Устройство и способ для извлечения физиологической информации

Иллюстрации

Показать все

Группа изобретений относится к медицинской технике, а именно к средствам для извлечения физиологической информации из дистанционно детектируемого электромагнитного излучения, испускаемого или отраженного объектом изучения. Устройство содержит интерфейс для приема потока данных, получаемого из детектируемого электромагнитного излучения, при этом поток данных содержит по меньшей мере одну последовательность отсчетов сигнала, представляющих область интереса, проявляющую непрерывный или дискретный характеристический сигнал, включающий в себя физиологическую информацию, указывающую на по меньшей мере один по меньшей мере частично периодический сигнал жизнедеятельности, и состоящих из по меньшей мере двух компонент длин волн, преобразующий блок, выполненный с возможностью определения и обеспечения по меньшей мере одной компоненты коэффициентов из по меньшей мере двух компонент длин волн по меньшей мере одной последовательности отсчетов сигнала, причем компонента коэффициентов пригодна для получения по меньшей мере одной компоненты сигнала посредством применения к по меньшей мере одной последовательности отсчетов сигнала, блок выбора коэффициентов для выбора одной компоненты коэффициентов из по меньшей мере одной компоненты коэффициентов, блок компонент сигнала и блок обработки сигналов для обеспечения искомой физиологической информации из компоненты сигнала. Способ извлечения физиологической информации осуществляется посредством устройства, снабженного машиночитаемым носителем данных. Использование изобретений позволяет снизить число ошибок детектирования. 3 н. и 11 з.п. ф-лы, 5 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к устройству и способу для извлечения физиологической информации из дистанционно детектируемого электромагнитного излучения, испускаемого или отраженного объектом изучения, при этом физиологическая информация вложена в поток данных, содержащий последовательность отсчетов сигнала, представляющих область интереса, проявляющую непрерывный или дискретный характеристический сигнал, включающий в себя физиологическую информацию, указывающую на по меньшей мере один, по меньшей мере, частично периодический сигнал жизнедеятельности.

УРОВЕНЬ ТЕХНИКИ

Документ US 2011/0251493 A1 раскрывает способ измерения физиологических параметров, содержащий следующие этапы:

- записывают последовательность изображений лица человека;

- идентифицируют местоположение лица в кадре записанных изображений и установление области интереса, включающей в себя лицо;

- разделяют пиксели в области интереса в кадре на, по меньшей мере, двухканальные значения, формирующие исходные кривые с течением времени;

- разлагают исходные кривые на по меньшей мере два независимых сигнала источников; и

- обрабатывают по меньшей мере один из сигналов источников для получения физиологического параметра.

Документ дополнительно раскрывает несколько усовершенствований способа. В частности, рассматривается применение дистанционных фотоплетизмографических (PPG) анализов. Фотоплетизмография является общеизвестным методом оптических измерений, который можно применить для обнаружения изменений объема крови в микрососудистом русле ткани контролируемого объекта изучения. Обычные методы PPG включают в себя, так называемую, контактную PPG. Контактная PPG нуждается в измерительных компонентах (например, источниках света и фотоприемниках), которые, по существу, должны прикрепляться к коже объекта изучения. Следовательно, стандартная фотоплетизмография содержит причиняющие беспокойство измерения, например, из-за приемопередающего блока, прикрепленного к мочке уха или кончику пальца объекта изучения. Поэтому, дистанционное PPG измерение часто создает неприятные ощущения.

Обычно, стандартное (или контактное) PPG устройство включает в себя искусственные источники света, которые должны непосредственно закрепляться к показательной поверхности, например, участку кожи, объекта изучения, подлежащего наблюдению. Таким образом достигается устранение или ослабление неблагоприятных влияний. Например, можно справиться с проблемой потенциально возмущающего падающего излучения, создаваемого другими (или внешними) источниками света и нежелательным движением объекта относительно источника света. Соответственно, приемник или детектор, например по меньшей мере один фотодиод, также плотно закреплен к участку интереса кожи объекта изучения. В случае, если приемопередающий блок слишком плотно закреплен к объекту изучения, чтобы исключить перемещение объекта изучения относительно оборудования, качество сигнала также может ухудшаться, например, вследствие нежелательного сжатия ткани.

В последнее время предложены методы дистанционной PPG с применением измерений, не причиняющих неудобств. По существу, дистанционная фотоплетизмография использует источники света или, в общем, источники излучения, расположенные дистанционно от представляющего интерес объекта изучения. В предпочтительном варианте, для некоторых применений используют даже общедоступные существующие (внешние) источники света вместо заданных специализированных источников света. Например, можно использовать искусственные источники света и/или естественные источники света. Следовательно, в окружающих условиях дистанционной PPG следует ожидать, что, вследствие широкого изменения условий освещения, детектируемые сигналы обеспечивают, как правило, очень низкое отношение сигнала к шуму. Аналогично, детектор, например, камера, также может располагаться на удалении от представляющего интерес объекта изучения при дистанционных PPG измерениях. Поэтому, системы и устройства дистанционной фотоплетизмографии считаются не причиняющими неудобства и могут быть приспособлены и особенно подходящими для ежедневного применения. Область применения может содержать ненавязчивый мониторинг стационарных пациентов и амбулаторных пациентов и даже применения во время отдыха и занятий физкультурой. В этом отношении, полагают полезным, что наблюдаемые объекты изучения могут иметь некоторую степень свободы перемещения во время дистанционного PPG измерения.

Следовательно, в сравнении со стандартной (причиняющей неудобства) фотоплетизмографией, дистанционная (ненавязчивая) фотоплетизмография намного более подвержена влиянию искажений и шумов. Нежелательное движение объекта изучения относительно детектора и/или источника излучения может излишне влиять на детектирование сигнала. В частности, дистанционные фотоплетизмографические устройства часто подвергаются воздействию изменения общих условий освещения. Поэтому, приходится ожидать, что детектируемые сигналы почти всегда испорчены шумами и искажениями.

Кроме того, дистанционные PPG измерения могут испытывать вредное влияние, так называемых, зеркальных отражений в области интереса, содержащей, по меньшей мере, участок кожной ткани объекта изучения. По существу, зеркальное отражение считается «зеркальным» отражением падающего излучения на поверхности. Зеркальные отражения могут также иметь место на поверхности кожи живого существа. Это относится, в частности, к участкам жирной кожи и, в общем, к объектам изучения, имеющим достаточно темную кожу (с высоким содержанием меламина). Поскольку участки кожи, которые подвержены зеркальным отражениям, по существу, до некоторой степени зеркально отражают излучение, падающее на поверхность кожи, то отраженное излучение содержит только как часть излучение, которое получается в результате проникновения к кожную ткань. Поэтому, излучение с зеркально-отраженными частями считают непрямо указывающим на искомые сигналы жизнедеятельности.

Таким образом, пока считается, что перед дистанционной PPG еще стоят серьезные задачи детектирования сигналов и обработки сигналов. Поскольку записанные данные, например, записанное отраженное или испускаемое электромагнитное излучение (например, записанные кадры изображения), всегда содержат, помимо искомого сигнала, подлежащего извлечению из записанных данных, дополнительные компоненты сигнала, получающиеся из-за общих помех, например, шума, вследствие изменяющихся условий освещения (включая зеркальные отражения) и перемещения наблюдаемого объекта изучения относительно принимающего датчика, то считается, что для подробного точного извлечения искомых сигналов еще требуется решить серьезные проблемы существующих методов детектирования сигналов и алгоритмов обработки данных.

В качестве средства решения проблем, заявка US 2011/0251493 A1 предлагает обрабатывать полученные канальные данные, которые соответствуют, например, каждому каналу длин волн, обеспечиваемому схемой RGB видеодетектирования (видеодетектирования в основных цветах), посредством анализа независимых компонент (ICA), с помощью которого получают, в результате, отдельные компоненты сигнала. В раскрытом примере существует три компоненты сигнала. Одна из упомянутых компонент сигнала содержит искомую информацию, относящуюся, например, к основным показателям состояния организма, подлежащим детектированию. Однако результат, которая из компонент сигнала содержит искомую информацию, может изменяться от случая к случаю. Чтобы выбрать правильную компоненту сигнала, предлагается идентифицировать компоненту сигнала по периодической характеристике сигнала. Данная характеристика дополнительно анализируется преобразованием зависящей от времени компоненты сигнала в частотную область для анализа спектра мощности.

Кроме потребности в больших вычислительных ресурсах, представленный способ дополнительно нуждается в значительной длительности сигнала до одной минуты, чтобы иметь возможность обеспечивать эффективную идентификацию правильной компоненты сигнала посредством упомянутого преобразования в частотную область. Кроме того, представленный способ действует на основе допущения, что только периодическая компонента сигнала после выполнения ICA является искомой компонентой сигнала, содержащей данные основных показателей состояния организма. Однако возможны ситуации, в которых, например, вышеупомянутое зеркальное отражение может давать, в результате, периодическую компоненту сигнала. Это возможно, например, в случае применения, когда объект изучения, который следует контролировать, периодически перемещается, например, на устройстве для занятий физкультурой в спортивном зале. В данной примерной обстановке, представленный способ сталкивается с затруднениями при выборе правильной компоненты сигнала после выполнения ICA и будет выдавать ошибочные данные основных показателей состояния организма.

Заявка US 2012/0195486 A1 раскрывает способ и систему для получения первого сигнала для анализа, чтобы охарактеризовать по меньшей мере одну его периодическую компоненту. Способ включает в себя получение по меньшей мере двух вторых сигналов, представляющих интенсивности записанного электромагнитного излучения, соответствующих, каждый, соответствующему отличающемуся частотному диапазону излучения. Первый сигнал является по меньшей мере выводимым из выходного сигнала, получаемого применением преобразования ко вторым сигналам таким образом, что любое значение выходного сигнала основано на значениях из каждого соответствующего второго сигнала в соответствующие моменты времени. Способ дополнительно включает в себя получение по меньшей мере одного значения по меньшей мере одного переменного параметра, определяющего влияния по меньшей мере компонент соответствующих вторых сигналов на выходной сигнал, когда записываются сигналы, соответствующие вторым сигналам, и применяется преобразование.

Заявка US 2011/0311119 A1 раскрывает способ обработки изображений по меньшей мере одного живого существа для получения физиологической информации. В частности, следует выбирать область интереса части изображения, соответствующего человеку.

Работа W. Verkruijsse et al.: «A novel biometric signature: multi-site, remote (> 100 m) photo-pletysmography using ambient light», Technical Note PR-TN 2010/00097, March 2010, раскрывает биометрическую сигнатуру, основанную на принципе многоместной фотоплетизмографии (PPG). Формы сигналов PPG в нескольких местах тела используются совместно для формирования однозначно идентифицирующей сигнатуры.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Следовательно, целью настоящего изобретения является создание устройства и способа для извлечения физиологической информации из дистанционно детектируемого электромагнитного излучения, испускаемого или отраженного объектом изучения, которое/ый является более эффективным и требует меньше времени и ресурсов и, предпочтительно, дополнительно является более детерминированным при выборе правильной компоненты сигнала, с исключением, тем самым, ошибок детектирования.

В первом аспекте настоящего изобретения предлагается устройство для извлечения физиологической информации из дистанционно детектируемого электромагнитного излучения, испускаемого или отраженного объектом изучения, содержащее:

- интерфейс для приема потока данных, получаемого из детектируемого электромагнитного излучения, при этом поток данных содержит по меньшей мере одну последовательность отсчетов сигнала, представляющих область интереса, проявляющую непрерывный или дискретный характеристический сигнал, включающий в себя физиологическую информацию, указывающую на по меньшей мере один, по меньшей мере, частично периодический сигнал жизнедеятельности, и состоящих из по меньшей мере двух компонент длин волн,

- преобразующий блок, выполненный с возможностью определения и обеспечения по меньшей мере одной компоненты коэффициентов из по меньшей мере двух компонент длин волн по меньшей мере одной последовательности отсчетов сигнала, причем упомянутая по меньшей мере, одна компонента коэффициентов пригодна для получения по меньшей мере одной компоненты сигнала посредством применения к по меньшей мере одной последовательности отсчетов сигнала,

- блок выбора коэффициентов для выбора одной компоненты коэффициентов из по меньшей мере одной компоненты коэффициентов, определенной и обеспеченной преобразующим блоком,

- блок компонент сигнала для обеспечения компоненты сигнала на основании выбранной компоненты коэффициентов и по меньшей мере одной последовательности отсчетов сигнала, и

- блок обработки сигналов для обеспечения искомой физиологической информации из компоненты сигнала.

Термин «компонента длин волн» применяется в контексте настоящего изобретения для описания компоненты по меньшей мере одной последовательности отсчетов сигнала, представляющих некоторую длину волны или диапазон длин волн. Общеизвестными неограничивающими примерами являются три компоненты длин волн в сигналах RGB (основных цветов). Однако можно выбрать любой другой формат сигналов, который содержит по меньшей мере две компоненты длин волн.

Термин «компонента сигнала» применяется в контексте настоящего изобретения для описания последовательности отсчетов сигнала, которая основывается на и далее является компоненте/ой по меньшей мере одной последовательности отсчетов сигнала потока данных, принимаемого интерфейсом, в последующем также входной последовательности отсчетов сигнала. Примерные способы обеспечения упомянутой «компоненты сигнала» могут состоять в использовании весовых коэффициентов или векторов коэффициентов, применяемых к входной последовательности отсчетов сигнала. Упомянутые компоненты коэффициентов могут основываться на входной последовательности самих отсчетов сигнала и могут, например, обеспечиваться способами слепого разделения источников (BSS). Упомянутые способы BSS заключают в себе, например, анализ независимых компонент (ICA) или анализ главных компонент (PCA).

Термин «компонента коэффициентов» применяется в контексте настоящего изобретения для описания коэффициента или вектора коэффициентов, который, при применении к входной последовательности отсчетов сигнала, обеспечивает соответствующую компоненту сигнала. Упомянутая «компонента коэффициентов» может быть обеспечена в виде набора компонент коэффициентов с помощью способов типа упомянутых для примера способов BSS и применяется в настоящей заявке в дальнейшем для обеспечения искомых компонент сигнала. Однако, в пределах объема настоящего изобретения, упомянутую компоненту коэффициентов можно также определять как единственный коэффициент (вектор) вместо автоматического обеспечения набора компонент коэффициентов, как определяется, например, в случае широко известных способов BSS.

Несмотря на упоминание выше по отдельности, преобразующий блок и блок выбора коэффициентов можно также реализовать в виде единого (комбинированного) блока.

В дополнительном аспекте настоящего изобретения предлагается способ извлечения физиологической информации из дистанционно детектируемого электромагнитного излучения, испускаемого или отраженного объектом изучения, содержащий следующие этапы:

- принимают поток данных, получаемый из детектируемого электромагнитного излучения, при этом поток данных содержит последовательность отсчетов сигнала, представляющих область интереса, проявляющую непрерывный или дискретный характеристический сигнал, включающий в себя физиологическую информацию, указывающую на по меньшей мере один, по меньшей мере, частично периодический сигнал жизнедеятельности, и состоящих из по меньшей мере двух компонент длин волн,

- определяют и обеспечивают по меньшей мере одну компоненту коэффициентов из по меньшей мере двух компонент длин волн, причем упомянутая по меньшей мере, одна компонента коэффициентов пригодна для получения по меньшей мере одной компоненты сигнала посредством применения к по меньшей мере одной последовательности отсчетов сигнала,

- выбирают одну компоненту коэффициентов из по меньшей мере одной определенной и обеспеченной компоненты коэффициентов,

- обеспечивают компоненту сигнала на основании выбранной компоненты коэффициентов и последовательности отсчетов сигнала, и

- обеспечивают физиологическую информацию на основании компоненты сигнала.

При рассмотрении блока выбора коэффициентов или этапа выбора одной компоненты коэффициентов, само собой разумеется, что, в случае только одной присутствующей компоненты коэффициентов, вышеупомянутый блок или этап реализуется автоматически, так как выбираться автоматически будет только одна компонента коэффициентов вследствие отсутствия вариантов выбора. Однако блок выбора коэффициентов может отвечать за оценку упомянутой одной компоненты коэффициентов в отношении ее пригодности.

При обеспечении компоненты сигнала, которую можно использовать для получения искомой физиологической информации, подобной искомым основным показателям состояния организма, посредством выбора соответствующей компоненты коэффициентов, общий процесс обеспечения физиологической информации становится более эффективным. Это обусловлено минимизацией необходимых вычислений. В то время, как способы в соответствии с вышеупомянутой заявкой US 2011/0251493 A1 требуют обеспечения по меньшей мере двух, например, трех (полных) компонент сигнала для выполнения выбора, настоящее изобретение переводит этап выбора к процессу идентификации компонент(ы) коэффициентов. По сравнению со способом, описанным в заявке US 2011/0251493 A1, выбор будет переведен на этапы выполнения BSS, с исключением, тем самым, этапов вычисления даже ненужных компонент сигнала, требующих больших затрат времени и вычислительных ресурсов.

Как также описано в дальнейшем, упомянутый перевод дополнительно допускает, чтобы не приходилось вычислять даже все возможные компоненты коэффициентов, что делает способ еще более эффективным и дополнительно исключает расходование вычислительных ресурсов.

Предпочтительные варианты осуществления изобретения определены в зависимых пунктах формулы изобретения. Следует понимать, что заявленные способы и заявленная компьютерная программа могут иметь предпочтительные варианты осуществления, сходные с заявленным устройством и определенные в зависимых пунктах формулы изобретения.

В варианте осуществления устройства в соответствии с настоящим изобретением блок выбора коэффициентов дополнительно выполнен с возможностью оценки по меньшей мере одной компоненты коэффициентов на основании фиксированного и предварительно заданного базисного вектора.

В варианте осуществления способа в соответствии с настоящим изобретением способ дополнительно содержит оценку по меньшей мере одной компоненты коэффициентов на основании фиксированного и предварительно заданного базисного вектора.

Посредством использования фиксированного и предварительно заданного базисного вектора, выбор компоненты коэффициентов и, тем самым, обеспечение соответствующей компоненты сигнала, содержащей, например, искомые данные основных показателей состояния организма, может выполняться надежно, даже несмотря на то, что в конце могут возникать другие периодические компоненты сигнала. Кроме того, при выборе, основанном на оценке компонент(ы) коэффициентов, можно исключить вычисления и расчеты, требующие больших затрат времени и ресурсов, например, Фурье-преобразование на компонентах сигнала. Приведенное решение ускоряет, в общем, обеспечение искомых данных, то есть, является более быстрым и нуждается в укороченных периодах детектирования, предпочтительно, в диапазоне всего нескольких секунд. Суммарным результатом является детерминированный, а не эвристический метод.

Предварительно заданный вектор может быть общим предварительно заданным вектором для каждого объекта изучения, но может также выбираться индивидуально, например, после первоначальной калибровки.

В другом варианте осуществления устройства в соответствии с настоящим изобретением преобразующий блок дополнительно выполнен с возможностью определения и обеспечения одной компоненты коэффициентов, и блок выбора коэффициентов дополнительно сконфигурирован так, что компонента коэффициентов, обеспеченная преобразующим блоком, оценивается относительно фиксированного и предварительно заданного базисного вектора, при этом преобразующий блок, предпочтительно, дополнительно сконфигурирован так, что полученная определением и обеспеченная компонента коэффициентов является компонентой коэффициентов, которая дает в результате компоненту сигнала с наибольшим колебанием.

В другом варианте осуществления способа в соответствии с настоящим изобретением одна компонента коэффициентов определяется и обеспечивается и дополнительно оценивается относительно фиксированного и предварительно заданного базисного вектора, при этом полученная определением и обеспеченная компонента коэффициентов является, предпочтительно, компонентой коэффициентов, которая дает в результате компоненту сигнала с наибольшим колебанием.

Определение только одной компоненты коэффициентов, по меньшей мере, в первую очередь, сокращает число обычно необходимых вычислительных этапов до минимума и, следовательно, повышает эффективность устройства и способа в соответствии с настоящим изобретением. Затем обеспеченная компонента сигнала может оцениваться, то есть, проверяться на ее пригодность при обеспечении компоненты сигнала, которая содержит искомую информацию о физиологических данных. В предположении, что физиологические данные обеспечивают наиболее значительный и устойчивый вклад в изменения принимаемой входной последовательности отсчетов сигнала, компонента сигнала с наибольшим колебанием содержит искомую физиологическую информацию. Соответственно, определение и обеспечение сначала компоненты коэффициентов, дающей в результате компоненту сигнала с наибольшим колебанием, будет достаточно для получения искомой физиологической информации в большинстве случаев и, следовательно, повышает эффективность, поскольку можно не выполнять определения и обеспечения остальных компонент коэффициентов.

Например, и аналогично упомянутым способам BSS, приведенное решение можно реализовать посредством определения собственных значений ковариационной матрицы входной последовательности отсчетов сигнала и определения/обеспечения собственного вектора, который соответствует компоненте коэффициентов, с наибольшим собственным значением.

В другом варианте осуществления устройства в соответствии с настоящим изобретением блок выбора коэффициентов спроектирован так, что оценка проводится на основе угла между обеспеченной компонентой коэффициентов и базисным вектором, и дополнительно так, что компонента коэффициентов выбирается, если угол меньше, чем 45°.

В другом варианте осуществления способа в соответствии с настоящим изобретением этап оценки одной компоненты коэффициентов содержит следующие этапы:

- определяют угол между компонентой коэффициентов и фиксированным предварительно заданным базисным вектором, и

- выбирают компоненту коэффициентов, если абсолютное значение угла относительно фиксированного предварительно заданного базисного вектора меньше, чем 45°.

В предположении, что все компоненты коэффициентов или вектора компонент коэффициентов, которые могут быть получены настоящим способом, не зависят друг от друга, то есть, являются ортогональными, приведенный критерий можно использовать для оценки пригодности полученной компоненты коэффициентов. Если угол относительно фиксированного предварительно заданного базисного вектора меньше, чем 45°, то не может существовать никакой другой компоненты коэффициентов, которая будет иметь меньший угол относительно базисного вектора, вследствие ортогональности компонент коэффициентов друг относительно друга. С другой стороны, если угол равен или превышает 45°, то существует по меньшей мере одна другая, возможно, более подходящая компонента коэффициентов, и требуется определить, по меньшей мере, следующую компоненту коэффициентов. Данная компонента может быть, предпочтительно, компонентой коэффициентов, которая дает в результате компоненту сигнала со следующим наибольшим колебанием. Как изложено в вышеупомянутом примере, данной компонентой будет, например, собственный вектор со следующим наибольшим собственным значением.

В другом варианте осуществления устройства в соответствии с настоящим изобретением преобразующий блок дополнительно сконфигурирован определения и обеспечения по меньшей мере двух компонент коэффициентов, и блок выбора коэффициентов дополнительно выполнен с возможностью выбора одной из по меньшей мере двух компонент коэффициентов посредством оценки компонент коэффициентов.

В другом варианте осуществления способа в соответствии с настоящим изобретением определяют и обеспечивают по меньшей мере две компоненты коэффициентов, и выбирают одну из по меньшей мере двух компонент коэффициентов посредством оценки компонент коэффициентов.

В предпочтительном варианте, все варианты осуществления, имеющие отношение к оценке компонент коэффициентов, при том, что каждая компонента коэффициентов содержит набор элементов, формирующих, тем самым, соответствующий вектор компонент коэффициентов, содержат преобразующий блок и/или блок выбора коэффициентов, или, соответственно, этап способа, в/на котором общая компонента (вектор) коэффициентов умножается на знак одного из ее элементов. Данный элемент является, предпочтительно, элементом, который соответствует компоненте длин волн, которая испытывает наибольшее влияние (периодического) основного показателя состояния организма или физиологической информации, в общем. Причина этого в том, что элемент вектора компонент коэффициентов, соответствующего компоненте длин волн, которая испытывает наибольшее влияние, дает, обычно, наибольший вес, относительно других элементов, вышеупомянутой компоненте длин волн. С другой стороны, компоненты длин волн с меньшей амплитудой пульса могут получать небольшой элемент вектора компонент коэффициентов, так что знак становится изменчивым из-за того, что значения близки к нулю. В примерном случае, в котором поток данных содержит данные цветов RGB, вектор компонент коэффициентов умножается на знак второго элемента, который соответствует зеленому каналу. В качестве альтернативы, в примерной схеме, использующей компоненты ИК (инфракрасных) длин волн, например, 750 нм, 880 нм и 980 нм, наибольшее влияние пульса может обнаруживаться в компоненте 880-нм длины волны. Поэтому, в приведенном примере, для вышеупомянутого умножения на знак выбирается элемент вектора компонент коэффициентов, соответствующий 880 нм.

Приведенная мера приводит к компонентам коэффициентов или векторам компонент коэффициентов, которые содержат идентичные знаки для возможности сравнения между собой и дополнительного приведения к компонентам сигнала, всегда имеющим одинаковый знак (т.е. связь с лежащим в основе основным показателем состояния организма). Упомянутый знак может быть произвольным в других отношениях, поскольку большинство способов нахождения компонент коэффициентов направлены на нахождение набора компонент коэффициентов, которые не зависят друг относительно друга. Однако данный набор не зависит от знака и, поэтому, может быть неуправляемым в каждом случае при практической реализации устройства и/или способа в соответствии с настоящим изобретением.

В другом варианте осуществления устройства в соответствии с настоящим изобретением блок выбора коэффициентов спроектирован так, что оценка основана на расстоянии между координатами, полученными из нормированных векторов соответствующих компонент коэффициентов, и координатами базисного вектора, и выбор основан на кратчайшем расстоянии.

В другом варианте осуществления способа в соответствии с настоящим изобретением этап оценки по меньшей мере двух компонент коэффициентов содержит следующие этапы:

- определяют расстояния между координатами, полученными из нормированных векторов соответствующих компонент коэффициентов, и координатами фиксированного предварительно заданного базисного вектора, и

- выбирают компоненту коэффициентов с наименьшим расстоянием.

Таким образом, разность между компонентами коэффициентов и предварительно заданным базисным вектором, который, предпочтительно, также нормирован, можно определять на основании эвклидова расстояния координат векторов. Минимум всех вычисленных расстояний указывает на компоненту коэффициентов, ближайшую к предварительно заданному базисному вектору, т.е. ближайшую к его ориентации. Данный вариант осуществления, а также следующий вариант осуществления можно применять в связи с несколькими способами слепого разделения источников, подобными PCA или ICA. В методе ICA получаемые независимые компоненты не обязательно являются ортогональными, и поэтому невозможно применить вышеупомянутый вариант осуществления с критерием, содержащим угол меньше, чем 45° для выбора. В настоящем (и следующем) варианте осуществления все вектора сравниваются с базисным вектором, чтобы определить, какой вектор является наилучшим (с точки зрения расстояния или угла).

Настоящий вариант осуществления заключает в себе, предпочтительно, вышеупомянутый этап умножения компонент коэффициентов на знак одного из их элементов.

В другом варианте осуществления устройства в соответствии с настоящим изобретением блок выбора коэффициентов спроектирован так, что оценка проводится на основе угла между обеспеченными по меньшей мере двумя компонентами коэффициентов и базисным вектором, и дополнительно так, что выбирается компонента коэффициентов с наименьшим углом.

В другом варианте осуществления способа в соответствии с настоящим изобретением этап оценки по меньшей мере двух компонент коэффициентов содержит следующие этапы:

- определяют угол между соответствующими компонентами коэффициентов и фиксированным предварительно заданным базисным вектором, и

- выбирают компоненту коэффициентов с наименьшим углом относительно фиксированного предварительно заданного базисного вектора.

Таким образом, определяют соответствующие углы между векторами компонент коэффициентов и предварительно заданным базисным вектором. Минимум вычисленных углов указывает на компоненту коэффициентов, ближайшую к предварительно заданному базисному вектору, т.е. ближайшую к нему по ориентации. В связи с этим, нормирование компоненты коэффициентов не обязательно, но может выполняться во всяком случае.

Настоящий вариант осуществления заключает в себе, предпочтительно, вышеупомянутый этап умножения компонент коэффициентов на знак одного из их элементов.

В другом варианте осуществления устройства в соответствии с настоящим изобретением предварительно заданный базисный вектор основан на цветовом тоне кожи объекта изучения.

Свет, отраженный объектом изучения (и детектируемый устройством), состоит, по существу, из двух компонент: одной диффузно-отраженной компоненты со светом, который прошел сквозь кожу и показывает ее цвет, включая его изменения, обусловленные физиологическими проявлениями подлежащего обнаружению основного показателя состояния организма, например, пульса, и одной компоненты непосредственно отраженного света, который показывает цвет источника света, известной также, как зеркальное отражение. В то время, как последняя компонента может изменяться в зависимости от угла отражения и (цвета) источника света, но не от изменений, основанных на подлежащем обнаружению основном показателе состояния организма, первая диффузно-отраженная компонента, по существу, не зависит от угла. Поскольку упомянутая компонента изменяется вблизи цвета кожи или цветового тона кожи, поиск компоненты сигнала, близкой к значению, зависящему от упомянутого цветового тона кожи, помогает в исключении из рассмотрения компонент сигнала, основанных на зеркальном отражении. В результате, на основе упомянутого цветового тона кожи можно обеспечить соответствующий базисный вектор для оценки компонент коэффициентов.

В качестве основы, цветовой тон кожи можно выбирать для каждого объекта изучения индивидуально. Кроме того, можно, а также предпочтительно в контексте настоящего изобретения определить и применять «стандартизованный» цветовой тон кожи. Данный «стандартизованный» цветовой тон кожи можно определять эмпирическим методом, например, путем определения цветовых тонов кожи репрезентативного числа объектов изучения и вычисления среднего. Затем («стандартизованный») цветовой тон кожи может быть основой метода определения фиксированного предварительно заданного вектора в соответствии с настоящим изобретением.

В другом варианте осуществления устройства в соответствии с настоящим изобретением интерфейс спроектирован с возможностью приема данных цветов RGB, и фиксированный вектор является близким к [-0,4, 0,8, -0,4], предпочтительно близким к [-0,41, 0,82, -0,41], более предпочтительно близким к [-0,408, 0,817, -0,408] и еще более предпочтительно близким к [-0,4082, 0,8165, -0,4082].

Термин «близкий к», применяемый в контексте настоящего изобретения, в частности, в контексте вышеупомянутых векторов, следует понимать как заключающий в себе все значения, например, векторные элементы для вектора, которые входят в группу данных значений с учетом их соответствующей точности, которая имеет целью допуск отклонения ±1 в соответствующей последней цифре. Например, 0,8 следует понимать как охватывающее значения от 0,7 до 0,9, -0,82 следует понимать как охватывающее значения от -0,81 до -0,83, и так далее.

Авторы настоящего изобретения обнаружили, что в схеме, в которой интерфейс способен принимать и дополнительно обеспечивать данные в формате RGB, подобно, но без ограничения, цифровым камерам и записывающим видеокамерам, сетевым видеокамерам и т.п., объект изучения является человеком, и подлежащий обнаружению основной показатель состояния организма является пульсом (HB), последний можно определить из уравнения (1):

HB≈1,5Rn-3Gn+1,5Bn,(1)

где Rn, Gn и Bn являются элементами данных RGB, полученными делением отдельного значения на среднее (по временному интервалу) значению соответствующего канала. Это означает, что упомянутые элементы RGB, обычно, только немного отклоняются от усредненного или среднего значения, т.е. цветового тона кожи отдельного человека. Данное отклонение включает в себя информацию HB. При умножении на весовые коэффициенты 1,5, -3 и 1,5, влияние изменений, обусловленных движением, по существу, исключается, так как движение, обычно, модулирует данные RGB в одинаковом процентном отношении, и можно обеспечить прямое соответствие между данными RGB и значением HB. Кроме того, при использовании упомянутых коэффициентов в качестве основы, можно найти фиксированный предварительно заданный вектор, к ориентации которого приближается весовой вектор, то есть, вектор компонент весовых коэффициентов.

Авторы настоящего изобретения дополнительно обнаружили, что вышеизложенное справедливо также для компоненты сигнала, содержащей сигнал HB, который можно также получить методом BSS, как упоминалось выше. Соответственно, выбор компоненты сигнала, содержащей, например, искомую информацию сигнала HB, может быть направлен на получение соответствующего вектора компонент коэффициентов, ближайшего к предварительно заданному вектору. Нормирование вектора [1,5, -3, 1,5] приводит к [0,4082, -0,8165, 0,4082], и дополнительное умножение на знак второго элемента приводит к наиболее предпочтительному базисному вектору [-0,4082, 0,8165, -0,4082].

Кроме данного варианта осуществления, использующего данных цветов RGB, в другом варианте ос