Офтальмологические устройства со встроенными фотонными элементами

Иллюстрации

Показать все

Группа изобретений относится к медицине. Офтальмологическое устройство, расположенное на глазу или в глазу, для проецирования света в глаз, содержит: первый фотонный излучатель для приема света и передачи по меньшей мере части принятого света; источник света для обеспечения света; электронный компонент, который обеспечивает приложение электрического потенциала к источнику света; и элемент питания, который обеспечивает энергией электронный компонент, причем размер и форма элемента питания позволяют ему при использовании занимать положение между поверхностью глаза и веком пользователя. Другой вариант офтальмологического устройства, расположенного на глазу или в глазу, для проецирования света в глаз, содержит: внутри офтальмологического устройства проекционную систему, содержащую: фотонный излучатель для приема и передачи по меньшей мере части принятого света, источник света для обеспечения света, элемент световой модуляции и элемент линзы; первый элемент питания, размещенный внутри офтальмологического устройства; электронную схему, которая управляет изнутри офтальмологического устройства протоколом связи для беспроводной связи с источником сигнала, размещенным за пределами офтальмологического устройства; электронную схему, которая обрабатывает данные в формат для передачи на проекционную систему, причем проекционная система кодирует данные в качестве фазовой характеристики излучаемого света. Фотонный излучатель может содержать резистивный нагреватель. Применение данной группы изобретений позволит расширить арсенал технических средств, а именно офтальмологических устройств, расположенных на глазу или в глазу, для проецирования света в глаз. 3 н. и 18 з.п. ф-лы, 9 ил.

Реферат

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ

В настоящем изобретении описаны офтальмологические устройства, которые имеют фотонные излучатели, расположенные поверх или внутри них.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Традиционно офтальмологическое устройство, такое как контактная линза, интраокулярная линза или пробка для слезной точки, представляет собой биосовместимое устройство, обладающее корректирующими, косметическими или терапевтическими качествами. Например, контактная линза может выполнять одну или более из функции коррекции зрения, косметической коррекции и терапевтической функции. Каждая функция обеспечивается физической характеристикой линзы. Конфигурация линзы с учетом светопреломляющего свойства позволяет проводить коррекцию зрения. Введение в материал линзы пигмента позволяет получить косметический эффект. Введение в материал линзы активного агента позволяет использовать линзу в терапевтических целях. Таких физических характеристик можно добиться без подключения линзы к источнику питания. Пробка для слезной точки традиционно представляет собой пассивное устройство.

Недавно были описаны новые офтальмологические устройства на основе офтальмологических вставок с энергообеспечением и без энергообеспечения. Данные устройства могут использовать функцию энергообеспечения для питания активных оптических компонентов.

Недавно было показано, что наноразмерные фотонные элементы могут подходить для проецирования фотонов из массивов указанных элементов. Можно получать изображения фотонной проекции как в перспективе ближнего поля, так и в перспективе дальнего поля.

Может оказаться полезным создать офтальмологические устройства путем встраивания наноразмерных фотонных элементов или массивов таких элементов в указанные офтальмологические устройства.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Таким образом, настоящее изобретение включает в себя герметизированную вставку-субстрат с фотонными излучателями, которую можно встроить в офтальмологическое устройство с энергообеспечением, а в некоторых вариантах осуществления, более конкретно, в контактную линзу. Фотонные излучатели могут создавать световые рисунки или динамические изображения из световых рисунков, которые можно использовать для передачи данных или информации в форме световых рисунков через офтальмологическое устройство на сетчатку пользователя. В некоторых вариантах осуществления представлено офтальмологическое устройство с энергообеспечением и проекционной системой, содержащей массив фотонных излучателей, в которой изображение фильтруется соответствующим массивом элементов световой модуляции и проецируется через электрооптическую линзовую систему.

Следовательно, настоящее изобретение включает в себя описание офтальмологических устройств, которые содержат фотонные излучатели. Офтальмологические устройства могут дополнительно включать в себя источники света для подачи света на фотонные излучатели. Новые офтальмологические устройства могут дополнительно включать в себя электронные компоненты, которые управляют энергией и передают ее в форме электрического потенциала источнику света. Электронные компоненты могут получать энергию от элементов питания. В некоторых вариантах осуществления все данные компоненты можно встроить в офтальмологическое устройство, размер и форма которого согласуется с размещением офтальмологического устройства в положении между поверхностью глаза пользователя и соответствующим веком данного глаза.

В некоторых вариантах осуществления фотонные излучатели такого устройства могут быть образованы из полупроводникового материала, который может включать в себя или быть изготовлен из кремния. Конфигурации фотонных излучателей могут иметь множество аспектов, подходящих для их функционирования. Например, включение в их структуру резистивных нагревательных элементов может позволить получить элементы фотонных излучателей, изменяющих фазовые характеристики проходящего через них света. Также важными могут быть и другие элементы конструкции, такие как длина и расстояние между частями фотонного излучателя по отношению к оптическим световодам, которые подают фотоны в систему.

Источники излучения, которые подают свет в фотонные излучатели и в системы, образованные из комбинаций таких фотонных излучателей, могут быть различных типов. Некоторые варианты осуществления могут содержать в качестве источников света светодиоды. Другие варианты осуществления могут содержать элементы твердотельного лазера в качестве по меньшей мере части источника света. В некоторых вариантах осуществления источник счета может представлять собой комбинацию множества источников света. Комбинация может включать в себя светодиодные и лазерные источники или отдельные источники каждого типа, причем отдельные источники могут иметь различные характеристики по длинам волн. Например, твердотельный светоизлучающий элемент либо светодиодного типа, либо лазерного типа может иметь по меньшей мере один из следующих вариантов цветов: например, красный, оранжевый, желтый, зеленый или синий. В некоторых вариантах осуществления источник света может быть образован внутри или на поверхности той же подложки, что и фотонный излучатель в технологическом процессе, который может в одном технологическом процессе образовать источники света, электронные компоненты и оптические компоненты. В других вариантах осуществления можно закрепить отдельные компоненты источника света на системе, содержащей фотонные излучатели.

Офтальмологическое устройство может включать в себя элементы и системы элементов, которые воздействуют на интенсивность света, излучаемого фотонным излучателем, перед тем как он покинет офтальмологическое устройство. В некоторых вариантах осуществления каждый фотонный излучатель может представлять собой элемент пикселя, и каждый элемент пикселя также может иметь элемент световой модуляции. Комбинация данных элементов световой модуляции может рассматриваться как система световой модуляции. Когда каждый из элементов световой модуляции объединяется с фотонным излучателем или повторяющейся комбинацией фотонных излучателей, такую систему можно рассматривать как растровую систему световой модуляции.

Элементы световой модуляции могут функционировать путем введения фильтрующего света материала на путь света, генерируемого фотонными излучателями. В некоторых вариантах осуществления данную функцию можно осуществлять с использованием явления электросмачивания на диэлектрике (EWOD), когда внутри устройства можно создать участок поверхности с некоторой исходной свободной энергией поверхности. Устройство EWOD может также иметь комбинацию несмешивающихся жидкостей или текучих сред, которые по-разному взаимодействуют с участком поверхности с заданной исходной свободной энергией поверхности. Контролируемое приложение электрического потенциала к участку поверхности может подходить для изменения его свободной энергии поверхности или его эффективной свободной энергии поверхности и, таким образом, способствовать разному взаимодействию с комбинацией несмешивающихся текучих сред. Если по меньшей мере одна из текучих сред поглощает или рассеивает свет, исходящий от фотонного излучателя, а вторая этого не делает, меняя текучую среду, которая находится или не находится на пути света, можно контролировать или модулировать интенсивность света. Это может называться световой модуляцией.

Офтальмологическое устройство может быть образовано путем объединения в единое целое проекционной системы с элементами питания, схемой управления, схемой связи и схемой обработки данных. Проекционная система может состоять из подсистемы, содержащей по меньшей мере элемент фотонного излучателя, источник света, элемент световой модуляции и элемент линзы. Проекционные системы также могут состоять из подсистем, содержащих комбинации элементов фотонного излучателя и соответствующие им растровые элементы световой модуляции.

Офтальмологическое устройство, содержащее проекционную систему, может отображать данные или информацию в различных формах. Дисплей может проецировать текстовую информацию. Аналогичным образом дисплей может проецировать изображения. Изображения могут быть в форме цифровых изображений, состоящих из множества проецируемых пикселей данных изображения. Изображения можно отображать как монохромные, или в альтернативном варианте осуществления они могут содержать различные степени цвета. Путем изменения выводимого изображения во времени проекционная система может отображать данные в форме видео в различных форматах.

Пример офтальмологического устройства отображения информации, содержащего систему фотонных излучателей, может включать в себя линзы как часть офтальмологического устройства. Данные линзы могут воздействовать на изображение, образованное системой фотонных излучателей, и фокусировать данное изображение различными способами на сетчатку пользователя. Линзовая система может фокусировать создаваемое массивом фотонных излучателей изображение дальнего поля или создаваемое массивом фотонных излучателей изображение ближнего поля. В некоторых вариантах осуществления линзовая система может содержать множество линзовых подсистем. В некоторых вариантах осуществления линзовые подсистемы могут иметь элементы, имеющие фиксированную фокальную характеристику или фиксированное фокусное расстояние. В других вариантах осуществления линзовая подсистема может включать в себя по меньшей мере первую линзу с изменяемым фокусным расстоянием. Пример такой линзы с изменяемым фокусным расстоянием может включать в себя менисковую линзу, которая также может функционировать на основе эффекта EWOD. Можно также образовать комплексные линзы с изменяемым фокусным расстоянием, используя множество участков электродов, что может подходить для изменения характеристики фокусной точки линзы как в плане фокусного расстояния, так и в плане трансляционной перспективы, которые могут эффективно меняться при проецировании изображения. В некоторых случаях изображение может проецироваться системой через глаз пользователя и на сетчатку пользователя. При проецировании на сетчатку пользователя размер изображения, образованного за счет активированных фотонных элементов, может составлять менее одного квадратного сантиметра. В других вариантах осуществления размер может составлять приблизительно один квадратный миллиметр или менее.

ОПИСАНИЕ ФИГУР

На Фиг.1 представлен пример осуществления вставки-субстрата для офтальмологического устройства с энергообеспечением и пример осуществления офтальмологического устройства с энергообеспечением.

На Фиг.2 представлен пример контактной линзы с различными элементами, включая встроенную кольцевую многоэлементную вставку, которая может подходить для реализации аспектов уровня техники, описанного в настоящем документе.

На Фиг.3 представлен пример альтернативного варианта осуществления по отношению к варианту осуществления, показанному на Фиг.2, в котором вставка содержит материал в оптической зоне.

На Фиг.4 представлен пример структур фотонных излучателей, согласующихся со структурами, описанными в других работах, отражающих современный уровень техники в данной области, которые можно использовать для реализации аспектов уровня техники, описанного в настоящем документе.

На Фиг.5 представлена структура массива фотонных излучателей с источником света и средством связи источника света с массивом.

На Фиг.6 представлен пример устройства, содержащего массив фотонных излучателей в части оптической зоны примера офтальмологического устройства.

На Фиг.7 представлен пример структуры элемента световой модуляции, которую можно применять для реализации аспектов уровня техники, описанного в настоящем документе.

На Фиг.8 представлен альтернативный пример структуры элемента световой модуляции, которую можно применять для реализации аспектов уровня техники, описанного в настоящем документе.

На Фиг.9 представлен пример офтальмологического устройства с энергообеспечением для проекционной системы, содержащий массивы фотонных элементов, массивы элементов для модуляции световой фазы или интенсивности света и линзовые системы, которые можно применять для реализации аспектов уровня техники, описанного в настоящем документе.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к офтальмологическому устройству, имеющему фотонные излучатели, которое может проецировать световые рисунки в среде глаза. В следующих разделах будет приведено подробное описание вариантов осуществления настоящего изобретения. Описания как предпочтительных, так и альтернативных вариантов осуществления являются только примерами осуществления. Предполагается, что специалисту в данной области будут понятны возможности создания вариантов, модификаций и изменений. Поэтому следует учитывать, что область, охватываемая настоящим изобретением, не ограничивается указанными примерами осуществления.

Определения

В приведенном описании и пунктах формулы, относящихся к настоящему изобретению, используется ряд терминов, для которых будут приняты следующие определения:

Электросмачивание на диэлектрике, или EWOD, - при использовании в настоящем документе относится к классу устройств или классу частей устройств, где присутствует комбинация несмешивающихся текучих сред или жидкостей, участок поверхности с заданной свободной энергией поверхности и электрическое поле, создаваемое приложением потенциала. Как правило, электрическое поле, создаваемое приложением потенциала, приводит к изменению свободной энергии поверхности участка поверхности, что может привести к изменению взаимодействия несмешивающихся текучих сред с участком поверхности.

С энергообеспечением - в настоящем документе относится к состоянию возможности подачи электрического тока или хранения электрической энергии внутри устройства.

Энергия - в настоящем документе обозначает способность физической системы к выполнению работы. Многие способы применения в рамках настоящего изобретения могут относиться к указанной способности осуществления электрического воздействия при выполнении работы.

Источник энергии - в настоящем документе обозначает устройство или слой, способный подавать энергию или переводить логическое или электрическое устройство в состояние энергообеспечения.

Устройство сбора энергии - в настоящем документе обозначает устройство, способное извлекать энергию из среды и превращать ее в электрическую энергию.

Функционализированный - при использовании в настоящем документе термин обозначает создание слоя или устройства, способного выполнять некоторую функцию, включая, например, питание энергией, активацию или управление.

Утечка - в настоящем документе обозначает нежелательную потерю энергии.

Линза или офтальмологическое устройство - при использовании в настоящем документе термин относится к любому устройству, расположенному в глазу или на нем. Эти устройства могут обеспечивать оптическую коррекцию, выполнять косметическую функцию или могут выполнять функцию, не связанную с глазом. Например, термин «линза» может относиться к контактной линзе, интраокулярной линзе, накладной линзе, глазной вставке, оптической вставке или другому аналогичному устройству, которое применяют для коррекции или модификации зрения или для косметической коррекции физиологии глаза (например, изменения цвета радужной оболочки) без снижения зрения. Альтернативно линза может обеспечивать неоптические функции, такие как, например, мониторинг уровня глюкозы или введение лекарственного средства. В некоторых вариантах осуществления предпочтительные линзы настоящего изобретения представляют собой мягкие контактные линзы, изготовленные из силиконовых эластомеров или гидрогелей, которые включают в себя, например, силикон-гидрогели и фтор-гидрогели.

Линзообразующая смесь, или реакционная смесь, или реакционная смесь мономера (РСМ) - в настоящем документе обозначает мономерный или форполимерный материал, который можно отверждать и поперечно сшить или поперечно сшить для образования офтальмологической линзы. Различные варианты осуществления могут включать в себя линзообразующие смеси с одной или более добавками, такими как, например, УФ-блокаторы, тонирующие вещества, фотоинициаторы или катализаторы, а также прочие необходимые добавки для офтальмологической линзы, такой как контактные или интраокулярные линзы.

Линзообразующая поверхность - при использовании в настоящем документе термин относится к поверхности, используемой для литья линзы. В некоторых вариантах осуществления любая такая поверхность может иметь поверхность с обработкой оптического качества, что означает, что данная поверхность достаточно гладкая и изготовлена так, что поверхность линзы, изготовленной путем полимеризации линзообразующего материала, находящегося в контакте с поверхностью формы для литья, имеет оптическое качество. Кроме того, в некоторых вариантах осуществления линзообразующая поверхность может иметь такую геометрию, которая необходима для придания поверхности линзы необходимых оптических характеристик, включая, без ограничений, коррекцию сферических, асферических и цилиндрических степенных аберраций волнового фронта, коррекцию топографии роговицы и т.п., а также любых их комбинаций.

Элемент световой модуляции - при использовании в настоящем документе обозначает устройство или часть устройства, которое модулирует интенсивность света, проходящего с одной его стороны к другой стороне. Идеальные элементы световой модуляции в вариантах осуществления настоящего изобретения пропускают весь свет в одном состоянии и совершенно не пропускают свет в другом состоянии. Практические элементы могут по существу достигать идеальных аспектов.

Литий-ионный элемент - в настоящем документе обозначает электрохимический элемент, в котором электрическая энергия вырабатывается в результате движения ионов лития через элемент. Данный электрохимический элемент, как правило, называемый аккумуляторной батареей, в своей типичной форме может быть возвращен в состояние с более высоким зарядом или перезаряжен.

Вставка-субстрат - в настоящем документе обозначает инкапсулированную вставку, которая будет включена в офтальмологическое устройство с энергообеспечением. Элементы питания и схема могут быть встроены во вставку-субстрат. Вставка-субстрат определяет основное назначение офтальмологического устройства с энергообеспечением. Например, в вариантах осуществления, в которых офтальмологическое устройство с энергообеспечением позволяет пользователю регулировать оптическую силу, вставка-субстрат может включать в себя элементы питания, управляющие жидкостной менисковой частью в оптической зоне. Альтернативно вставка-субстрат может иметь кольцевую форму, в результате чего оптическая зона не содержит материала. В таких вариантах осуществления функция энергообеспечения линзы может быть не связана с оптическим качеством, а может предусматривать, например, контроль уровня глюкозы или введение лекарственного средства.

Форма для литья - при использовании в настоящем документе означает жесткий или полужесткий объект, который можно использовать для формирования линз из неполимеризованных составов. Некоторые предпочтительные формы для литья включают в себя две части формы для литья, образующие переднюю изогнутую часть формы для литья и заднюю изогнутую часть формы для литья.

Рабочий режим - в настоящем документе обозначает состояние с высоким потреблением тока, при котором ток, проходящий по схеме, позволяет устройству выполнять свою основную функцию энергообеспечения.

Оптическая зона - в настоящем документе обозначает область офтальмологической линзы, через которую смотрит пользователь офтальмологической линзы.

Фотонный излучатель - при использовании в настоящем документе обозначает устройство или часть устройства, которое может принимать падающий свет и передавать его в свободное пространство. Свет, как правило, может выходить в направлении, отличном от направления света, который падал на излучатель. Как правило, излучатель может содержать антенную структуру для передачи света.

Растровая система световой модуляции - при использовании в настоящем документе обозначает комбинацию отдельно функционирующих элементов световой модуляции, причем каждую отдельно функционирующую часть системы световой модуляции можно рассматривать как пиксель, или элемент изображения.

Сила - в настоящем документе обозначает выполненную работу или переданную энергию за единицу времени.

Перезаряжаемый или повторно подключаемый к источнику энергии - в настоящем документе обозначает возможность быть возвращенным в состояние с более высокой способностью к выполнению работы. Многие способы применения в рамках настоящего изобретения могут относиться к восстановлению способности проводить электрический ток определенной величины и в течение определенного промежутка времени.

Повторно подключить к источнику энергии или перезарядить - в настоящем документе обозначает восстановление состояния с более высокой способностью совершать работу. Многие способы применения в рамках настоящего изобретения могут относиться к восстановлению способности устройства проводить электрический ток определенной величины и в течение определенного промежутка времени.

Эталон - в настоящем документе обозначает схему, в идеальном варианте создающую фиксированное и стабильное напряжение или выходное значение тока, которые подходит для применения в других схемах. Эталон может быть основан на запрещенной энергетической зоне, может иметь компенсацию температуры, подачи питания и технологических вариаций и может быть специально рассчитан для конкретной специализированной интегральной схемы (ASIC).

Высвобожденный из формы для литья - в настоящем документе обозначает линзу, которая либо полностью отделена от формы для литья, либо лишь слабо закреплена на ней таким образом, что ее можно отделить легким встряхиванием или сдвинуть с помощью тампона.

Функция сброса - в настоящем документе обозначает самоактивирующийся алгоритмический механизм для установки схемы в определенное предварительно заданное состояние, включая, например, логическое состояние или состояние энергообеспечения. Функция сброса может включать в себя, например, схему сброса при включении питания, которая может в сочетании с механизмом переключения обеспечивать надлежащую подачу питания на микросхему как при первоначальном подключении к источнику энергии, так и при выходе из режима сохранения энергии.

Спящий режим или режим ожидания - в настоящем документе обозначает состояние низкого потребления тока устройства с энергообеспечением после того, как механизм переключения будет перекрыт с целью энергосбережения, когда рабочий режим не требуется.

Наложение - при использовании в настоящем документе термин относится к расположению по меньшей мере двух слоев с компонентами в непосредственной близости друг к другу таким образом, чтобы по меньшей мере часть одной поверхности одного из слоев контактировала с первой поверхностью второго слоя. В некоторых вариантах осуществления между двумя слоями может находиться пленка, обеспечивающая сцепление или выполняющая иные функции, так что слои находятся в контакте друг с другом через указанную пленку.

Наложенные друг на друга интегрированные многокомпонентные устройства, или SIC-устройства, - в настоящем документе обозначает результаты применения технологий упаковки, позволяющие собирать тонкие слои подложек, которые могут включать электрические и электромеханические устройства, в функциональные интегрированные устройства путем наложения по меньшей мере части каждого слоя друг на друга. Слои могут содержать многокомпонентные устройства различных типов, материалов, форм и размеров. Более того, слои могут быть изготовлены по различным технологиям производства устройств для получения различных контуров.

Режим сохранения энергии - в настоящем документе обозначает состояние системы, содержащей электронные компоненты, в которой источник энергии обеспечивает или должен обеспечивать минимальный проектный ток нагрузки. Этот термин не является взаимозаменяемым с режимом ожидания.

Вставка подложки - в настоящем документе обозначает формуемую или жесткую подложку, способную поддерживать источник энергии внутри офтальмологической линзы. В некоторых вариантах осуществления вставка подложки также поддерживает один или более компонентов.

Механизм переключения - в настоящем документе обозначает компонент, интегрированный в схему, обеспечивающий различные уровни сопротивления, который может реагировать на внешний стимул и который является независимым от офтальмологического устройства.

Офтальмологическое устройство с энергообеспечением

На Фиг.1 представлен пример осуществления вставки-субстрата 100 для офтальмологического устройства с энергообеспечением и соответствующее офтальмологическое устройство с энергообеспечением 150. Вставка-субстрат 100 может содержать оптическую зону 120, которая может быть или не быть функциональной в плане коррекции зрения. Если функция энергообеспечения офтальмологического устройства не связана со зрением, оптическая зона 120 вставки-субстрата 100 может не содержать материала. В некоторых вариантах осуществления вставка-субстрат 100 может включать в себя часть, не находящуюся в оптической зоне 120, содержащую подложку 115, встроенную с элементами питания 110 и электронными компонентами 105. Могут существовать различные варианты осуществления, относящиеся к включению фотонных излучателей в офтальмологические устройства.

В некоторых вариантах осуществления источник энергии 110, который может представлять собой, например, батарею, и нагрузка 105, которая может представлять собой, например, полупроводниковый кристалл, могут быть прикреплены к подложке 115. Проводящие дорожки 125 и 130 могут обеспечивать электрическое соединение между электронными компонентами 105 и элементами питания 110. Вставка-субстрат 100 может быть полностью инкапсулирована для защиты и вмещения элементов питания, дорожек и электронных компонентов. В некоторых вариантах осуществления инкапсулирующий материал может быть полупроницаемым, например, для предотвращения попадания определенных веществ, таких как вода, во вставку-субстрат 100, и обеспечения входа и выхода определенных веществ, таких как газы окружающей среды и побочные продукты реакций в элементах питания, во вставку-субстрат 100 и из нее.

В некоторых вариантах осуществления вставка-субстрат 100 может быть включена в офтальмологическое устройство 150, которое может содержать полимерный биосовместимый материал. Офтальмологическое устройство 150 может включать в себя конструкцию из жесткой центральной части и мягкого края, где центральный жесткий оптический элемент содержит вставку-субстрат 100. В некоторых конкретных вариантах осуществления вставка-субстрат 100 может иметь прямой контакт с атмосферой и с поверхностью роговицы, соответственно, на своей передней и задней поверхностях, или альтернативно вставка-субстрат 100 может быть инкапсулирована в офтальмологическое устройство 150. Периферическая зона 155 офтальмологической линзы 150 может состоять из мягкого материала края, включая, например, гидрогелевый материал.

Инфраструктура вкладыша-субстрата 100 и офтальмологическое устройство 150 могут обеспечивать условия для множества вариантов осуществления, включающих проецирование света с использованием фотонных излучателей, которые можно комбинировать с активными или пассивными линзовыми устройствами и в некоторых вариантах осуществления с массивами, модулирующими интенсивность света. В некоторых из данных вариантов осуществления можно использовать чисто пассивное функционирование части офтальмологического устройства, не связанной с компонентами для проецирования фотонов. В других вариантах осуществления можно использовать офтальмологическое устройство с активными функциями, которые могут дополнять или поддерживать функционирование компонентов для проецирования фотонов. Например, непроецирующие части устройства могут обеспечивать коррекцию зрения или активное экранирование устройства для уменьшения его проницаемости для падающего света.

На Фиг.2, элемент 200, представлен вид в сечении примера многоэлементной вставки. Вставка данного типа представляет собой кольцевую вставку с кольцом из материала вокруг центральной оптической зоны, которая не содержит материал. На Фиг.2 офтальмологическое устройство 220 может иметь поперечное сечение 230, которое представляет собой поперечное сечение по местоположению, представленному линией 210. В одном примере осуществления участок вставки вне оптической зоны офтальмологического устройства может включать в себя элементы питания и электронные схемы управления для поддержки активных элементов различных видов. Данные активные элементы, как правило, могут включать в себя датчики и элементы связи различных типов. Альтернативно в некоторых вариантах осуществления раскрываемого изобретения может обеспечиваться функция управления и энергообеспечения для проецирующего элемента на основе элементов для проецирования фотонов. Кроме того, вне оптической зоны устройства могут находиться печатные рисунки, нанесенные на вставку, как показано элементом 221 и на виде в сечении - элементами 231.

В некоторых вариантах осуществления могут предъявляться определенные требования к ориентации офтальмологической линзы в среде глаза. Элементы 250 и 260 могут представлять собой элементы зоны стабилизации, которые способствуют ориентации образованной офтальмологической линзы на глазу пользователя. Более того, в некоторых вариантах осуществления применение ориентирующих элементов на многоэлементной кольцевой вставке может позволить ориентировать ее относительно литых элементов стабилизации, что может оказаться особенно важным при размещении элементов проекции и линзовых систем, не поддерживающих функции динамического управления фокусировкой и центрирования.

На Фиг.3, элемент 300, представлен вид в сечении вариации примера многоэлементной вставки, показанного на Фиг.2. На Фиг.3 офтальмологическое устройство 320 может иметь представление в поперечном сечении 330, которое представляет собой поперечное сечение по местоположению, представленному линией 310. В примере осуществления оптическая зона офтальмологического устройства 320 может включать в себя часть, в которой находится линзовая система с активным регулированием фокусной характеристики, такая как жидкостная менисковая линзовая система 335. Кроме того, вне оптической зоны устройства могут также находиться части вставки, которые содержат элементы питания и компоненты управления и активации 336. По тем же причинам, что и в варианте осуществления, показанном на Фиг.2, в офтальмологическое устройство могут быть встроены юстировочные элементы или зоны стабилизации, показанные как элементы 350 и 360, и на вставку могут быть нанесены печатные рисунки, показанные как элемент 321 и элементы 331 в представлении в поперечном сечении.

Элементы для проецирования фотонов

На Фиг.4, элемент 400, показаны фотонные излучатели. Может существовать множество способов создания элементов излучателей (которые также можно называть «излучателем») для применения в фотонных приложениях. Элементом 410 элемента 400 показан простой элемент фотонного излучателя, согласующийся со структурами, описанными в других работах, отражающих современный уровень техники в данной области. Источником фотонов для данной системы может служить оптический световод 420, проходящий параллельно соединительным частям 430 излучающего элемента. Приходящие по оптическому световоду 420 фотоны могут связываться с соединительными частями 430 за счет процесса, который можно назвать связью через затухающее поле - экспоненциально затухающее явление на ближнем участке периферической зоны оптического световода. Связь позволяет фотонам перемещаться из оптического световода в излучающий элемент. Степень связи и, следовательно, число фотонов, поступающих в излучающий элемент, представляющее собой одну из мер интенсивности, можно модулировать с использованием ряда явлений, включая используемые материалы, условия окружающей среды, но, что более важно, структурную конфигурацию системы. Длина параллельной части элемента 430 и величина зазора между данным участком и оптическим световодом 435 может решающим образом определять эффективность связи и может применяться для коррекции номинальной относительной интенсивности фотонного излучателя в наборе фотонных излучателей. В элементе 410 свет проходит по световодным компонентам 430 элемента, пока не достигает излучающей части, выполненной в виде дифракционной решетки. Для повышения эффективности передачи света через фотонный излучатель можно использовать различные эффекты, как например, построенный угол между излучающими поверхностями, а также их форму и величину зазора между ними. В идеале из элемента 440 должно излучаться как можно больше света в одном направлении, например, «из страницы».

В качестве элемента 450 показан более сложный фотонный излучатель. В элемент излучателя может быть встроен нагревающий элемент. Он может представлять собой резистивный нагреватель, встроенный в фотонный излучатель. В вариантах осуществления, где излучатель образован из полупроводниковых материалов, таких как кремний, резистивный элемент может быть образован в том же слое, где его можно допировать для изменения его характеристик сопротивления. Пропуская ток через контакт 460, резистивную ветвь 470 и через часть тела излучателя 430 и обратно через другую часть резистивной ветви 471 и через контакт 480, в фотонном излучателе можно создать часть пути света с дифференциальным нагревом. Тепловые эффекты в оптических световодах, такие как показанные в элементе 430, могут изменять фазовые характеристики поступающего по ним света. Таким образом, фотонный излучатель элемента 450 может обеспечивать определенную интенсивность излучаемого им света на основе интенсивности в оптическом световоде 420 источника и эффективности ввода света от источника в излучающее устройство, определяемой степенью близости участка связи излучающего устройства и размерами данного участка связи. Более того, дополнительно можно контролируемым образом изменять фазовые характеристики данного света путем пропускания электрического тока через часть нагревателя между элементами 460 и 480. Управление относительной фазой излучаемого света таким способом может обеспечить эффективную передачу закодированной в фазовых характеристиках информации, наблюдаемой в изображении дальнего поля, образованным массивом из таких фотонных излучателей, где фазой отдельных пикселей можно управлять путем контроля теплового состояния частей излучающего устройства. Может существовать множество материалов, из которых можно создать фотонный излучатель, и может существовать множество способов создания фазовых эффектов в различных материалах, включая, в качестве примеров, не имеющих ограничительного характера, термическое управление и механическое напряжение.

На Фиг.5, элемент 500, показан пример массива, созданного из фотонных излучателей. В некоторых вариантах осуществления пиксель фотонных излучателей 520 можно создать аналогично элементам 410 или 450. В элементе 500 показаны ячейки типа, представленного в элементе 450. Свет поступает от источника излучения 540, который в некоторых вариантах осуществления может включать в себя один или более лазерных элементов, излучающих свет в один или более оптических световодов, подводящих свет