Способ динамической обратной связи по csi

Иллюстрации

Показать все

Изобретение относится к области связи. Описаны системы и способы обеспечения обратной связи в виде информации (CSI) о состоянии канала в сети сотовой связи. В некоторых вариантах осуществления изобретения базовая станция сети сотовой связи отключает интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам в устройстве беспроводной связи и принимает один или более отчетов CSI от устройства беспроводной связи, которые выработаны устройством беспроводной связи с отключенной интерполяцией и/или фильтрацией канала между подкадрами для оценок CSI-RS по подкадрам в ответ на то, что базовая станция отключает в устройстве беспроводной связи интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам. Таким образом, улучшают обратную связь по CSI особенно в вариантах осуществления изобретения, в которых базовая станция передает прошедший формирование пучка ресурс(ы) CSI-RS и повторно использует тот же ресурс(ы) CSI-RS для разных пучков с течением времени. 8 н. и 25 з.п. ф-лы, 19 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение касается обратной связи по информации (CSI) о состоянии канала в сети сотовой связи

Уровень техники

Технология «Долгосрочное развитие» (LTE) использует мультиплексирование (OFDM) с ортогональным частотным разделением в нисходящем канале и распределенное OFDM с дискретным преобразованием (DFT) Фурье в восходящем канале. Таким образом, основной физический ресурс нисходящего канала LTE можно представить как частотно-временную решетку, показанную на фиг. 1, где каждый элемент ресурсов соответствует одной поднесущей OFDM во время интервала одного OFDM символа.

Как показано на фиг. 2, во временной области, передачи нисходящего канала LTE организованы в радиокадры по 10 миллисекунд (мс), каждый радиокадр состоит из десяти одинакового размера подкадров длиной TПОДКАДР = 1 мс. Для обычного циклического префикса один подкадр состоит из 14 OFDM символов. Длительность каждого OFDM символа равна примерно 71,4 микросекунды (мкс).

Более того, выделение ресурсов в LTE обычно описывают в терминах блоков (RB) ресурсов, где RB соответствует одному слоту (0,5 мс) во временной области и 12 соседним поднесущим в частотной области. Пару прилегающих RB во временном направлении (1,0 мс) называют парой RB. RB занумерованы в частотной области, начиная с 0 на одном конце полосы пропускания системы.

Передачи по нисходящему каналу планируются динамически. В частности, в каждом подкадре базовая станция передает управляющую информацию о конечных устройствах (то есть, пользовательских устройствах (UE)), на которые передают данные в текущем подкадре нисходящего канала. Эти сигналы управления, которые переносятся по физическому каналу (PDCCH) управления для нисходящего канала, обычно передают в первых 1, 2, 3 или 4 OFDM символах в каждом подкадре, где количество n = 1, 2, 3 или 4 известно, как указатель (CFI) формата управления. Подкадр нисходящего канала также содержит обычные опорные символы, которые известны устройству приема и которые используют для когерентной демодуляции, например, управляющей информации. Система нисходящего канала с CFI = 3 OFDM символами в качестве управления, показана на фиг. 3.

С версии 11 LTE и далее описанные выше назначения ресурсов также могут планироваться для улучшенного физического канала (EPDCCH) управления для нисходящего канала. Для версий 8 - 10 доступен только PDCCH.

Опорные символы, показанные на фиг. 3, являются характерными для ячейки опорными символами (CRS). CRS используют для поддержки многих функций, в том числе тонкой временной и частотной синхронизации и оценки канала для определенных режимов передачи.

В системах сотовой связи существует необходимость измерять условия канала, чтобы знать, какие использовать параметры передачи. Этими параметрами являются, например, тип модуляции, скорость кодирования, ранг передачи и выделение частот. Это применимо как к передачам по восходящему каналу (UL), так и к передачам по нисходящему каналу (DL).

Устройство планирования, которое принимает решения о параметрах передачи, обычно расположено в базовой станции (то есть, улучшенном или усовершенствованном Узле В (eNB)). Следовательно, устройство планирования может измерять свойства UL непосредственно с использованием известных опорных сигналов, которые передают конечные устройства (то есть, UE). Далее эти результаты измерения образуют основу для решений по планированию для UL, которые принимает eNB, при этом указанные решения далее направляют на UE по каналу управления DL. Наоборот, для DL устройство планирования принимает от конечных устройств обратную связь по информации (CSI) о состоянии канала, которую устройство планирования принимает во внимание при выборе параметров передачи для передач DL на эти конечные устройства.

В версии 8 LTE CRS используют в DL для оценки и обратной связи по CSI и для оценки канала с целью демодуляции. CRS передают в каждом подкадре, и они определены для поддержки до четырех антенных портов (AP). В версии 10 LTE, для поддержки до восьми AP, определены опорные сигналы (CSI-RS) CSI для UE для измерения и направления назад CSI, касающейся нескольких AP. Каждый ресурс CSI-RS состоит из двух элементов (RE) ресурсов для двух последовательных OFDM символов и два разных CSI-RS (для двух разных AP) могут совместно использовать один и тот же ресурс CSI-RS (два RE) с помощью мультиплексирования (CDM) с кодовым разделением. Также CSI-RS может быть передан один раз в 5, 10, 20, 40 или 80 мс, где это время называется периодичностью CSI-RS. Следовательно, CSI-RS отличаются меньшими непроизводительными затратами и меньшим циклом нагрузки по сравнению с CRS. С другой стороны, в отличие от CRS, CSI-RS не используются в качестве опоры для демодуляции. Разные CSI-RS также могут быть переданы с различными смещениями в подкадре, при этом смещение CSI-RS в подкадре называется подкадровым смещением CSI-RS. Когда CSI-RS сконфигурированы, UE измеряет канал для заданного AP в каждый момент времени и может интерполировать канал между присутствующими CSI-RS с целью оценки динамического изменения канала, например, по одному интерполированному образцу на 1 мс вместо, например, одного измеренного образца каждые 5 мс.

На фиг. 4А и 4В показаны примеры сопоставлений различных конфигураций CSI-RS и RE в некоторой паре RB. На фиг. 4А показано сопоставление для одного или двух AP, где возможно 20 конфигураций. Два CSI-RS для двух AP некоторой конкретной ячейки могут быть переданы, например, с помощью конфигурации 0 с помощью CDM, а CSI-RS для AP других соседних ячеек могут быть переданы с помощью конфигурации j, где 1 ≤ j ≤ 19, для исключения коллизий опорных сигналов с CSI-RS в этой ячейке. На фиг. 4В показано сопоставление для четырех AP, где возможно 10 конфигураций. Четыре CSI-RS для четырех AP некоторой конкретной ячейки могут быть переданы, например, с помощью конфигурации 0 с помощью CDM, а CSI-RS для AP других соседних ячеек могут быть переданы с помощью конфигурации j, где 1 ≤ j ≤ 9.

OFDM символы, используемые двумя последовательными RE для одного CSI-RS, являются символами квадратурной фазовой манипуляции (QPSK), которые получены из определенной псевдослучайной последовательности. Для внесения случайности во взаимные помехи, начальное состояние генератора псевдослучайной последовательности определяют с помощью идентификатора (ID) обнаруженной ячейки или ID виртуальной ячейки, сконфигурированной для UE с помощью сигналов управления (RRC) радиоресурсами. CSI-RS с такими OFDM символами ненулевой мощности называются CSI-RS ненулевой мощности (NZP).

С другой стороны, CSI-RS нулевой мощности (ZP) также могут быть сконфигурированы RRC для UE с целью измерения (IM) взаимных помех (только в режиме 10 передачи (TM10)) или с целью улучшения оценки CSI в других ячейках (в режиме 9 передачи (TM9) или TM10). Тем не менее, ZP CSI-RS всегда будет использовать сопоставление CSI-RS с четырьмя AP. Например, на фиг. 4В, если ячейка А использует конфигурацию 0 с NZP CSI-RS для оценки CSI двух АР в ячейке А, то конфигурация 0 с ZP CSI-RS (в целом четыре RE на пару RB) может быть использована соседней ячейкой В для минимизации взаимных помех DL для ячейки А на четырех АР в конфигурации 0, так что может быть улучшена оценка CSI двух АР в ячейке А.

В LTE TM10, для UE с помощью сигналов RRC может быть конфигурировано до четырех процессов CSI и до трех NZP CSI-RS. Эти четыре процесса CSI, например, могут быть использованы для получения CSI для нескольких AP для различных ячеек (или точках (TP) передачи в одной ячейке), в количестве до трех штук, в концепции (CoMP) координированных многоточечных приема и передачи. Четыре процесса CSI также могут быть приписаны нескольким различных пучкам, передаваемым от одной eNB с использованием антенной решетки, способной формировать пучок по азимуту, углу возвышения или по обоим (то есть, двумерное (2D) формирование пучка). В Технических спецификациях (TS) Проекта (3GPP) партнерства 3го поколения 36.213 V12.3.0, 3GPP TS 36.331 V12.3.0, и 3GPP TS 36.211 V12.3.0 описаны полные спецификации LTE по настройке процессов CSI и конфигураций CSI-RS. Пучок переданного сигнала, такого как CSI-RS, получают путем передачи одного и того же сигнала из нескольких антенных элементов решетки, но с отдельно управляемыми сдвигами фазы (и потенциально с плавным изменением амплитуды) для каждого антенного элемента. Таким образом, получающаяся в результате диаграмма направленности переданного сигнала обладает другой шириной пучка и основным направлением ориентации по сравнению с диаграммой направленности антенного элемента. Следовательно, получают прошедший формирование пучка сигнал, такой как прошедший формирование пучка CSI-RS. Обычно, антенные элементы в устройстве передачи расположены близко друг к другу с целью получения коррелированных каналов, что делает формирование пучка более эффективным. Преимущества формирования пучка заключаются в уменьшении взаимных помех (благодаря обычно малой ширине пучка для переданного сигнала) и увеличении эффективного коэффициента усиления канала (благодаря примененным сдвигам фазы при формировании пучка в устройстве передачи, что обеспечивает в устройстве приема когерентную добавку сигналам от каждой передающей антенны).

Чтобы UE получил корректную CSI, каждый процесс CSI в TM10 связан (и сконфигурирован сигналами RRC) с гипотезой сигнала и гипотезой взаимных помех. Гипотеза сигнала описывает, какой NZP CSI-RS отражает нужный сигнал. Взаимные помехи измеряют в сконфигурированном ресурсе CSI-IM, который аналогичен CSI-RS с четырьмя RE на пару физических блоков (PRB) ресурсов, которую UE использует для измерений взаимных помех. Для лучшей поддержки IM в CoMP, CSI-IM стандартизовано и основано на ZP CSI-RS. Следовательно, каждый из процессов CSI, в количестве до четырех штук, состоит из одного NZP CSI-RS и одного CSI-IM.

Для UE TM9 может быть сконфигурирован только один процесс CSI и не может быть определено CSI-IM. Таким образом, IM не определено в TM9. Тем не менее, существует возможность получить обратную связь по CSI из двух различных множества подкадров (SF): множества 1 SF и множества 2 SF. Например, на основе, например, информации о почти пустых подкадрах (ABS), переданной по X2, пико eNB может сконфигурировать UE для передачи обратной связи по CSI как для защищенных (то есть, подкадров (RPSF) уменьшенной мощности) подкадров (где соответствующая макро eNB обладает уменьшенной активностью), так и для незащищенных подкадров в двух различных отчетах об CSI. Это дает пико eNB информацию для осуществления разного приспосабливания линии для двух типов подкадров, в зависимости от того, является ли подкадр защищенным или нет. Также для UE, сконфигурированного в TM10, возможно использовать оба множества подкадров и несколько процессов CSI.

В LTE, формат отчетов об CSI определен подробно и может содержать информацию (CQI) о качестве канала, указатель (RI) ранга и указатель (PMI) матрицы предварительного кодирования. Смотри 3GPP TS 36.213 V12.3.0. Эти отчеты могут быть широкополосными или могут быть применимы к поддиапазонам. Они могут быть сконфигурированы в сообщение RRC, которое подлежит периодической передаче или которое передают непериодическим образом или для которого запускающим элементом для передачи является управляющее сообщение от eNB в UE. Качество и надежность CSI имеет решающее значение для eNB, чтобы eNB принимал наилучшие возможные решения по планированию будущих передач по DL.

LTE стандарт не определяет, как UE должно получать и усреднять результаты измерений CSI-RS и CSI-IM для нескольких моментов времени, то есть подкадров. Например, UE может измерять по временному кадру нескольких подкадров, известных eNB, и объединять несколько результатов измерений для одного UE с целью создания значений CSI, о которых отчитываются, что делают или на периодической основе, или в соответствии с запускающим элементом.

В контексте LTE, ресурсы (то есть, RE), доступные для передачи CSI-RS, называются «ресурсами CSI-RS». Кроме того, также присутствуют «ресурсы CSI-IM». Последние определяются по тому же множеству возможных физических мест в решетке время/частота аналогично CSI-RS, но с нулевой мощностью, следовательно, ZP CSI-RS. Другими словами, они являются «безмолвными» CSI-RS и когда eNB передает по совместно используемому каналу данных, он исключает сопоставление данных этим RE, используемым для CSI-IM. Они предназначены для того, чтобы предоставить UE возможность измерить мощность любой взаимной помехи от устройства передачи, отличного от обслуживающего UE узла.

Каждое UE может быть сконфигурировано с помощью одного, трех или четырех разных процессов CSI. Каждый процесс CSI связан с одним ресурсом CSI-RS и одним ресурсом CSI-IM, где эти ресурсы CSI-RS сконфигурированы для UE с помощью сигналов RRC и, таким образом, периодически передаются/имеют место с периодичностью T и с заданным подкадровым смещением относительно начала кадра.

Если используют только один процесс CSI, то обычно позволяют CSI-IM отражать взаимные помехи от всех других eNB, то есть обслуживающая ячейка использует ZP CSI-RS, который перекрывается с CSI-IM, но в других соседних eNB отсутствуют ZP CSI-RS для этих ресурсов. Таким образом, UE будет измерять взаимные помехи от соседних ячеек с использованием CSI-IM.

Если для UE сконфигурировали дополнительные процессы CSI, то существует вероятность того, что сеть также конфигурирует ресурс ZP CSI-RS в соседнем eNB, при этом ресурс ZP CSI-RS перекрывается с ресурсом CSI-IM для этого процесса CSI для UE в обслуживающей eNB. Таким образом, UE будет направлять назад точную CSI также для случая, когда эта соседняя ячейка не осуществляет передачу. Следовательно, осуществляют скоординированное планирование между несколькими eNB с использованием нескольких процессов CSI и один процесс CSI направляет назад CSI для случая полных взаимных помех, а другой процесс CSI направляет назад CSI для случая, когда соседняя ячейка (с сильными взаимными помехами) не осуществляет передачу. Как упомянуто выше, для UE может быть сконфигурировано до четырех процессов CSI, при этом возможна обратная связь для четырех различных гипотез передачи.

PDCCH/EPDCCH используют для переноса управляющей информации (DCI) нисходящего канала, такой как решения планирования и команды управления электроэнергией. Более конкретно, DCI содержит:

- Назначения планирования DL, в том числе указание ресурсов физического совместно используемого канала для нисходящего канала (PDSCH), формат транспортировки, информация гибридного автоматического запроса (ARQ) и управляющая информация, касающаяся пространственного мультиплексирования (если применимо). Назначение планирования DL также содержит команду для управления электроэнергией физического канала управления для восходящего канала (PUCCH), используемого для передачи подтверждений гибридного ARQ в ответ на назначения планирования DL.

- Разрешения планирования UL, в том числе указание ресурсов физического совместно используемого канала для восходящего канала (PUSCH), формат транспортировки и информация, касающаяся гибридного ARQ. Разрешение планирования UL также содержит команду для управления электроэнергией для PUSCH.

- Команды управления электроэнергией для множества конечных устройств, как дополнение к командам, содержащимся в назначениях/разрешения планирования.

Область PDCCH/EPDCCH переносит одно или несколько сообщений DCI, каждое из которых обладает упомянутым выше форматом. Так как планирование для нескольких конечных устройств может выполняться одновременно, с помощью DL и UL, то должна быть возможность передать несколько сообщений планирования в каждом подкадре. Каждое сообщение планирования передают с помощью отдельных физических ресурсов PDCCH/EPDCCH. Более того, для поддержки условий радиоканала может быть использована адаптация линии, при этом кодовую скорость PDCCH/EPDCCH выбирают путем приспособления использования ресурсов для PDCCH/EPDCCH для соответствия условиям радиоканала.

В отличие от этого фона, ожидается, что будущие сети сотовой связи будут использовать формирование пучка, при этом количество пучков может превосходить количество ресурсов CSI-RS. Кроме того, существующие и будущие сети сотовой связи иногда используют многослойную сеть радиодоступа, содержащую некоторое количество ячеек покрытия (например, макроячеек, управляемых eNB) и некоторое количество ячеек емкости (например, пико ячеек, управляемых пико eNB). Фактически, существует потребность в системах и способах, которые позволяют улучшить конфигурацию CSI-RS, в частности для сетей сотовой связи, которые используют формирование пучков, и/или для многослойных сетей радиодоступа.

Раскрытие сущности изобретения

Описаны системы и способы, касающиеся обратной связи по информации (CSI) о состоянии канала в сети сотовой связи. Хотя это не ограничивает изобретение, описанные в настоящем документе варианты осуществления изобретения особенно хорошо подходят для улучшения обратной связи по CSI в сети сотовой связи, которая использует прошедшие формирование пучка опорные сигналы CSI (CSI-RS), так что один и тот же ресурс CSI-RS может быть повторно использован с течением времени в других пучках.

Описаны варианты осуществления способа работы базовой станции сети сотовой связи с целью управления оценкой канала на основе CSI-RS в устройстве беспроводной связи. В некоторых вариантах осуществления изобретения способ работы базовой станции включает в себя следующее: отключают интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам в устройстве беспроводной связи и принимают один или более отчетов об CSI от устройства беспроводной связи, которые выработаны устройством беспроводной связи с отключенной интерполяцией и/или фильтрацией канала между подкадрами для оценок CSI-RS по подкадрам в ответ на то, что базовая станция отключает в устройстве беспроводной связи интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам. Таким образом, улучшают обратную связь по CSI особенно в вариантах осуществления изобретения, в которых базовая станция передает прошедший формирование пучка ресурс (ресурсы) CSI-RS и повторно использует тот же ресурс (ресурсы) CSI-RS для разных пучков с течением времени. В этом случае без отключения интерполяции и/или фильтрации канала между подкадрами для оценок CSI-RS по подкадрам, устройство беспроводной связи может осуществить интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS для конкретного ресурса CSI-RS, который передан с помощью других пучков в других подкадрах, что в свою очередь приведет к менее оптимальной обратной связи по CSI.

В некоторых вариантах осуществления изобретения устройство беспроводной связи использует для направления отчетов об CSI два или более процесса CSI и отключение интерполяции и/или фильтрации канала между подкадрами для оценок CSI-RS по подкадрам включает в себя следующее: отключают интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам для каждого процесса CSI. В других вариантах осуществления изобретения устройство беспроводной связи использует для направления отчетов об CSI два или более процесса CSI и отключение интерполяции и/или фильтрации канала между подкадрами для оценок CSI-RS по подкадрам включает в себя следующее: отключают интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам для всех из двух или более процессов CSI.

В некоторых вариантах осуществления изобретения отключение интерполяции и/или фильтрации канала между подкадрами для оценок CSI-RS по подкадрам включает в себя следующее: отключают интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам с помощью сигналов управления (RRC) радиоресурсами. Далее, в некоторых вариантах осуществления изобретения отключение интерполяции и/или фильтрации канала между подкадрами для оценок CSI-RS по подкадрам с помощью сигналов RRC включает в себя следующее: направляют, в информационном элементе RRC, который конфигурирует процесс CSI устройства беспроводной связи, указание о том, что интерполяция и/или фильтрация канала между подкадрами для оценок CSI-RS по подкадрам запрещена для процесса CSI устройства беспроводной связи.

В некоторых вариантах осуществления изобретения способ работы базовой станции дополнительно включает в себя следующее: отключают объединение оценок измерения (CSI-IM) взаимных помех CSI по подкадрам в устройстве беспроводной связи.

В некоторых вариантах осуществления изобретения отключение интерполяции и/или фильтрации канала между подкадрами для оценок CSI-RS по подкадрам включает в себя следующее: направляют сигнал на устройство беспроводной связи с указанием о том, что запрещена интерполяция и/или фильтрация канала между подкадрами для оценок CSI-RS по подкадрам.

В некоторых вариантах осуществления изобретения способ работы базовой станции дополнительно включает в себя следующее: конфигурируют устройство беспроводной связи с помощью множества ресурсов CSI-RS. Дополнительно, в некоторых вариантах осуществления изобретения, прием одного или нескольких отчетов об CSI от устройства беспроводной связи включает в себя следующее: принимают отчеты об CSI для подмножества из множества ресурсов CSI-RS, сконфигурированных для устройства беспроводной связи. В некоторых вариантах осуществления изобретения конфигурирование устройства беспроводной связи с помощью множества ресурсов CSI-RS включает в себя следующее: конфигурируют устройство беспроводной связи с помощью множества ресурсов CSI-RS с помощью сигналов RRC. В других вариантах осуществления изобретения конфигурирование устройства беспроводной связи с помощью множества ресурсов CSI-RS включает в себя следующее: полустатически конфигурируют устройство беспроводной связи с помощью множества ресурсов CSI-RS. В некоторых вариантах осуществления изобретения множество ресурсов CSI-RS зависит от процесса CSI устройства беспроводной связи.

В некоторых вариантах осуществления изобретения базовая станция передает прошедший формирование пучка CSI-RS и способ работы базовой станции дополнительно включает в себя следующее: динамически изменяют пучки, используемые для множества ресурсов CSI-RS, сконфигурированных для устройства беспроводной связи.

Также описаны варианты осуществления базовой станции, выполненной с возможностью управления оценкой канала на основе CSI-RS в устройстве беспроводной связи. В некоторых вариантах осуществления изобретения базовая станция работает в соответствии с любым вариантом осуществления способа работы базовой станции, описанным в настоящем документе.

Описаны варианты осуществления способа работы устройства беспроводной связи в сети сотовой связи с целью предоставления отчетов об CSI. В некоторых вариантах осуществления изобретения способ работы устройства беспроводной связи включает в себя следующее: принимают от базовой станции сети сотовой связи указание отключить интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам и, в ответ, осуществляют одно или несколько измерений CSI с отключенной интерполяцией и/или фильтрацией канала между подкадрами для оценок CSI-RS по подкадрам. Способ дополнительно включает в себя следующее: передают на базовую станцию отчет об CSI на основе одного или нескольких результатов измерений CSI-RS.

В некоторых вариантах осуществления изобретения базовая станция передает прошедший формирование пучка ресурс CSI-RS и с течением времени повторно использует тот же ресурс CSI-RS для разных пучков.

В некоторых вариантах осуществления изобретения устройство беспроводной связи использует для направления отчетов об CSI два или более процессов CSI и принятое от базовой станции указание является указанием отключить интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам для конкретного процесса CSI. В других вариантах осуществления изобретения устройство беспроводной связи использует для направления отчетов об CSI два или более процессов CSI и принятое от базовой станции указание является указанием отключить интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам для всех из двух или более процессов CSI.

В некоторых вариантах осуществления изобретения прием указания включает в себя прием указания с помощью сигналов RRC. В некоторых вариантах осуществления изобретения устройство беспроводной связи использует для направления отчетов об CSI два или более процессов CSI, принятое от базовой станции указание является указанием отключить интерполяцию и/или фильтрацию канала между подкадрами для оценок CSI-RS по подкадрам для конкретного процесса CSI устройства беспроводной связи, и прием указания включает в себя прием указания, содержащегося в информационном элементе RRC, который конфигурирует конкретный процесс CSI устройства беспроводной связи.

В некоторых вариантах осуществления изобретения способ работы устройства беспроводной связи дополнительно включает в себя следующее: принимают от базовой станции указание отключить объединение оценок CSI-IM по подкадрам и, в ответ, осуществляют одно или несколько измерений CSI-IM с отключенным объединением оценок CSI-IM по подкадрам.

В некоторых вариантах осуществления изобретения способ работы устройства беспроводной связи дополнительно включает в себя следующее: принимают конфигурацию множества ресурсов CSI-RS для устройства беспроводной связи. В некоторых вариантах осуществления изобретения отчет об CSI сделан для подмножества множества ресурсов CSI-RS, сконфигурированных для устройства беспроводной связи. В некоторых вариантах осуществления изобретения прием конфигурации множества ресурсов CSI-RS включает в себя следующее: принимают от базовой станции конфигурацию множества ресурсов CSI-RS с помощью полустатических сигналов (например, сигналов RRC). В некоторых вариантах осуществления изобретения множество ресурсов CSI-RS зависит от процесса CSI устройства беспроводной связи.

В некоторых вариантах осуществления изобретения базовая станция передает прошедший формирование пучка CSI-RS и пучки, используемые для множества ресурсов CSI-RS, сконфигурированных для устройства беспроводной связи, динамически изменены.

Описаны варианты осуществления устройства беспроводной связи в сети сотовой связи с целью предоставления отчетов об CSI. В некоторых вариантах осуществления изобретения устройство беспроводной связи работает в соответствии с любым вариантом осуществления способа работы устройства беспроводной связи, описанным в настоящем документе.

После прочтения подробного описания вариантов осуществления изобретения, приведенных со ссылками на приложенные чертежи, специалисты в рассматриваемой области оценят объем настоящего изобретения и поймут дополнительные аспекты настоящего изобретения.

Краткое описание чертежей

На приложенных чертежах, которые составляют часть этого описания, показано несколько аспектов изобретения и вместе с описанием указанные чертежи служат для объяснения принципов изобретения.

Фиг. 1 - вид, показывающий физический ресурс нисходящего канала LTE;

фиг. 2 - вид, показывающий структуру временной области LTE;

фиг. 3 - вид, показывающий подкадр нисходящего канала;

фиг. 4А и 4В - виды, показывающие конфигурации опорного сигнала (CSI-RS) информации о состоянии канала для различного количества антенных портов;

фиг. 5 - вид, показывающий один пример сети сотовой связи, реализующей гибкую обратную связь по информации (CSI) о состоянии канала, в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг. 6 - вид, показывающий работу базовой станции и устройства беспроводной связи с фиг. 5, в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг. 7 - вид, показывающий работу базовой станции и устройства беспроводной связи с фиг. 5 с целью обеспечения отключения интерполяции/фильтрации между подкадрами для оценок CSI-RS, в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг. 8 - вид, показывающий работу базовой станции и устройства беспроводной связи с фиг. 5 с целью обеспечения динамической обратной связи по CSI, в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг. 9 - вид, показывающий работу базовой станции и устройства беспроводной связи с фиг. 5 с целью обеспечения динамической обратной связи по CSI с помощью динамической конфигурации ресурсов CSI-RS, в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг. 10 - вид, показывающий работу базовой станции и устройства беспроводной связи с фиг. 5 с целью обеспечения динамической обратной связи по CSI с помощью динамической конфигурации ресурсов CSI-RS, в соответствии с некоторыми другими вариантами осуществления настоящего изобретения;

фиг. 11 - вид, показывающий работу базовой станции и устройства беспроводной связи с фиг. 5 с целью обеспечения динамической обратной связи по CSI с помощью динамической конфигурации ресурсов CSI-RS с использованием сообщений управляющей информации (DCI) нисходящего канала, в соответствии с некоторыми другими вариантами осуществления настоящего изобретения;

фиг. 12 - вид, показывающий работу базовой станции и устройства беспроводной связи с фиг. 5 с целью обеспечения динамической обратной связи по CSI с помощью динамической конфигурации ресурсов CSI-RS с использованием управляющих элементов (CE) управления (MAC) доступом к среде передачи данных технологии «Долгосрочное развитие» (LTE), в соответствии с некоторыми другими вариантами осуществления настоящего изобретения;

фиг. 13 - вид, показывающий работу базовой станции и устройства беспроводной связи с фиг. 5 с целью обеспечения динамической обратной связи по CSI с помощью динамической конфигурации ресурсов CSI-RS ненулевой мощности (NZP) и ресурсов измерений взаимных помех CSI (CSI-IM), в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг. 14 - вид, показывающий работу базовой станции с фиг. 5 с целью динамического конфигурирования ресурсов CSI-RS для устройства беспроводной связи из множества, состоящего из K ресурсов CSI-RS, переданных с помощью соседних пучков с позиции базовой станции, в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг. 15 - вид, показывающий структурную схему базовой станции, в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг. 16 - вид, показывающий структурную схему базовой станции, в соответствии с другими вариантами осуществления настоящего изобретения;

фиг. 17 - вид, показывающий структурную схему устройства беспроводной связи, в соответствии с некоторыми вариантами осуществления настоящего изобретения; и

фиг. 18 - вид, показывающий структурную схему устройства беспроводной связи, в соответствии с другими вариантами осуществления настоящего изобретения.

Осуществление изобретения

Описанные ниже варианты осуществления изобретения представляют информацию специалистам в рассматриваемой области для практической реализации вариантов осуществления изобретения и показа наилучшего режима реализации вариантов осуществления изобретения. После прочтения приведенного ниже описания с учетом приложенных чертежей, упомянутые специалисты в рассматриваемой области поймут идеи изобретения и осознают приложения этих идей, которые конкретно не описаны в настоящем документе. Следует понимать, что эти идеи и приложения находятся в пределах объема изобретения, который определен приложенной формулой изобретения.

Заметим, что, хотя в этом описании для рассмотрения вариантов осуществления настоящего изобретения использована терминология технологии «Долгосрочное развитие» (LTE) Проекта (3GPP) партнерства 3го поколения, это не следует считать ограничением объема описанных в настоящем документе идей только упомянутой выше системой. От применения идей, затронутых в настоящем изобретении, также могут выиграть другие системы беспроводной связи, в том числе технология широкополосного множественного доступа с кодовым разделением каналов (WCDMA), WiFi, WiMax, LTE нелицензированных частот, сверхмобильный широкополосный доступ (UMB) и глобальная система (GSM) мобильной связи.

Также заметим, что такие термины как улучшенный или усовершенствованный Узел В (eNB) и пользовательское устройство (UE) не нужно рассматривать как ограничение и, в частности, они не подразумевают некоторое иерархическое взаимоотношение eNB и UE. В общем, «eNB» или «точка (ТР) передачи» можно рассматривать как устройство 1, а «UE» как устройство 2 и эти два устройства обмениваются друг с другом данными по некоторому радиоканалу. Настоящее изобретение также сконцентрировано на беспроводных передачах по нисходящему каналу, но это изобретение таким же образом может быть применено к восходящему каналу.

До описания вариантов осуществления настоящего изобретения полезно рассмотреть некоторые проблемы, связанные с обычным опорным сигналом (CSI-RS) информации о состоянии канала. Некоторые проблемы, которым посвящено настоящее изобретение, касаются eNB, который передает прошедшие формирование пучка CSI-RS, при этом каждый CSI-RS связан с некоторым, потенциально узким, пучком, переданным, например, антенной решеткой. Другими словами, каждый CSI-RS передают с использованием разных устройств предварительного кодирования или разных весов формирования пучка.

Существующие решения обратной связи по информации (CSI) о состоянии канала характеризуются несколькими проблемами, которым посвящено настоящее изобретение. Повторная конфигурация CSI-RS для проведения измерений требует сигналов управления (RRC) радиоресурсами, что приводит к двум проблемам. Во-первых, существует задержка для осуществления повторной конфигурации, которая может доходить до 10 миллисекунд (мс). Во-вторых, не определено, когда UE внедрит повторную конфигурацию, так как существует некоторый период неопределенности в работе системы. Еще одна проблема с существующими решениями для обратной связи по CSI заключается в том, что использование нескольких процессов CSI требует существенной сложности UE, непроизводительных затрат на передачу сигналов по восходящему каналу и потребления электроэнергии, что нежелательно для реализации сети и UE.

Еще одна проблема состоит в том, что при использовании прошедшего формирование пучка CSI-RS и перемещении UE в тангенциальном направлении с позиции eNB, CSI-RS, для которой UE проводит измерения, необходимо частот повторно конфигурировать, так как UE перемещается от основного лепестка одного пучка к основному лепестку другого пучка. Эта проблема особенно сильна в случае большой тангенциальной скорости UE или узких пучков от eNB (например, большое количество антенн горизонтальной решетки).

Физический канал (PDCCH) управления для нисходящего канала и улучшенный PDCCH (EPDCCH) могут обладать сравнительно высоким частотами ошибок в блоках, что означает, что сеть может не знать, если сообщение управляющей информации (DCI) нисходящего канала принято корректно. Следовательно, в случае, когда сообщение DCI изменяет параметр, используемый для периодического направления отчетов об CSI, сеть может не знать, используется ли параметр, содержащийся в DCI, в последующих периодических отчетах об CSI, так как UE может передавать периодические отчеты об CSI с использованием того же формата и времени как до, так и после приема (или не приема) сообщения DCI.

В настоящем документе описаны системы и способы, касающиеся улучшенных решений для выполнения обратной связи по CSI, по меньшей мере, в некоторых вариантах осуществления изобретения, которые посвящены описанным выше проблемам. В некоторых вариантах осуществления изобретения eNB указывает UE с помощью сигналов более высокого слоя (например, сигналов RRC) или в сообщении DCI, что UE не разрешено осуществлять интерполяцию канала для оценок CSI-RS по подкадрам. В некоторых вариантах осуществления изобретения eNB также указывает, что не разрешено усреднение оценок CSI-IM по подкадрам. Другими словами, указание, что UE не разрешено осуществлять интерполяцию канала для оценок CSI-RS по подкадрам, будет обеспечивать то, что с целью обратной связи по CSI для процесса CSI не будет осуществляться фильтрации между подкадрами для оценок канала на основе CSI-RS ненулевой мощности (NZP). Сигналы могут дополнительно указывать процессы CSI для которых отключена интерполяция/фильтрация между подкадрами (например, заранее задано, что для всех процессов CSI или для подмножества возможных процессов CSI). В некоторых вариантах осуществления изобретения информационный э