент нагрузки микросфер ПМГК модифицированной мРНК может составлять по меньшей мере 0,05%, по меньшей мере 0,1%, по меньшей мере 0,2%, по меньшей мере 0,3%, по меньшей мере 0,4% или по меньшей мере 0,5%. Эффективность инкапсуляции модифицированной мРНК в микросферы ПМГК может составлять по меньшей мере 50%, по меньшей мере 70%, по меньшей мере 90% или по меньшей мере 97%.

[0012] Липидная наночастица по настоящему изобретению может быть введена в герметик, например, без ограничений, фибриновый герметик.

[0013] Клетки или ткани млекопитающих могут быть приведены в контакт с помощью способа введения, такого как, без ограничений, внутривенный, внутримышечный, в стекловидное тело, интратекальный, в опухоль, легочный и подкожный. Клетки или ткани млекопитающих могут быть приведены в контакт с использованием схемы разделенных доз. Клетка или ткань млекопитающего может быть приведена в контакт посредством инъекции. Инъекция может быть осуществлена в ткань, выбранную из группы, состоящей из: внутрикожного пространства, эпидермиса, подкожной ткани и мышцы. Целевой полипептид может вырабатываться в клетке или ткани, в системной локализации от места контакта.

[0014] Целевой полипептид может обнаруживаться в сыворотке через 72 часа после контакта. Уровень целевого полипептида может быть выше, чем уровни до введения дозы. Уровень целевого полипептида может быть выше в сыворотке субъектов женского пола, чем в сыворотке субъектов мужского пола.

[0015] Препарат модифицированной мРНК может содержать более одной модифицированной мРНК. Препарат может содержать две или три модифицированных мРНК.

[0016] Препарат, содержащий модифицированную мРНК, может содержать быстро элиминирующуюся липидную наночастицу (бэЛНЧ), которая может содержать бэЛНЧ липид, фузогенный липид, холестерин и ПЭГ липид в молярном соотношения 50:10:38,5:1,5 (бэЛНЧ липид:фузогенный липид:холестерин:ПЭГ липид). Фузогенный липид может представлять собой ДСФХ, и ПЭГ липид может представлять собой ПЭГ-к-ДМПО. бэЛНЧ липид может представлять собой ДЛин-ДМА с внутренней или концевой эфирной группой или ДЛин-МС3-ДМА с внутренней или концевой эфирной группой. Массовое соотношение общего липида к модифицированной мРНК может составлять от 10:1 до 30:1.

[0017] Препарат, содержащий модифицированную мРНК, может содержать фибриновый герметик.

[0018] Препарат, содержащий модифицированную мРНК, может содержать липидоид, в котором липид выбран из группы, состоящей из: С12-200 и 98N12-5.

[0019] Препарат, содержащий модифицированную мРНК, может содержать полимер. Полимер может быть покрыт, окружен, охвачен, вложен или содержать слой гидрогеля или хирургического герметика. Полимер может быть выбран из группы, состоящей из: ПМГК, этиленвинилацетата, полоксамера и GELSITE®.

[0020] Целевой полипептид может вырабатываться в клетке или ткани млекопитающего посредством приведения в контакт клетки или ткани млекопитающего с буферным препаратом, содержащим модифицированную мРНК, кодирующую целевой полипептид. Буферный препарат может быть выбран из, без ограничений, раствора соли, буферизованного фосфатом солевого раствора и раствора Рингера с лактатом. Буферный препарат может содержать кальций в концентрации от 1 до 10 мМ. Модифицированная мРНК в буферном препарате может содержать очищенный IVT транскрипт.

[0021] Фармакологический эффект у приматов может быть достигнут посредством приведения примата в контакт с составом, содержащим модифицированную мРНК, кодирующую целевой полипептид. Модифицированная мРНК может содержать очищенный IVT транскрипт и/или может быть введена в наночастицы, микросферы поли(молочной-со-гликолевой кислоты) (ПМГК), липидоиды, липоплекс, липосому, полимеры, углеводы (в том числе, простые сахара), катионные липиды, фибриновый гель, фибриновый гидрогель, фибриновый клей, фибриновый герметик, фибриноген, тромбин, быстро элиминирующиеся липидные наночастицы (бэЛНЧ) и их комбинации. Фармакологический эффект может быть более фармакологическим эффектом, связанным с терапевтическим агентом и/или составом, который доказанно вызывает указанный фармакологический эффект. Состав может содержать модифицированную мРНК, в лекарственной форме или свободную. Результатом фармакологического эффекта может быть терапевтически эффективный исход заболевания, расстройства, состояния или инфекции. Такой терапевтически эффективный исход может включать, без ограничений, лечение, улучшение одного или более симптомов, диагностику, предупреждение и задержку развития. Фармакологический эффект может включать, без ограничений, изменение количества клеток, изменение химических показателей сыворотки, изменение активности фермента, повышение уровня гемоглобина и гематокрита.

[0022] В одном варианте реализации настоящего изобретения предлагается состав препарата, который содержит модифицированную молекулу нуклеиновой кислоты и агент доставки. Модифицированная молекула нуклеиновой кислоты может быть выбрана из группы, состоящей из: ДНК, комплементарной ДНК (кДНК), РНК, матричной РНК (мРНК), индуцирующих иРНК агентов, иРНК агентов, миРНК, РНК-шпильки, миРНК, антисмысловой РНК, рибозимов, каталитической ДНК, РНК, которая индуцирует образование тройной спирали, аптамеров, векторов и их комбинаций. Если модифицированная молекула нуклеиновой кислоты представляет собой мРНК, то мРНК может быть получена из кДНК.

[0023] В одном варианте реализации модифицированная молекула нуклеиновой кислоты может содержать по меньшей мере одну модификацию и транслируемый участок. В некоторых случаях, модифицированная нуклеиновая кислота содержит по меньшей мере две модификации и транслируемый участок. Модификация может быть расположена на скелете и/или нуклеозиде молекулы нуклеиновой кислоты. Модификация может быть расположена на связи нуклеозида и скелета.

[0024] В одном варианте реализации модификация может находиться на скелетной связи в модифицированной молекуле нуклеиновой кислоты. Скелетная связь может быть модифицирована заменой одного или более атомов кислорода. Модификация скелетной связи может включать замену по меньшей мере одной фосфодиэфирной связи фосфоротиоатной связью.

[0025] В одном варианте реализации модификация может находиться в нуклеозиде модифицированной молекулы нуклеиновой кислоты. Модификация в нуклеозиде может находиться в сахарном фрагменте указанного нуклеозида. Модификация нуклеозида может находиться в положении 2' нуклеозида.

[0026] Модификация нуклеозида может включать соединение, выбранное из группы, состоящей из: пиридин-4-он рибонуклеозида, 5-аза-уридина, 2-тио-5-аза-уридина, 2-тиоуридина, 4-тио-псевдоуридина, 2-тио-псевдоуридина, 5-гидроксиуридина, 3-метилуридина, 5-карбоксиметил-уридина, 1-карбоксиметил-псевдоуридина, 5-пропинил-уридина, 1-пропинил-псевдоуридина, 5-тауринометилуридина, 1-тауринометил-псевдоуридина, 5-тауринометил-2-тио-уридина, 1-тауринометил-4-тио-уридина, 5-метил-уридина, 1-метил-псевдоуридина, 4-тио-1-метил-псевдоуридина, 2-тио-1-метил-псевдоуридина, 1-метил-1-дезаза-псевдоуридина, 2-тио-1-метил-1-дезаза-псевдоуридина, дигидроуридина, дигидропсевдоуридина, 2-тио-дигидроуридина, 2-тио-дигидропсевдоуридина, 2-метоксиуридина, 2-метокси-4-тио-уридина, 4-метокси-псевдоуридина, 4-метокси-2-тио-псевдоуридина, 5-аза-цитидина, псевдоизоцитидина, 3-метил-цитидина, N4-ацетилцитидина, 5-формилцитидина, N4-метилцитидина, 5-гидроксиметилцитидина, 1-метил-псевдоизоцитидина, пирроло-цитидина, пирроло-псевдоизоцитидина, 2-тио-цитидина, 2-тио-5-метил-цитидина, 4-тио-псевдоизоцитидина, 4-тио-1-метил-псевдоизоцитидина, 4-тио-1-метил-1-дезаза-псевдоизоцитидина, 1-метил-1-дезаза-псевдоизоцитидина, зебуларина, 5-аза-зебуларина, 5-метил-зебуларина, 5-аза-2-тио-зебуларина, 2-тио-зебуларина, 2-метокси-цитидина, 2-метокси-5-метил-цитидина, 4-метокси-псевдоизоцитидина, 4-метокси-1-метил-псевдоизоцитидина, 2-аминопурина, 2,6-диаминопурина, 7-дезаза-аденина, 7-дезаза-8-аза-аденина, 7-дезаза-2-аминопурина, 7-дезаза-8-аза-2-аминопурина, 7-дезаза-2,6-диаминопурина, 7-дезаза-8-аза-2,6-диаминопурина, 1-метиладенозина, N6-метиладенозина, N6-изопентениладенозина, N6-(цис-гидроксиизопентенил)аденозина, 2-метилтио-N6-(цис-гидроксиизопентенил)аденозина, N6-глицинилкарбамоиладенозина, N6-треонилкарбамоиладенозина, 2-метилтио-N6-треонилкарбамоиладенозина, N6,N6-диметиладенозина. 7-метиладенина, 2-метилтио-аденина, 2-метокси-аденинаинозина, 1-метил-инозина, виозина, вибутозина, 7-дезаза-гуанозина, 7-дезаза-8-аза-гуанозина, 6-тио-гуанозина, 6-тио-7-дезаза-гуанозина, 6-тио-7-дезаза-8-аза-гуанозина, 7-метил-гуанозина, 6-тио-7-метил-гуанозина, 7-метилинозина, 6-метокси-гуанозина, 1-метилгуанозина, N2-метилгуанозина, N2,N2-диметилгуанозина, 8-оксо-гуанозина, 7-метил-8-оксо-гуанозина, 1-метил-6-тио-гуанозина, N2-метил-6-тио-гуанозина и N2,N2-диметил-6-тио-гуанозина. В другом варианте реализации модификации независимо выбраны из группы, состоящей из: 5-метилцитозина, псевдоуридина и 1-метилпсевдоуридина

[0027] В одном варианте реализации модификация может находиться в нуклеиновом основании модифицированной молекулы нуклеиновой кислоты. Модификация нуклеинового основания может быть выбрана из группы, состоящей из: цитозина, гуанина, аденина, тимина и урацила. Модификация нуклеинового основания может быть выбрана из группы, состоящей из дезаза-аденозина и дезаза-гуанозина, и линкер может быть присоединен в положении С-7 или С-8 указанного дезаза-аденозина или дезаза-гуанозина. Модифицированное нуклеиновое основание может быть выбрано из группы, состоящей из: цитозина и урацила, и линкер может быть присоединен к модифицированному нуклеиновому основанию в положении N-3 или С-5. Линкер, присоединенный к нуклеиновому основанию, может быть выбран из группы, состоящей из: диэтиленгликоля, дипропиленгликоля, триэтиленгликоля, трипропиленгликоля, тетраэтиленгликоля, тетраэтиленгликоля, двухвалентного алкила, алкенила, алкинильного фрагмента, сложного эфира, амида и эфирного фрагмента.

[0028] В одном варианте реализации две модификации молекулы нуклеиновой кислоты могут быть расположены на нуклеозидах модифицированной молекулы нуклеиновой кислоты. Модифицированные нуклеозиды могут быть выбраны из 5-метилцитозина и псевдоуридина.

[0029] В одном варианте реализации две модификации модифицированной молекулы нуклеиновой кислоты могут быть расположены на нуклеотиде или нуклеозиде. В одном варианте реализации настоящего изобретения раскрывается препарат, содержащий молекулу нуклеиновой кислоты, например, без ограничений, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9 и SEQ ID NO: 10, и фрагмент агента. Молекула нуклеиновой кислоты может содержать поли-А хвост длиной приблизительно 160 нуклеотидов. Кроме того, молекула нуклеиновой кислоты может содержать по меньшей мере один 5' концевой кэп, например, без ограничений, Кэп 0, Кэп 1, ARCA, инозин, N1-метил-гуанозин, 2'-фтор-гуанозин, 7- дезаза-гуанозин, 8-оксо-гуанозин, 2-амино-гуанозин, ЦНК-гуанозина и 2-азидо-гуанозина.

[0030] В одном варианте реализации настоящего изобретения раскрывается нуклеиновая кислота SEQ ID NO: 6, 5' концевой кэп в которой представляет собой Кэп 1, хвост поли-А длиной приблизительно 160 нуклеотидов и агент доставки.

[0031] В одном варианте реализации настоящего изобретения раскрывается нуклеиновая кислота SEQ ID NO: 7, 5' концевой кэп в которой представляет собой Кэп 1, поли-А хвост длиной приблизительно 160 нуклеотидов и агент доставки.

[0032] В одном варианте реализации настоящего изобретения раскрывается нуклеиновая кислота SEQ ID NO: 9, 5' концевой кэп в которой представляет собой Кэп 1, поли-А хвост длиной приблизительно 160 нуклеотидов и агент доставки.

[0033] В одном варианте реализации настоящего изобретения раскрывается нуклеиновая кислота SEQ ID NO: 10, 5' концевой кэп в которой представляет собой Кэп 1, поли-А хвост длиной приблизительно 160 нуклеотидов и агент доставки.

[0034] В одном варианте реализации агент доставки включает по меньшей мере один способ повышения эффективности доставки, выбранный из группы, состоящей из: липидоидов, липосом, липидных наночастиц, быстро элиминирующихся липидных наночастиц (бэЛНЧ), полимеров, липоплексов, пептидов, белков, гидрогелей, герметиков, химических модификаций, конъюгации, клеток и усилителей. Липидоид, липидная наночастица и быстро элиминирующиеся липидные наночастицы, которые могут быть использованы в качестве агентов доставки, могут содержать липид, который может быть выбран из группы, состоящей из: С12-200, MD1, 98N12-5, ДЛин-ДМА, ДЛин-K-ДМА, ДЛИН-КС2-ДМА, ДЛин-МС3-ДМА, ПМГК, ПЭГ, ПЭГ-ДМГ, пегилированных липидов и их аналогов. Быстро элиминирующаяся липидная наночастица может содержать сложноэфирную связь на конце липидной цепи, или сложноэфирная связь может представлять собой внутреннюю связь, расположенную справа или слева от насыщенного атома углерода в липидной цепи. Быстро элиминирующаяся липидная наночастица, которая может быть использована в качестве агента доставки, может представлять собой, без ограничений, ДЛин-МС3-ДМА и ДЛин-ДМА.

[0035] В одном варианте реализации липидная наночастица может содержать ПЭГ и по меньшей мере один компонент, такой как, без ограничений, холестерин, катионный липид и фузогенный липид.

[0036] В одном варианте реализации липидная наночастица может содержать по меньшей мере один из ПЭГ, холестерина, катионного липида и фузогенного липида.

[0037] В одном варианте реализации фузогенный липид представляет собой дистероилфосфатидилхолин (ДСФХ). В другом варианте реализации ПЭГ липид представляет собой ПЭГ-ДМГ. В еще одном варианте реализации катионный липид может представлять собой, без ограничений, ДЛин-ДМА, ДЛин-МС3-ДМА, С12-200, 98N12-5 и ДЛин-KC2-ДМА.

[0038] В одном варианте реализации состав липидной наночастицы может включает 50 моль % катионного липида, 10 моль % ДСФХ, 1,5-3,0 моль % ПЭГ и 37-38,5 моль % холестерина.

[0039] В одном варианте реализации модифицированная нуклеиновая кислота может быть введена в состав вместе с ПМГК с получением препарата с замедленным высвобождением. В другом варианте реализации модифицированная нуклеиновая кислота может быть введена в состав вместе с ПМГК и другими активными и/или неактивными компонентами с получением препарата с замедленным высвобождением. В одном варианте реализации модифицированная молекула нуклеиновой кислоты может включать, без ограничений, SEQ ID NO: 9 и SEQ ID NO: 10.

[0040] В одном варианте реализации препарат с замедленным высвобождением может включать микросферу с замедленным высвобождением. Диаметр микросферы с замедленным высвобождением может составлять от приблизительно 10 до приблизительно 50 мкм. В другом варианте реализации микросфера с замедленным высвобождением может содержать от приблизительно 0,001 до приблизительно 1,0% масс по меньшей мере одной модифицированной молекулы нуклеиновой кислоты.

[0041] В одном варианте реализации модифицированные нуклеиновые кислоты по настоящему изобретению могут содержать по меньшей мере один стоп-кодон перед 3' нетранслируемым участком (НТУ). Стоп-кодон может быть выбран из TGA, ТАА и TAG. В одном варианте реализации модифицированные нуклеиновые кислоты по настоящему изобретению содержат стоп-кодон TGA и один дополнительный стоп-кодон. В другом варианте реализации дополнительный стоп-кодон может представлять собой ТАА. В другом варианте реализации модифицированная нуклеиновая кислота по настоящему изобретению содержит три стоп-кодона.

[0042] В одном варианте реализации настоящего изобретения раскрывается препарат с контролируемым высвобождением, содержащий модифицированную нуклеиновую кислоту, которая может кодировать целевой полипептид. Модифицированная нуклеиновая кислота может быть инкапсулирована или в значительной степени инкапсулирована в агент доставки. Агент доставки может быть покрыт, охвачен, окружен, включен или содержать слой полимера, гидрогеля и/или хирургического герметика. В дополнительном варианте реализации препарат с контролируемым высвобождением может содержать второй слой полимера, гидрогеля и/или хирургического герметика.

[0043] В одном варианте реализации агент доставки в препарате с контролируемым высвобождением может содержать, без ограничений, липидоиды, липосомы, липидные наночастицы, быстро элиминирующиеся липидные наночастицы, липоплексы и самособирающиеся липидные наночастицы.

[0044]

[0045] Полимер, который может быть использован в препарате с контролируемым высвобождением, может включать, без ограничений, ПМГК, этиленвинилацетат, полоксамер и GELSITE®. Хирургический герметик, который может быть использован в препарате с контролируемым высвобождением, может включать, без ограничений, полимеры фибриногена, TISSEELL®, герметики на основе ПЭГ и COSEAL®.

[0046] В одном варианте реализации агент доставки в препарате с контролируемым высвобождением включает агент доставки в форме липидной наночастицы или быстро элиминирующейся липидной наночастицы. В одном из аспектов, липидная наночастица или быстро элиминирующиеся липидная наночастица может быть покрыта, в значительной степени покрыта, охвачена, в значительной степени охвачена, окружена, в значительной степени окружена, включена, в значительной степени включена или может содержать слой полимера, гидрогеля и/или хирургического герметика. В другом аспекте агент доставки может представлять собой липидную наночастицу, которая может быть покрыта, охвачена, в значительной степени охвачена, окружена, в значительной степени окружена, включена, в значительной степени включена или может содержать слой ПМГК.

КРАТКОЕ ОПИСАНИЕ ФИГУР

[0047] Раскрытые выше и другие объекты, признаки и преимущества будут очевидными из нижеследующего описания конкретных вариантов изобретения, как проиллюстрировано на сопроводительных фигурах, где подобные обозначения указывают на одни и те же части в различных проекциях. Фигуры не нуждаются с масштабировании, скорее акцент поставлен на иллюстрации принципов различных вариантов реализации изобретения.

[0048] Фиг. 1 иллюстрирует липидные структуры из уровня техники, пригодные для данного изобретения. Проиллюстрированы структуры 98N12-5 (TETA5-LAP), ДЛин-ДМА, ДЛин-K-ДМА (2,2-дилинолеил-4-диметиламинометил-[1,3]-диоксолан), ДЛин-KC2-ДМА, ДЛин-МС3-ДМА и С12-200.

[0049] Фиг. 2 иллюстрирует характерную плазмиду, пригодную для реакций IVT, раскрытых в настоящем документе. Плазмида содержит вставку 64818, сконструированную изобретателями настоящего изобретения.

[0050] Фиг. 3 иллюстрирует профиль в геле модифицированной мРНК, инкапсулированной в микросферы ПМГК.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0051] Доставка нуклеиновых кислот в клетки сопровождается множеством нежелательных осложнений, в том числе, интеграцией нуклеиновой кислоты в геном клетки-мишени, что может приводить к неопределенным уровням экспрессии, вредоносной передаче нуклеиновой кислоты потомству и соседним клеткам и значительному риску мутаций. Молекулы модифицированных нуклеиновых кислот в соответствии с настоящим документом способны снижать природную иммунную активность популяции клеток, в которые они введены, таким образом, повышая эффективность выработки белка в указанной популяции клеток. Кроме того, в настоящем документе раскрыты один или более дополнительных предпочтительных видов активности и/или свойств нуклеиновых кислот и белков в соответствии с настоящим документом.

[0052] Дополнительно, в настоящем документе раскрыты способы лечения субъекта с диагностированным или предполагаемым заболеванием, расстройством и/или состоянием, причем способы включают введение субъекту, нуждающемуся в таком лечении, состава, раскрытого в настоящем документе, в количестве, достаточном для лечения заболевания, расстройства и/или состояния.

[0053] Если не указано иное, все технические и научные термины, используемые в настоящем документе, имеют такое же значение, как обычно понимается средним специалистом в данной области, к которой принадлежит настоящее изобретение. Хотя материалы и методы, подобные или эквивалентные раскрытым в настоящем документе, могут применяться в практике или тестировании способов, раскрытых в изобретении, пригодные материалы и методы раскрыты ниже.

Модифицированные молекулы нуклеиновой кислоты

[0054] В настоящем изобретении раскрываются нуклеиновые кислоты, в том числе, РНК, например, мРНК, которые содержат один или более модифицированных нуклеозидов или нуклеотидов (называются «модифицированными молекулами нуклеиновой кислоты» «модифицированными мРНК» или «модифицированными молекулами мРНК»), как раскрыто в настоящем документе. Модификация молекул нуклеиновой кислоты по настоящему изобретению может придавать полезные свойства, в том числе, без ограничений, значительное снижение или отсутствие значимого природного иммунного ответа клетки, в которую введена модифицированная мРНК. Модифицированные молекулы нуклеиновых кислот также могут демонстрировать повышенную эффективность выработки белка, внутриклеточного удерживания нуклеиновых кислот и жизнеспособность приведенных в контакт клеток, а также сниженную иммуногенность по сравнению с немодифицированными молекулами нуклеиновой кислоты.

[0055] Раскрыты модифицированные молекулы нуклеиновой кислоты, содержащие транслируемый участок и одну, две или более двух различных модификаций нуклеозидов. В качестве примера, нуклеиновые кислоты для использования в практике настоящего изобретения включают рибонуклеиновые кислоты (РНК), дезоксирибонуклеиновые кислоты (ДНК), треозонуклеиновые кислоты (ТНК), гликольнуклеиновые кислоты (ГНК), циклические нуклеиновые кислоты (ДНК) или их гибриды. В предпочтительных вариантах реализации, модифицированные молекулы нуклеиновой кислоты включают матричную РНК (мРНК). Как раскрыто в настоящем документе, модифицированные молекулы нуклеиновой кислоты в соответствии с настоящим документом могут в значительной степени не индуцировать природный иммунный ответ клетки, в которую введена модифицированная мРНК. В другом варианте реализации модифицированная молекула нуклеиновой кислоты может демонстрировать уменьшенное разложение, по сравнению с немодифицированной нуклеиновой кислотой, в клетке, куда введена модифицированная молекула нуклеиновой кислоты.

[0056] Термин «нуклеиновая кислота» включает любое соединение и/или вещество, которое инкорпорировано или может быть инкорпорировано в олигонуклеотидную цепь. В качестве примера, нуклеиновые кислоты для применения в соответствии с настоящим документом включают, без ограничений, одну или более ДНК, кДНК, РНК, в том числе, матричную РНК (мРНК), их гибриды, индуцирующие иРНК агенты, иРНК агенты, миРНК, РНК-шпильку, миРНК, антисмысловые РНК, рибозимы, каталитическую ДНК, РНК, которая индуцирует образование тройной спирали, аптамеры, векторы и т.п.

[0057] В некоторых вариантах реализации желательным является внутриклеточное разложение модифицированной молекулы нуклеиновой кислоты, введенной в клетку. Например, было бы желательным разложение модифицированной молекулы нуклеиновой кислоты, если желательной является выработка белка в пределах точного интервала времени. Таким образом, в настоящем изобретении предлагается модифицированная молекула нуклеиновой кислоты, содержащая домен разложения, способный действовать направленным образом в пределах клетки.

[0058] В некоторых вариантах реализации модифицированные молекулы нуклеиновой кислоты могут быть химически модифицированы в остатке сахара, нуклеинового основания {например, в положении 5' нуклеинового основания) или фосфатном скелете (например, замена фосфата другим фрагментом, таким как тиофосфат). В некоторых вариантах реализации модификация может приводить к нарушению взаимодействия с основным партнером бороздки по связыванию, что может способствовать природному иммунному ответу. В некоторых вариантах реализации состав препарата при введении субъекту может приводить к улучшению биодоступности, терапевтического окна или объема распределения модифицированной молекулы нуклеиновой кислоты, по сравнению с введением модифицированной молекулы нуклеиновой кислоты без инкорпорации агента доставки. В некоторых вариантах реализации модифицированные нуклеозиды и нуклеотиды модифицированных молекул нуклеиновой кислоты по настоящему изобретению могут быть синтезированы с использованием О-защищенных соединений, раскрытых в Международной публикации WO 2012138530, содержание которой включено в настоящий документ в полном объеме посредством ссылки.

[0059] В некоторых вариантах реализации модифицированная молекула нуклеиновой кислоты может содержать мРНК. В конкретных вариантах реализации модифицированная мРНК (ммРНК) может происходить от кДНК. В некоторых вариантах реализации ммРНК может содержать по меньшей мере две модификации нуклеозидов. В одном варианте реализации модификации нуклеозидов могут быть выбраны из 5-метилцитозина и псевдоуридина. В другом варианте реализации по меньшей мере одна из модификаций нуклеозидов не является 5-метилцитозином и/или псевдоуридином. В некоторых вариантах реализации агент доставки может включать препараты, позволяющие локальную и системную доставку ммРНК. Препараты модифицированных молекул нуклеиновых кислот и/или ммРНК могут быть выбраны из, без ограничений, липидоидов, липосом и липидных наночастиц, быстро элиминирующихся липидных наночастиц, полимеров, липоплексов, пептидов и белков, по меньшей мере одной химической модификации и конъюгации, усилителей и/или клеток.

[0060] В одном варианте реализации модифицированные молекулы нуклеиновой кислоты по настоящему изобретению могут содержать по меньшей мере два стоп-кодона перед 3' нетранслируемым участком (НТУ). Стоп-кодон может быть выбран из TGA, ТАА и TAG. В одном варианте реализации нуклеиновые кислоты по настоящему изобретению содержат стоп-кодон TGA и один дополнительный стоп-кодон. В другом варианте реализации дополнительный стоп-кодон может представлять собой ТАА. В другом варианте реализации модифицированные молекулы нуклеиновой кислоты могут содержать три стоп-кодона.

[0061] Другие компоненты нуклеиновой кислоты являются необязательными в модифицированной молекуле нуклеиновой кислоты, но данные компоненты могут быть предпочтительными в некоторых вариантах.

Нетранслируемые участки (НТУ)

[0062] Нетранслируемые участки (НТУ) гена транскрибируются, но не транслируются. 5' НТУ начинается на сайте инициации транскрипции и продолжается до старт-кодона, но не включает старт-кодон; тогда как 3' НТУ начинается непосредственно после стоп-кодона и продолжается до сигнала терминации транскрипции. В настоящее время появляется все больше доказательств регуляторных ролей НТУ в том, что касается стабильности молекулы нуклеиновой кислоты и трансляции. Регуляторные признаки НТУ могут быть введены в модифицированные молекулы мРНК по настоящему изобретению для повышения стабильности молекулы. Конкретные признаки также могут быть введены для обеспечения контролируемой регуляции вниз транскрипта в случае, если он ошибочно направлен на нежелательные органы-мишени.

5' НТУ и инициация трансляции

[0063] Природные 5' НТУ несут признаки, которые играют роль в инициации трансляции. Они содержат сигнатуры по типу последовательности Козака, которые, как широко известно, принимают участие в процессе инициации рибосомой трансляции многих генов. Последовательности Козака содержат консенсус CCR(A/G)CCAUGG (SEQ ID NO: 1), в котором R представляет собой пурин (аденин или гуанин), на три остатка основания отстоящий в направлении 5' от старт-кодона (AUG), за которым следует другой остаток «G». Кроме того, известно, что 5' НТУ образует вторичные структуры, которые принимают участие в связывании с фактором удлинения.

[0064] Путем конструирования признаков, обычно находимых в обильно экспрессирующихся генах конкретных органов-мишеней, можно повысить стабильность и выработку белка модифицированными молекулами мРНК по изобретению. Например, введение 5' НТУ экспрессируемой в печени мРНК, например, альбумина, сывороточного амилоида А, Аполипопротеина А/В/Е, трансферрина, альфа-фетопротеина, эритропоэтина или Фактора VIII, может применяться для повышения экспрессии модифицированной молекулы нуклеиновой кислоты, такой как ммРНК, в линиях гепатоцитов или печени. Подобным образом, применение 5' НТУ, происходящего от любой тканеспецифичной мРНК, с целью повышения экспрессии в указанной ткани, возможно для мышцы (MyoD, миозин, миоглобин, миогенин, геркулин), для эндотелиальных клеток (Tie-1, CD36), для миелоидных клеток (С/ЕВР, AML1, G-CSF, GM-CSF, CD11b, MCR, Fr-1, i-NOS), для лейкоцитов (CD45, CD18), для жировой ткани (CD36, GLUT4, ACRP30, адипонектин) и для эпителиальных клеток легких (SP-A/B/C/D).

[0065] Другие не-НТУ последовательности могут быть введены в 5' НТУ (или 3' НТУ) модифицированных молекул нуклеиновой кислоты по настоящему изобретению. Например, последовательности интронов или частей интронов могут быть введены во фланкирующие участки модифицированной мРНК по изобретению. Введение интронных последовательностей может увеличивать выработку белка, а также уровни мРНК.

3' НТУ и богатые AU элементы

[0066] Известно, что 3' НТУ содержат в своем составе участки, состоящие из Аденозина (А) и Уридина (U). Указанные сигнатуры, богатые AU, особенно преобладают в генах с высокой скоростью функционального цикла. На основании признаков и функциональных свойств их последовательности, богатые AU элементы (АРЭ) могут быть разделены на три класса (Chen et al, 1995): АРЭ Класса I содержат несколько разбросанных копий мотива AUUUA в пределах богатых U участков. С-Мус и MyoD составляют Класс I АРЭ. АРЭ Класса II содержат два или более перекрывающихся нонам ера UUAUUUA(U/A)(U/A) (SEQ ID NO: 2). Молекулы, относящиеся к данному типу АРЭ, включают GM-CSF и TNF-a. АРЭ Класса III не так хорошо определены. Указанные богатые U участки не содержат мотива AUUUA. c-Jun и миогенин представляют собой два хорошо изученных примера из данного класса. Известно, что большинство белков, связывающихся с АРЭ, дестабилизируют мРНК, тогда как члены семейства ELAV, в основном, HuR, доказанно повышают стабильность мРНК. HuR связывается с АРЭ всех трех классов. Конструирование сайтов специфичного связывания с HuR в 3' НТУ молекул нуклеиновой кислоты будет приводить к связыванию с HuR и, таким образом, стабилизации информации in vivo.

[0067] Введение, удаление или модификация богатых AU элементов 3' НТУ (АРЭ) могут применяться с целью модуляции стабильности модифицированной мРНК по изобретению. При конструировании конкретной модифицированно