Способ улучшения низкотемпературных свойств и увеличения выхода среднедистиллятного исходного сырья через полностью жидкостную гидроочистку и депарафинизацию

Иллюстрации

Показать все

Изобретение относится к полностью жидкостному способу гидрообработки исходного сырья среднедистиллятного топлива. Способ включает введение в контакт исходного сырья с разбавителем и водородом с получением смеси исходного сырья/разбавителя/водорода, где водород растворяют в смеси для получения жидкого сырья; введение в контакт смеси исходного сырья/разбавителя/водорода с катализатором гидрообработки в первой реакционной зоне с получением первого эффлюента продукта и введение в контакт первого эффлюента продукта с катализатором депарафинизации во второй реакционной зоне с получением второго эффлюента продукта, содержащего лигроин и среднедистиллятный продукт. Предлагаемый способ позволяет получить среднедистиллятный продукт, имеющий по меньшей мере одно улучшенное низкотемпературное свойство по сравнению с исходным сырьем среднедистиллятного топлива, с выходом по меньшей мере 85 масс.%. 17 з.п. ф-лы, 2 ил., 2 табл., 1 пр.

Реферат

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Область раскрытия

Данное раскрытие относится к полностью жидкостным каталитическим гидрообработкам с высоким выходом для производства среднедистиллятного топлива с пониженным содержанием серы и/или азота и улучшенными низкотемпературными свойствами.

Описание известного уровня техники

Мировой спрос на дизельное топливо, в частности, на среднее дизельное топливо с низким содержанием серы (LSD)и в особенностина дизельное топливо с ультранизким содержанием серы (ULSD)быстро возрос с повышением распространения транспортных топлив и снижением в использовании нефтяного топлива. Постановления в отношении транспортных топлив были приняты с тем, чтобы значительно снизить содержание серы в дизельном топливе. Существуют другие находящиеся на рассмотрении правила, призывающие к сокращению содержания серы также во внедорожном дизельном топливе. Таким образом, существует растущая потребность в улучшенных продуктах дизельных топлив, включая LSD и ULSD. Для удаления серы и азота из углеводородного исходного материала используется гидрообработка (или гидроочистка), такая как гидродесульфуризация и гидроденитрогенизация соответственно.

Помимо этого, в холодном климате существует потребность в дизельных топливах с улучшенными низкотемпературными свойствами, такими как улучшенная температура помутнения, температура застывания и температура закупорки холодного фильтра. Такие улучшенные низкотемпературные свойства можно получить с помощью технологий депарафинизации.

Традиционные трех-фазные установки гидрообработки, используемые для гидрообработки и гидрокрекинга высокого давления и общеизвестные как реакторы с орошаемым слоем, требуют перевода водорода из газовой фазы в жидкую фазу, где он будет доступен для реакции с углеводородным сырьем на поверхности катализатора. Эти установки являются дорогостоящими, требуют больших количеств водорода, большая часть которого должна подвергаться рециркуляции через дорогостоящие водородные компрессоры, и приводят к значительному коксообразованию на поверхности катализатора и деактивации катализатора.

Альтернативные подходы к гидрообработке включают гидроочистку и гидрокрекинг в системе с однократным циркуляционным потоком, как предложено Thakkar и др. в “LCO Upgrading A Novel Approach for Greater Value and Improved Returns” AM, 05-53, NPRA, (2005). Thakkar с соавторами раскрывает повышение качества легкого рециклового газойля (LCO) до смеси продуктов - сжиженного нефтяного газа (LPG), бензина и дизельного топлива. Thakkar и др. раскрывают получение дизельного топлива с низким содержанием серы (ULSD). Однако Thakkar с соавторами используют традиционные реакторы с орошаемым слоем, которые требуют больших количеств водорода и технологического оборудования большого размера, такого, как большой газовый компрессор для циркуляции газообразного водорода. В раскрываемом способе гидрокрекинга получают значительные количества легкого газа и лигроина. Дизельное топливо составляет всего лишь приблизительно 50% или менее от общего количества жидкого продукта, в котором в качестве исходного материала используется LCO.

В патенте США № 6123835, на имя Ackerson, объект изобретения которого включен в данный документ с использованием ссылки, раскрыта система заполненной жидкостью, двухфазной гидрообработки, в которой исключена необходимость циркуляции водорода через катализатор. В заполненной жидкостью двухфазной системе гидрогенизационной переработки растворитель (или рециркулируемая часть подвергаемого гидрогенизационной переработке жидкого стока) выступает в роли разбавителя и смешивается с углеводородным сырьем. Водород растворяют в смеси сырье/разбавитель для обеспечения водорода в жидкой фазе. Весь необходимый для реакции гидрогенизационной переработки водород доступен в растворе. Таким образом, не требуется дополнительный водород, избегается рециркуляция водорода и избегается работа реактора в режиме орошаемого слоя.

В публикации заявки на патент США № 2012/0004477 (US' 477) раскрыто то, что углеводородное сырье можно подвергать гидроочистке в непрерывном газофазном окружении для снижения содержания серы и азота, и затем подвергать депарафинированию в жидкостном реакторе непрерывного действия. В US ‘477 раскрыто то, что жидкостный реактор непрерывного действия может выгодно работать таким образом, при котором избегается необходимость в петле рециркуляции водорода. Раскрытый способ получения топливного продукта дизельного топлива включает введение исходного сырья в контакт с катализатором гидрообработки в эффективных для гидрообработки условиях в реакторе гидрообработки, содержащем непрерывную газовую фазу, с получением гидропереработанного вытекающего потока; разделение гидропереработанного вытекающего потока на по меньшей мере гидропереработанный жидкий продукт и газофазный продукт (газофазный продукт может включать H2, H2S, и NH3) с получением гидропереработанного входящего потока депарафинизации, и введение в контакт гидропереработанного входящего потока депарафинизации с катализатором депарафинизации при эффективных условиях для каталитической депарафинизации в жидкостном реакторе непрерывного действия с образованием депарафинизированного вытекающего потока с низкотемпературным свойством, которое по меньшей мере приблизительно на 5°C меньше, чем соответствующее низкотемпературное свойство исходного сырья. Газофазный продукт можно применять для обеспечения рециркулированного водорода для стадии гидрообработки и/или части, смешанной с гидропереработанным вытекающим потоком с образованием гидропереработанного входящего потока депарафинизации.

В публикации заявки на патент США № 2010/0176027 (US' 027) раскрыт интегрированный процесс производства дизельного топлива из исходных материалов, включая производство дизельного топлива в кислой среде. Возможность перерабатывать исходное сырье в условиях более высокого содержания серы и/или азота позволяет снизить затраты на переработку и увеличивает гибкость в выборе пригодного исходного сырья. Помимо этого, в раскрытом варианте осуществления продукт из стадии гидрообработки сливается самотеком непосредственно в зону реакции каталитической депарафинизации. Между стадиями гидрообработки и каталитической депарафинизации не требуется разделения. Раскрыты конкретные катализаторы, более устойчивые к примесям, таким как сера и азот, по сравнению с традиционными катализаторами депарафинизации.

Хотя в области гидрообработки и депарафинизации дизельного топлива сделаны существенные улучшения, продолжается поиск более устойчивых, экономичных способов производства LSD и ULSD с улучшенными низкотемпературными свойствами.

КРАТКОЕ ОПИСАНИЕ РАСКРЫТИЯ

Данное раскрытие обеспечивает способ снижения содержания серы и/или азота исходного сырья среднедистиллятного топлива с высоким выходом при заполнении жидкостью и улучшения по меньшей мере одного низкотемпературного свойства исходного сырья среднедистиллятного топлива. Полностью жидкостный способ включает стадии: (a) введения в контакт исходного сырья с (i) разбавителем и (ii) водородом с получением смеси исходного сырья/разбавителя/водорода, в которой водород растворяют в смеси для обеспечения жидкого сырья; (b) введения в контакт смеси исходного сырья/разбавителя/водорода с катализатором гидрообработки в первой реакционной зоне, с получением первого эффлюента продукта; и (c) введения в контакт первого эффлюента продукта с катализатором депарафинизации во второй реакционной зоне, с получением второго эффлюента продукта, содержащего лигроин и среднедистиллятный продукт; где среднедистиллятный продукт имеет по меньшей мере одно улучшенное низкотемпературное свойство по сравнению с исходным сырьем среднедистиллятного топлива и имеет выход по меньшей мере 85 масс. %.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКОГО МАТЕРИАЛА

Фигура 1 представляет собой схематическое изображение первого варианта осуществления согласно данному раскрытию.

Фигура 2 представляет собой схематическое изображение системы гидрообработки и депарафинизации, использованной в Примере 1.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Вышеизложенное общее описание и последующее подробное описание являются лишь иллюстративными и поясняющими и не ограничивающими изобретение, как определено в прилагаемой формуле изобретения. Другие признаки и преимущества любого одного или более из вариантов осуществления станут очевидны из нижеследующего подробного описания и из формулы изобретения.

Как применяется в данном документе, выражения «содержит», «содержащий», «включает», «включающий», «имеет», «имеющий» или любые другие их варианты предназначены для охвата неисключительного включения. Например, процесс, способ, изделие или аппарат, который содержит перечень элементов, не обязательно ограничен только этими элементами, но может включать другие элементы, не перечисленные специально или присущие такому процессу, способу, изделию или аппарату. Кроме того, если прямо не указано обратное, «или» относится к включающему «или», а не к исключающему «или». Например, условия А или В удовлетворяются любым из следующих: А - истинно (или присутствует), а B - ошибочно (или не присутствует), А - ошибочно (или не присутствует), а B - истинно (или присутствует), и А и B - истинно (или присутствуют).

Также, используют применение формы единственного числа для описания элементов и компонентов, описанных в данном документе. Это делается только для удобства и для предоставления общего смысла объема настоящего изобретения. Настоящее описание следует читать как включающее один или по меньшей мере один, и единственное число также включает множественное число, если не очевидно, что имеется в виду иное.

Если не определено иное, все технические и научные выражения, применяемые в данном документе, имеют то же значение, которое обычно понимает специалист в данной области техники, к которой принадлежит настоящее изобретение. В случае разногласия настоящее описание, включая определения, будет иметь преимущественную силу. Хотя способы и материалы, аналогичные или эквивалентные описанным в данном документе, их можно применять в практическом осуществлении или испытании вариантов осуществления настоящего изобретения; подходящие способы и материалы описаны ниже. Кроме того, материалы, способы и примеры являются только иллюстративными и не предназначены для ограничения.

Если количество, концентрация или другое значение или параметр приводится либо как диапазон, предпочтительный диапазон, либо как перечень верхних предпочтительных значений и/или нижних предпочтительных значений, то их следует рассматривать как конкретное раскрытие всех диапазонов, образуемых любой парой любого верхнего предела диапазона или предпочтительного значения и любого нижнего предела диапазона или предпочтительного значения, независимо от того, раскрываются ли диапазоны по отдельности. Если в данном документе упоминается диапазон числовых величин и если не указано иное, то подразумевается, что диапазон включает его крайние точки, а также все целые числа и дробные числа в пределах диапазона.

Перед обращением к подробному описанию вариантов осуществления, описанным ниже, определяются или уточняются некоторые выражения.

Выражение “wppm”, как применяется в данном документе, означает части на миллион по массе.

Выражение «цеолитный катализатор», как употребляется в данном документе, означает катализатор, включающий, состоящий главным образом из, или состоящий из цеолита.

Выражение «гидрообработка», как употребляется в данном документе, означает любой процесс, который осуществляется в присутствии водорода, включая без ограничения гидрирование, гидроочистку, гидрокрекинг, депарафинизацию, гидроизомеризацию и гидродеароматизацию.

Выражение «гидроочистка», как употребляется в данном документе, означает процесс, в котором углеводородный исходный материал вступает в реакцию с водородом в присутствии катализатора гидрообработки, и в результате происходит гидрирование олефинов и/или ароматических соединений или удаление гетероатомов, таких как сера (гидродесульфуризация), азот (гидроденитрогенация, также называемая гидроденитрификацией), кислород (гидродеоксигенация), металлы (гидродеметаллирование) асфальтены и их комбинаций.

Выражение «депарафинизация, как употребляется в данном документе, означает, что »по меньшей мере часть содержания нормальных парафинов (н-парафинов) исходного сырья среднедистиллятного топлива превращается в содержание изо-парафинов в присутствии катализатора депарафинизации.

Выражение «лигроин» или «лигроиновый продукт», как употребляется в данном документе, означает объемную фракцию дистиллята от приблизительно 100°C до менее чем 160°C.

Выражение «среднедистиллятный продукт», как употребляется в данном документе, означает объемную фракцию дистиллята от 160°C до приблизительно 400°C.

Выражение «выход среднедистиллятного продукта, как употребляется в данном документе, означает массовое процентное содержание» среднедистиллятного продукта по сравнению с общей массой лигроина и среднедистиллятного продукта, содержащихся в конечном эффлюенте продукта.

Выражение «н-парафин» или «нормальный парафин», как употребляется в данном документе, означает алканы с прямой цепью.

Выражение «изо-парафин», как употребляется в данном документе, означает алканы с разветвленной цепью.

Выражение «соотношение изо- к н-парафинам», как употребляется в данном документе, означает массовое соотношение содержания изо-парафинов к содержанию н-парафинам, содержащихся в конечном эффлюенте продукта.

Выражение «конечный эффлюент продукта», как употребляется в данном документе, означает эффлюент продукта, производимый в конечной реакционной зоне. Например, если гидрообработка имеет всего одну зону гидрообработки с последующей одной зоной депарафинизации, зона депарафинизации является конечной реакционной зоной, и эффлюент продукта, производимый в зоне депарафинизации, является конечным эффлюентом продукта. Если за вышеупомянутой зоной депарафинизации следует вторая зона гидрообработки, такая вторая зона гидрообработки является конечной реакционной зоной, и эффлюент продукта, производимый во второй зоне гидрообработки, является конечным эффлюентом продукта.

Данное раскрытие обеспечивает новый, экономичный способ снижения содержания серы и/или азота исходного сырья среднедистиллятного топлива с высоким выходом с помощью полностью жидкостной стадии гидрообработки, а также улучшение низкотемпературных свойств топливного исходного сырья с помощью полностью жидкостной стадии депарафинизации. Было неожиданно обнаружено, что подвергнутое гидроочистке исходное сырье среднедистиллятного топлива, содержащее растворенные в нем H2S и NH3, можно успешно подвергать депарафинизации в присутствии цеолитного катализатора без удаления H2S и NH3, растворенных в подвергнутом гидроочистке топливном исходном сырье, перед депарафинизацией. Одним препятствием для каталитической депарафинизации является то, что катализаторы депарафинизации обычно чувствительны к H2S и/или NH3, растворенным в углеводородном сырье. Было неожиданно обнаружено, что при сохранении H2S и NH3, образованных во время гидрообработки в эффлюенте продукта (например, первом эффлюенте продукта), подаваемом в зону депарафинизации, цеолитный катализатор в условиях данного раскрытия может не только успешно превращать н-парафин в изо-парафин, но также имеет значительно сниженную активность селективного гидрокрекинга (разрыва связей C-C).

Данное раскрытие обеспечивает полностью жидкостный способ гидрообработки исходного сырья среднедистиллятного топлива. Способ включает: (a) введение в контакт исходного сырья с (i) разбавителем и (ii) водородом с получением смеси исходного сырья/разбавителя/водорода, в которой водород растворяют в смеси для обеспечения жидкого сырья; (b) введение в контакт смеси исходного сырья/разбавителя/водорода с катализатором гидрообработки в первой реакционной зоне, с получением первого эффлюента продукта; и (c) введение в контакт первого эффлюента продукта с катализатором депарафинизации во второй реакционной зоне, с получением второго эффлюента продукта, содержащего лигроин и среднедистиллятный продукт; где среднедистиллятный продукт имеет по меньшей мере одно улучшенное низкотемпературное свойство по сравнению с исходным сырьем среднедистиллятного топлива и имеет выход по меньшей мере 85 масс.%. В некоторых вариантах осуществления данного изобретения извлекают второй эффлюент продукта.

В некоторых вариантах осуществления данного изобретения вышеупомянутый полностью жидкостный способ далее включает введение в контакт второго эффлюента продукта с катализатором гидрообработки в третьей реакционной зоне с получением третьего эффлюента продукта. В некоторых вариантах осуществления данного изобретения катализатор гидрообработки, задействованный в третьей реакционной зоне, точно такой же, что и катализатор гидрообработки, использованный в первой реакционной зоне. В некоторых вариантах осуществления данного изобретения эта следующая стадия гидрообработки удаляет соединения серы, такие как меркаптаны, образованные на стадии депарафинизации, из второго эффлюента продукта. В некоторых вариантах осуществления данного изобретения второй и третий эффлюенты продукта имеют по сути одинаковые содержание лигроина и среднедистиллятного продукта, низкотемпературные свойства и соотношение изо- к н-парафинам.

В некоторых вариантах осуществления данного изобретения вышеупомянутые стадии (b) и (c) проводят в одном реакторе, содержащем один или более слоев катализатора. Например, вышеупомянутые стадии (b) и (c) можно проводить в одном реакторе, содержащем один или более слоев катализатора гидрообработки с последующими одним или более слоями катализатора депарафинизации. В некоторых вариантах осуществления данного изобретения этот один реактор может также содержать один или более слоев катализатора для следующей стадии гидрообработки (третья реакционная зона), как описано выше.

В некоторых вариантах осуществления данного изобретения вышеупомянутые стадии (b) и (c) проводят в отдельных реакторах, при этом каждый из реакторов содержит один или более слоев катализатора. Если следующая стадия гидрообработки (третья реакционная зона) также задействована, один или более следующих слоев катализатора гидрообработки могут располагаться в том же реакторе с одним или более слоями катализатора депарафинизации, или в отдельном реакторе.

Согласно настоящему изобретению реакции гидрообработки протекают в зоне полностью жидкофазной реакции. Под «полностью жидкостным» в данном документе подразумевается, что практически весь водород растворен в жидкофазном углеводороде, подаваемом в реакционную зону, в которой жидкий подаваемый материал входит в контакт с катализатором. Реакционные зоны как гидрообработки, так и депарафинизации являются двухфазными системами, в которых катализаторы являются твердой фазой, а исходное сырье, разбавитель, растворенный водород и эффлюенты продукта все находятся в жидкой фазе. В некоторых вариантах осуществления данного изобретения отсутствует газовая фаза в реакционной зоне гидрообработки или депарафинизации.

В некоторых вариантах осуществления данного изобретения полностью жидкостную гидрообработку можно проводить в одном реакторе, включающем первую, полностью жидкостную реакционную зону гидрообработки, вторую, полностью жидкостную реакционную зону депарафинизации, и необязательно третью, полностью жидкостную реакционную зону гидрообработки. Каждая реакционная зона может независимо содержать один или более слоев катализатора. В некоторых вариантах осуществления данного изобретения каждая из первой, полностью жидкостной реакционной зоны гидрообработки, второй, полностью жидкостной реакционной зоны депарафинизации, и третьей, необязательной полностью жидкостной реакционной зоной гидрообработки могут независимо содержать один или более реакторов в жидкостном соединении, и каждый реактор может независимо содержать один или более слоев катализатора. В некоторых вариантах осуществления данного изобретения можно задействовать несколько реакционных зон гидрообработки и реакционных зон депарафинизации. В вариантах осуществления данного изобретения, в реакторе колонного типа или другой одинарной емкости, содержащих два или более слоев катализатора, или между несколькими реакторами слои физически разделены зонами, свободными от катализатора. Каждый реактор представляет собой реактор с неподвижным слоем и может иметь конструкцию реактора идеального вытеснения, трубчатую или другую конструкцию, содержащий насадку из твердого катализатора (т.е. реактор с псевдоожиженным слоем).

Часть эффлюента продукта можно рециркулировать в качестве разбавителя для объединения с углеводородным сырьем и водородом. В некоторых вариантах осуществления данного изобретения осуществляют рециркуляцию части первого эффлюента продукта для применения в качестве всего разбавителя или его части на стадии гидрообработки (b). В некоторых вариантах осуществления данного изобретения к жидкому подаваемому материалу во вторую реакционную зону (депарафинизация) добавляют свежий водород, и часть конечного эффлюента продукта рециркулируют для применения в качестве всего или части разбавителя, подлежащего объединению с первым эффлюентом продукта и свежим водородом для образования жидкого подаваемого материала для стадии депарафинизации (c).

В некоторых вариантах осуществления данного изобретения полностью жидкостную гидрообработку проводят с одной петлей рециркуляции. Под «одной петлей рециркуляции» в данном документе подразумевается, что часть (на основе выбранного коэффициента рециркуляции) конечного эффлюента продукта рециркулируют с выхода конечной реакционной зоны на вход первой реакционной зоны. Таким образом, все слои катализаторов в способе включены в одну петлю рециркуляции. Не существует отдельной рециркуляции для только первой реакционной зоны или только второй реакционной зоны. В некоторых вариантах осуществления данного изобретения вторая реакционная зона (депарафинизации) является конечной реакционной зоной, и часть второго эффлюента продукта рециркулируется для применения в качестве всего разбавителя на стадии гидрообработки (b) или его части. В некоторых вариантах осуществления данного изобретения второй эффлюент продукта далее подвергают гидроочистке в третьей реакционной зоне с получением третьего эффлюента продукта, и часть третьего эффлюента продукта рециркулируется для применения в качестве всего разбавителя на стадии гидрообработки (b) или его части.

В некоторых вариантах осуществления данного изобретения с рециркулированным эффлюентом продукта рециркулируют водород, без потери водорода в газовой фазе. В некоторых вариантах осуществления данного изобретения рециркулированный эффлюент продукта объединяют со свежим исходным сырьем без отделения аммиака, сероводорода и оставшегося водорода от конечного эффлюента продукта.

Рециркулированный эффлюент продукта обеспечивает по меньшей мере часть разбавителя при коэффициенте рециркуляции в диапазоне от приблизительно 0,5 до приблизительно 8, предпочтительно при коэффициенте рециркуляции от приблизительно 1 до приблизительно 5.

Разбавитель, как правило, содержит, состоит, главным образом из, или состоит из рециркулированного эффлюента продукта. Рециркулярный поток является частью эффлюента продукта, который рециркулируется и сочетается с углеводородным сырьем перед или после контактирования сырья с водородом, предпочтительно перед контактированием сырья с водородом.

Помимо рециркулированного эффлюента продукта, разбавитель может содержать любую другую органическую жидкость, совместимую с исходным сырьем среднедистиллятного топлива и катализаторами. Если разбавитель содержит органическую жидкость вдобавок к эффлюенту рециркулируемого продукта, органическая жидкость предпочтительно представляет собой жидкость, в которой водород обладает относительно высокой растворимостью. Разбавитель может содержать органическую жидкость, выбранную из группы, состоящей из легких углеводородов, легких дистиллятов, лигроина и их комбинаций. Более конкретно, органическая жидкость выбрана из группы, состоящей из пропана, бутана, пентана, гексана или их комбинаций. Если разбавитель включает органическую жидкость, то органическая жидкость обычно присутствует в количестве не более 90% от общего веса сырья и разбавителя, предпочтительно 20-80% и более предпочтительно 50-80%. Наиболее предпочтительно, разбавитель состоит из рециркулированного эффлюента продукта.

Помимо водорода, добавляемого в смесь исходного сырья/разбавителя/водорода с получением жидкого подаваемого материала на стадии (a), в эффлюент из предшествующего слоя катализатора на входе каждого слой катализатора можно добавлять свежий водород. Добавленный водород растворяется в жидком эффлюенте в свободной от катализатора зоне так, что слой катализатора является полностью жидкостной реакционной зоной. Так, свежий водород может добавляться в смесь исходного сырья/разбавителя/водорода или эффлюента из предыдущего реактора (последовательно) в свободной от катализатора зоне, где свежий водород растворяется в смеси или эффлюенте до контактирования со слоем катализатора. Свободная от катализатора зона до слоя катализатора проиллюстрирована, например, в патенте США 7569136.

В некоторых вариантах осуществления данного изобретения полностью жидкостную гидрообработку проводят в одном реакторе содержащем один или более слоев катализатора гидрообработки с последующим одним или более слоями катализатора депарафинизации, а свежий водород добавляют на входе каждого слоя катализатора. В некоторых вариантах осуществления данного изобретения полностью жидкостную гидрообработку проводят в последовательности реакторов, а свежий водород добавляют на входе каждого реактора.

На стадии гидрообработки (b) органический азот и органическую серу превращают в аммиак и сероводород соответственно. В некоторых вариантах осуществления данного изобретения часть первого эффлюента продукта или весь его направляют в сепаратор высокого давления или устройство понижения давления, где отбросные газы, такие как H2S и NH3, удаляют с получением обедненного потока, прежде чем обедненный поток подают во вторую реакционную зону (депарафинизации).

В некоторых вариантах осуществления данного изобретения отсутствует отделение аммиака, сероводорода и остающегося водорода из эффлюента продукта с первого слоя катализатора или эффлюента продукта с предыдущего слоя перед подачей эффлюента на последующий слой. Полученный в результате аммиак и сероводород после этапов гидрообработки растворяют в жидком эффлюенте продукта. Рециркулированный эффлюент продукта объединяют со свежим исходным сырьем без отделения аммиака, сероводорода и оставшегося водорода от конечного эффлюента продукта.

В некоторых вариантах осуществления данного изобретения первый эффлюент продукта содержит растворенные в нем H2S и NH3 и подается непосредственно во вторую реакционную зону без отделения аммиака, сероводорода и оставшегося водорода от первого эффлюента продукта.

Конечный эффлюент продукта можно извлекать и при необходимости подвергать дальнейшей обработке. В некоторых вариантах осуществления данного изобретения конечный эффлюент продукта можно разделять на лигроиновый продукт и среднедистиллятный продукт (например, с использованием фракционирующей колонны). В некоторых вариантах осуществления данного изобретения и исходное сырье среднедистиллятного топлива, и среднедистиллятный продукт являются дизельными топливами. В некоторых вариантах осуществления данного изобретения второй эффлюент продукта является конечным эффлюентом продукта. В некоторых вариантах осуществления данного изобретения третий эффлюент продукта является конечным эффлюентом продукта.

В некоторых вариантах осуществления данного изобретения выход среднедистиллятного продукта составляет по меньшей мере 80 масс.%. В некоторых вариантах осуществления выход среднедистиллятного продукта составляет по меньшей мере 85 масс.%. В некоторых вариантах осуществления выход среднедистиллятного продукта составляет по меньшей мере 90 масс.%.

Среднедистиллятные продукты, полученные в гидрообработках по данному раскрытию, имеют улучшенные низкотемпературные свойства, такие как более низкую температуру помутнения, более низкую температуру закупорки холодного фильтра и более низкую температуру застывания по сравнению с исходным сырьем среднедистиллятного топлива. В некоторых вариантах осуществления данного изобретения исходное сырье среднедистиллятного топлива имеет содержание азота по меньшей мере 200 wppm, и среднедистиллятный продукт имеет температуру помутнения по меньшей мере на 10°C, или 15°C, или 20°C ниже по сравнению с исходным сырьем среднедистиллятного топлива. В некоторых вариантах осуществления данного изобретения исходное сырье среднедистиллятного топлива имеет содержание азота по меньшей мере 90 wppm, и среднедистиллятный продукт имеет температуру помутнения по меньшей мере на 20°C, или 25°C, или 30°C ниже по сравнению с исходным сырьем среднедистиллятного топлива.

Среднедистиллятные продукты также имеют более высокое соотношение изо- к н-парафинам по сравнению с исходным сырьем среднедистиллятного топлива. В некоторых вариантах осуществления данного изобретения исходное сырье среднедистиллятного топлива имеет содержание азота по меньшей мере 200 wppm, и среднедистиллятный продукт имеет увеличение соотношения изо- к н-парафинам по меньшей мере 1,0, или 1,5, или 2,0, или 2,5 по сравнению с исходным сырьем среднедистиллятного топлива. В некоторых вариантах осуществления данного изобретения исходное сырье среднедистиллятного топлива имеет содержание азота по меньшей мере 90 wppm, и среднедистиллятный продукт имеет увеличение соотношения изо- к н-парафинам по меньшей мере 10, или 15, или 18, или 20, или 25 по сравнению с исходным сырьем среднедистиллятного топлива.

Исходное сырье среднедистиллятного топлива

При употреблении в данном документе формулировки «исходное сырье среднедистиллятного топлива» может подразумеваться любое пригодное среднедистиллятное исходное сырье. Среднедистиллятное исходное сырье содержит ряд продуктов из средней фракции барреля сырой нефти. Эти продукты включают, например, авиационное топливо, керосин, дизельные топлива и топочные мазуты. В аспекте изобретения исходное сырье среднедистиллятного топлива содержит, состоит в основном из или состоит из дизельных топлив.

Катализатор, применяемый в зоне гидрообработки

Катализатор, применяемый в зоне гидрообработки (первой реакционной зоне и третьей реакционной зоне, если она присутствует) может быть любым пригодным катализатором гидрообработки, который приводит к снижению содержания серы и/или азота исходного сырья среднедистиллятного топлива в условиях реакции в зоне гидрообработки. В некоторых вариантах осуществления данного изобретения пригодный катализатор гидрообработки содержит, состоит в основном из или состоит из неблагородного металла и оксидного носителя. В некоторых вариантах осуществления данного изобретения металл представляет собой никель или кобальт, или их комбинации, предпочтительно в сочетании с молибденом и/или вольфрамом. В некоторых вариантах осуществления данного изобретения металл выбран из группы, состоящей из никеля-молибдена (NiMo), кобальта-молибдена (CoMo), никеля-вольфрама (NiW) и кобальта-вольфрама (CoW). Оксидный носитель катализатора представляет собой индивидуальный или смешанный оксид металла. Предпочтительные оксидны носители включают материалы, выбранные из группы, состоящей из оксида алюминия, оксида кремния, оксида титана, оксида циркония, кизельгура, оксида кремния-алюминия и комбинаций двух или более из них. Более предпочтителен оксид алюминия.

Катализатор, применяемый в зоне депарафинизации

Катализатор, применяемый в зоне депарафинизации (второй реакционной зоне), может быть любым пригодным катализатором депарафинизации, способным к депарафинизации подвергнутого гидроочистке исходного сырья среднедистиллятного топлива в условиях реакции данного раскрытия.

В некоторых вариантах осуществления данного изобретения пригодный катализатор депарафинизации содержит, состоит в основном из или состоит из неблагородного металла и оксидного носителя. В некоторых вариантах осуществления данного изобретения пригодный катализатор депарафинизации содержит, состоит в основном из или состоит из цеолита с нанесенным неблагородным металлом. В некоторых вариантах осуществления данного изобретения металл представляет собой никель, кобальт, железо или их комбинации, необязательно в сочетании с молибденом и/или вольфрамом.

В некоторых вариантах осуществления данного изобретения пригодный катализатор депарафинизации содержит, состоит в основном из или состоит из кристалиической, микропористой оксидной структуры без нанесенного на нее металла. В некоторых вариантах осуществления данного изобретения пригодный катализатор депарафинизации содержит, состоит в основном из или состоит из молекулярного сита без нанесенного на него металла. Примеры молекулярных сит включают цеолиты и кремний-алюмофосфаты.

В некоторых вариантах осуществления данного изобретения пригодный катализатор депарафинизации содержит, состоит в основном из или состоит из цеолита без нанесенного на него металла. Катализаторы депарафинизации могут содержать пригодное связующее, такое как оксид алюминия, оксид титана, оксид кремния, оксид кремния-алюминия, оксид циркония и их комбинации. В некоторых вариантах осуществления данного изобретения пригодный катализатор депарафинизации содержит, состоит в основном из или состоит из цеолита и связующего, без нанесенного на них металла. В некоторых вариантах осуществления данного изобретения цеолит имеет 8-членную кольцевую структуру, 10-членную кольцевую структуру или 12-членную кольцевую структуру. В некоторых вариантах осуществления данного изобретения цеолит имеет 10--членную кольцевую структуру. В некоторых вариантах осуществления данного изобретения цеолит выбран из группы, состоящей из ZSM-48, ZSM-22, ZSM-23, ZSM-35, цеолита Beta, USY, ZSM-5, SSZ-31, SAPO-11, SAPO-41, MAPO-11, ECR-42, синтетических ферриеритов, морденита, оффретита, эрионита, шабазита и их комбинаций.

Зона гидрообработки

Первой реакцией согласно данному раскрытию является обработка исходного сырья среднедистиллятного топлива в полностью жидкостной зоне гидрообработки для снижения содержания серы и/или азота исходного сырья.

Как отмечено выше, исходное сырье среднедистиллятного топлива объединяют с разбавителем и водородом, с получением смеси исходного сырья/разбавителя/водорода, где водород растворен в смеси, для обеспечения жидкого подаваемого материала. Операцию приведения в контакт с получением смеси жидкого сырья могут осуществлять в любом подходящем смесительном аппарате, известном из уровня техники.

На стадии (a) исходное сырье среднедистиллятного топлива вводят в контакт с разбавителем и водородом. Исходное сырье можно вводить в контакт сначала с водородом, а затем с разбавителем, или в некоторых вариантах осуществления сначала с разбавителем и затем с водородом, с получением смеси исходного сырья/разбавителя/водорода. На стадии (b) смесь исходного сырья/разбавителя/водорода вводят в контакт с катализатором гидрообработки в первой реакционной зоне в пригодных условиях реакции с получением гидроочищенного исходного сырья среднедистиллятного топлива (первого эффлюента продукта).

В полностью жидкостной зоне гидро