Индексирование элементов расширенного канала управления для пространства поиска физического нисходящего канала управления

Иллюстрации

Показать все

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности передачи. Для этого описана технология выполнения индексирования локализованных элементов расширенного каналу управления (eCCE) и распределенных eCCE для ePDCCH в радиокадре. Один способ содержит этапы, на которых индексируют локализованные eCCE и распределенные eCCE независимо, на основе уровня агрегации, для передачи расширенного физического нисходящего канала управления (ePDCCH). Например, физические локализованные eCCE могут быть проиндексированы в порядке увеличения частоты, в то время как индексирование представляет собой уровень агрегации, специально отображенный на физические индексы. Для распределенных eCCE логическое индексирование может дополнительно учитывать координатную область межсотовой интерференции (ICIC). Индексы eCCE, принадлежащие пространству поиска для данного уровня агрегации (AGGL), могут распределяться по различным координатным областям ICIC. Кроме того, глобальное логическое индексирование с учетом AGGL может быть применено к локализованным eCCE и распределенным eCCE, при этом логические индексы локализованных eCCE и распределенных eCCE чередуются друг с другом. Область ICIC также может быть учтена в глобальном индексировании. Индексирование eCCE с учетом AGGL может быть использовано для назначения ePDCCH и слепого декодирования и/или выделения ресурсов для ePDCCH. Физические индексы eCCE могут быть использованы для получения неявного индекса для физического восходящего канала управления (PUCCH). 4 н. и 16 з.п. ф-лы,14 ил.

Реферат

Уровень техники

В технологии беспроводной мобильной связи применяют различные стандарты и протоколы, чтобы передавать данные между базовой приемопередающей станцией (BTS) и беспроводным мобильным устройством. В стандарте Долгосрочное развитие сетей связи (LTE) проекта партнерства третьего поколения (3GPP) BTS представляет собой сочетание усовершенствованных узлов eNodeB (eNodeB или eNB) и контроллеров сети с радиодоступом (RNC) в универсальной сети наземного радиодоступа (UTRAN), причем она осуществляет связь с беспроводным мобильным устройством, известным как пользовательское оборудование (UE). Данные передают от eNodeB на UE по физическому нисходящему общему каналу (PDSCH). Физический нисходящий канал управления (PDCCH) используют для передачи управляющей информации нисходящей линии связи (DCI), которая информирует UE о выделении ресурсов или планировании, касающемся назначений нисходящих каналов в PDSCH, предоставлении восходящих ресурсов и восходящих командах регулирования мощности. Сигнал PDCCH может быть передан перед PDSCH в каждом подкадре, передаваемом от eNodeB на UE.

Сигнал PDCCH спроектирован так, чтобы его демодулировали в UE на основе характеризующего соту опорного сигнала (CRS). Тем не менее, использование CRS не учитывает повышенную сложность усовершенствованных LTE систем. Например, в гетерогенных сетях множество узлов могут одновременно осуществлять передачу в одной соте. Использование харатеризующего соту опорного сигнала может ограничить применение усовершенствованных технологий для увеличения емкости соты.

Краткое описание чертежей

Описанное в этом документе изобретение проиллюстрировано посредством примера, а не ограничения, на сопровождающих чертежах. Для простоты и ясности чертежей, изображенные на чертежах элементы не обязательно показаны в масштабе. Например, для ясности размеры некоторых элементов могут быть чрезмерно увеличены относительно других элементов. Более того, там, где сочтено должным, числовые ссылочные позиции были повторены на чертежах, чтобы показать соответствующие или аналогичные элементы.

На фиг. 1 показана блок-схема, изображающая процессы, выполняемые с управляющей информацией нисходящей линии связи (DCI) в соответствии с примером;

на фиг. 2 показана блок-схема, изображающая дополнительные процессы, выполняемые над управляющей информацией нисходящей линии связи (DCI) в соответствии с примером;

на фиг. 3 показана структурная схема сетки ресурсов в соответствии с примером;

на фиг. 4А и 4В показаны блок-схемы расширенного физического нисходящего канала управления (ePDCCH), отображенного на подкадр в соответствии с примером;

на фиг. 5А и 5В показаны блок-схемы расширенного физического нисходящего канала управления (ePDCCH), отображенного на подкадр в соответствии с дополнительным примером;

на фиг. 6А и 6В показаны блок-схемы расширенного физического нисходящего канала управления (ePDCCH), отображенного на подкадр в соответствии с дополнительным примером;

на фиг. 7 показана блок-схема индексирования локализованного и распределенного независимого eCCE в соответствии с примером;

на фиг. 8 приведена блок-схема, показывающая глобальное индексирование локализованного и распределенного eCCE в соответствии с примером;

на фиг. 9 показан пример структурной схемы мобильного устройства связи в соответствии с примером; и

на фиг. 10 показан пример структурной схемы eNB и UE.

На фиг. 11 показан пример системы.

Теперь будет сделана ссылка на показанные примеры осуществления, и для их описания будет применяться специальная лексика. Тем не менее, понятно, что не предполагается ограничивать объем изобретения.

Осуществление изобретения

Перед тем, как будет описано и раскрыто настоящее изобретение, следует понимать, что это изобретение не ограничено описанными в этом документе конкретными структурами, этапами процессов или материалами, но распространяется на их эквиваленты, что понятно специалистам в соответствующей области техники. Также следует понимать, что используемая в этом документе терминология применяется только для описания определенных примеров и не предназначена для ограничения. Одни и те же ссылочные позиции на различных чертежах обозначают один и тот же элемент.

Упоминание в описании "одного варианта осуществления", "варианта осуществления", "примера осуществления" и т.д. показывает, что описываемый вариант осуществления может включать в себя определенный признак, структуру или характеристику, но не обязательно каждый вариант осуществления включает в себя определенный признак, структуру или характеристику. Более того, такие фразы не обязательно относятся к одному и тому же варианту осуществления. Кроме того, если определенный признак, структура или характеристика описана в связи с вариантом осуществления, полагается, что знаний специалиста в области техники достаточно, чтобы распространить такой признак, структуру или характеристику на другие варианты осуществления, описанные явно или неявно.

Варианты осуществления изобретения могут быть реализованы в оборудовании, микропрограммном, программном обеспечении или в любом их сочетании. Варианты осуществления изобретения также могут быть реализованы в виде команд, сохраненных на машинночитаемом носителе, которые могут быть считаны и выполнены с помощью одного или нескольких процессоров. Машинный носитель может включать в себя любой механизм хранения или передачи информации в форме, воспринимаемой машиной (например, вычислительным устройством). Например, машинный носитель может включать в себя постоянную память (ROM); оперативную память (RAM); магнитный дисковый носитель; оптический носитель; устройства флэш-памяти; электрические, оптические, акустические или иные распространяемые сигналы (например, несущие волны, инфракрасные сигналы, цифровые сигналы и т.д.) и др.

Нижеприведенное описание может включать в себя такие термины, как первый, второй и т.д., используемые только для описания, и которые не следует рассматривать как ограничивающие.

Ниже приведен начальный обзор вариантов осуществления технологии, а затем более подробно описаны отдельные варианты осуществления технологии. Этот начальный обзор предназначен для того, чтобы помочь читателям более быстро понять технологию, но не предназначен для того, чтобы определять ключевые признаки или существенные признаки технологии, а также не предназначен для ограничения объема сформулированной сущности изобретения. Приведенные ниже определения предоставлены для ясности обзора и описанных ниже вариантов осуществления.

В системах LTE сети с радиодоступом 3GPP (RAN) передающая станция может представлять собой сочетание NodeB (также обычно обозначаемого как усовершенствованный узел NodeB, расширенный узел NodeB или eNB) усовершенствованной универсальной сети наземного радиодоступа (E-UTRAN) и контроллеров сети с радиодоступом (RNC), которые осуществляют связь с беспроводным мобильным устройством, известным как пользовательское оборудование (UE). Нисходящая (DL) передача может представлять собой осуществление связи от передающей станции (или NodeB) к беспроводному мобильному устройству (или UE), а восходящая (UL) передача может представлять собой осуществление связи от беспроводного мобильного устройства к передающей станции.

В гомогенных сетях передающая станция, также называемая макроузлами, может обеспечивать основное беспроводное покрытие для мобильных устройств в соте. Гетерогенные сети (HetNets) были введены для того, чтобы справиться с увеличенными нагрузками на макроузлы из-за увеличенного использования и функциональности мобильных устройств. HetNets могут включать в себя уровень запланированных макроузлов (или макро eNB) высокой мощности, перекрывающийся с уровнями узлов (микро-eNB, пико-eNB, фемто-eNB или домашние eNB [HeNB]) низкой мощности, которые могут быть развернуты менее продуманным или даже полностью не скоординированным образом в зоне покрытия макроузлов. Макроузлы могут быть использованы для базового покрытия, а узлы низкой мощности могут быть использованы для заполнения пробелов в зоне покрытия, чтобы увеличить емкость в загруженных местах или на границах между зонами покрытия макроузлов, и для увеличения покрытия внутри помещений там, где строительные конструкции препятствуют прохождению сигнала.

Развертывание HetNet может увеличить эффективность передачи данных к UE в соте, например, данных, передаваемых по физическому нисходящему общему каналу (PDSCH). Эффективность увеличивают путем разделения соты на более мелкие зоны с дополнительным использованием узлов низкой мощности.

Передачей данных по PDSCH управляют через канал управления, называемый физическим нисходящим каналом управления (PDCCH). PDCCH может быть использован для назначения нисходящих (DL) и восходящих (UL) ресурсов, для передачи команд управления мощностью и пейджинговых индикаторов. Нисходящая передача планирования PDSCH может быть предназначена для конкретного UE для выделения специального ресурса PDSCH для передачи специфического для UE трафика, или она может быть предназначена для всех UE в соте для выделения общего ресурса PDSCH для трансляции управляющей информации, такой как системная информация или пейджинг.

Данные, переносимые по PDCCH называют информацией управления нисходящей линии связи (DCI). Имеется несколько обычных форматов, заданных для сообщения DCI. Например, заданные форматы могут включать в себя:

Формат 0 для передачи выделения восходящего общего канала (UL-SCH);

Формат 1 для передачи выделения нисходящего общего канала (DL-SCH) для работы в режиме один вход - множество выходов (SIMO);

Формат 1А для компактной передачи выделения DL-SCH для работы в режиме SIMO или выделения UE специальной сигнатуры преамбулы для произвольного доступа;

Формат 1В для передачи управляющей информации назначения компактного ресурса на основе системы множественный вход-множественный выход (MIMO) ранга 1.

Формат 1С для очень компактной передачи назначения PDSCH;

Формат 1D аналогичен формату 1В с дополнительной информацией смещения мощности;

Формат 2 и формат 2А для передачи выделения DL-SCH для работы замкнутой и разомкнутой петли MIMO, соответственно; и

Формат 3 и формат 3А для передачи команды управления мощностью (TPC) для восходящего канала.

Не предполагается, что этот список является полным. Также могут использоваться дополнительные форматы. По мере увеличения сложности беспроводных сетей, например, использования HetNet, имеющих множество различных типов узлов, могут быть созданы другие форматы для переноса желаемой управляющей информации нисходящего канала.

Множество UE могут быть запланированы в одном подкадре радиокадра. Поэтому, может быть отправлено множество сообщений DCI с использованием множества PDCCH. Информация DCI в PDCCH может быть передана посредством eNB с использованием одного или более управляющих элементов канала (CCE). CCE состоит из группы групп элементов ресурсов (REG). Существующий CCE может включать в себя, например, до девяти REG. Каждая REG состоит из четырех элементов ресурсов. Каждый элемент ресурсов может включать в себя два бита информации, если используется квадратурная модуляция. Поэтому, существующий CCE может включать в себя до 72 битов информации. Если требуется передать сообщение DCI, состоящее из более чем 72 битов информации, то можно использовать несколько CCE. Использование множества CCE называют уровнем агрегации. В стандарте 3GPP LTE Версий 8, 9 и 10 уровни агрегации определяют как 1, 2, 4 или 8 последовательных CCE, выделенных для одного PDCCH.

В различных вариантах осуществления способ может содержать этапы, на которых: базовая станция сети беспроводной связи на основе интернет протокола (IP) отображает модулированные символы в расширенном физическом нисходящем канале управления (ePDCCH) пользовательского оборудования (UE) на множество элементов расширенного канала управления (eCCE), причем множество eCCE содержит по меньшей мере один элемент из локализованных eCCE и распределенных eCCE; посредством базовой станции выполняют логическое индексирование локализованных eCCE, исходя из уровня агрегации ePDCCH; посредством базовой станции выполняют логическое индексирование распределенных eCCE, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления способ может дополнительно содержать этап, на котором определяют посредством базовой станции соотношение локализованных eCCE и распределенных eCCE в паре блоков ресурсов пространства поиска ePDCCH, исходя из качества ePDCCH.

В различных вариантах осуществления способ может дополнительно содержать этап, на котором указывают посредством базовой станции соотношение локализованных и распределенных кандидатов ePDCCH, которые UE должно искать, исходя из соотношения локализованных eCCE и распределенных eCCE.

В различных вариантах осуществления способ может дополнительно содержать этап, на котором посредством базовой станции распределяют логические индексы локализованных eCCE в пространстве поиска, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления способ может дополнительно содержать этапы, на которых в ответ на определение того, что первый распределенный eCCE использует первую координатную область ICIC для передачи ePDCCH, посредством базовой станции очищают первую координатную область ICIC и распределяют логические eCCE для второго распределенного eCCE, расположенного по соседству к первому распределенному eCCE во второй координатной области ICIC, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления способ может дополнительно содержать этап, на котором посредством базовой станции получают индексы UE для физического восходящего канала управления (PUCCH) из индексов физических eCCE, которые соответствуют множеству логических индексов.

В различных вариантах осуществления способ может дополнительно содержать этап, на котором посредством базовой станции чередуют логические локализованные индексы и логические распределенные индексы друг с другом, чтобы обеспечить глобальное индексирование, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления способ может дополнительно содержать этап, на котором посредством базовой станции распределяют логические распределенные eCCE в различных координатных областях ICIC для передачи ePDCCH в глобальном логическом индексировании, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления способ может дополнительно содержать этап, на котором посредством базовой станции выполняют выделение ресурсов ePDCCH, исходя из логических индексов ePDCCH.

В различных вариантах осуществления способ может дополнительно содержать этап, на котором посредством базовой станции выполняют процедуру слепого декодирования ePDCCH, исходя из логических индексов ePDCCH.

В различных вариантах осуществления каждая координатная область ICIC равна одному эквивалентному локализованному eCCE в каждой паре блоков ресурсов.

В различных вариантах осуществления система может содержать процессор, выполненный с возможностью осуществления связи с пользовательским оборудованием (UE) через усовершенствованный узел NodeB (eNB) сети беспроводной связи на основе интернет протокола (IP); и носитель информации, соединенный с процессором, причем на носителе информации сохранены команды, результат выполнения которых процессором заключается в отображении посредством станции eNB модулированных символов в расширенном физическом нисходящем канале управления (ePDCCH) пользовательского оборудования (UE) на множество элементов расширенного канала управления (eCCE), причем множество eCCE содержит локализованные eCCE и распределенные eCCE; посредством базовой станции выполняют логическое индексирование локализованных eCCE и распределенных eCCE, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления результат выполнения команд может также заключаться в определении посредством станции eNB соотношения локализованных eCCE и распределенных eCCE в паре блоков ресурсов пространства поиска ePDCCH, исходя из качества ePDCCH.

В различных вариантах осуществления результат выполнения команд может также заключаться в указывании посредством станции eNB соотношения локализованных и распределенных кандидатов ePDCCH, которые UE должно искать, исходя из соотношения локализованных eCCE и распределенных eCCE.

В различных вариантах осуществления результат выполнения команд может также заключаться в распределении посредством станции eNB логических индексов локализованных eCCE в различных парах блоков ресурсов в пространстве поиска, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления результат выполнения команд может также заключаться в распределении посредством станции eNB логических индексов распределенных eCCE в различных координатных областях ICIC для передачи ePDCCH, исходя из уровня агрегации ePDCCH, причем каждая координатная область ICIC равна одному эквивалентному локализованному eCCE в каждой паре блоков ресурсов.

В различных вариантах осуществления результат выполнения команд может также заключаться в получении посредством базовой станции индексов UE для физического восходящего канала управления (PUCCH) из индексов физических eCCE, которые соответствуют множеству логических индексов.

В различных вариантах осуществления результат выполнения команд может также заключаться в чередовании посредством станции eNB логических локализованных индексов и логических распределенных индексов друг с другом, чтобы обеспечить глобальное индексирование, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления результат выполнения команд может также заключаться в распределении посредством станции eNB логических распределенных индексов в различных координатных областях ICIC для передачи ePDCCH в глобальном логическом индексировании, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления результат выполнения команд может также заключаться в выполнении посредством станции eNB выделения ресурсов ePDCCH, исходя из логических индексов ePDCCH.

В различных вариантах осуществления результат выполнения команд может также заключаться в выполнении посредством станции eNB процедуры слепого декодирования (blind decoding) ePDCCH, исходя из логических индексов ePDCCH.

В различных вариантах осуществления устройство, используемое усовершенствованным NodeB (eNB) сети беспроводной связи может содержать: модуль отображения ресурсов, предназначенный для отображения модулированных символов в расширенном физическом нисходящем канале управления (ePDCCH) на множество элементов (eCCE) расширенного канала управления, причем множество eCCE содержит по меньшей мере одно из следующего: локализованные eCCE и eCCE, при этом ePDCCH сконфигурирован так, чтобы сообщаться с пользовательским оборудованием (UE) в радиокадре, модуль индексирования eCCE предназначен для выполнения логического индексирования по меньшей мере одного из следующего: локализованных eCCE и распределенных eCCE, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления модуль индексирования eCCE может дополнительно определять соотношение локализованных eCCE и распределенных eCCE в паре блоков ресурсов пространства поиска ePDCCH, исходя из качества ePDCCH.

В различных вариантах осуществления модуль индексирования eCCE может дополнительно указывать соотношение локализованных и распределенных кандидатов ePDCCH, которые должно искать UE, исходя из соотношения локализованных eCCE и распределенных eCCE.

В различных вариантах осуществления модуль индексирования eCCE может дополнительно распределять логические индексы локализованных eCCE в различных парах блоков ресурсов в пространстве поиска, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления модуль индексирования eCCE может также распределять логические eCCE для распределенных eCCE в различных координатных областях ICIC для передачи ePDCCH, исходя из уровня агрегации ePDCCH, причем каждая координатная область ICIC равна одному эквивалентному локализованному eCCE в каждой паре блоков ресурсов.

В различных вариантах осуществления модуль индексирования eCCE может дополнительно получать индексы UE для физического восходящего канала управления (PUCCH) из индексов физических eCCE, которые соответствуют множеству логических индексов.

В различных вариантах осуществления модуль индексирования eCCE может дополнительно чередовать логические локализованные индексы и логические распределенные индексы друг с другом, чтобы обеспечить глобальное индексирование, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления модуль индексирования eCCE может также распределять логические распределенные индексы в различных координатных областях ICIC для передачи ePDCCH в глобальном логическом индексировании, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления устройство, используемое пользовательским оборудованием (UE) сети беспроводной связи может содержать схему, выполненную с возможностью приема сигналов управления радиоресурсами (RRC) от усовершенствованного NodeB (eNB), сконфигурированного так, чтобы сообщаться с пользовательским оборудованием, при этом сигнал RRC содержит соотношение локализованных eCCE и распределенных eCCE в паре блоков ресурсов пространства поиска ePDCCH, причем ePDCCH сконфигурирован так, чтобы сообщаться с пользовательским оборудованием (UE) в радиокадре, деиндексировать логические индексы по меньшей мере одного из следующего: локализованных eCCE и распределенных eCCE, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления сигналы RRC могут дополнительно содержать информацию о соотношении локализованных и распределенных кандидатов ePDCCH, которые UE должно искать, которое основано на соотношении локализованных eCCE и распределенных eCCE.

В различных вариантах осуществления логические индексы локализованных eCCE могут быть сконфигурированы так, чтобы распределяться в различных парах блоков ресурсов в пространстве поиска, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления логические индексы для распределенных eCCE могут быть сконфигурированы так, чтобы распределяться в различных координатных областях ICIC для передачи ePDCCH, исходя из уровня агрегации ePDCCH, причем каждая координатная область ICIC равна одному эквивалентному локализованному eCCE в каждой паре блоков ресурсов.

В различных вариантах осуществления логические индексы могут быть отображены на физические eCCE индексы ePDCCH, и при этом физические eCCE индексы используют в неявном получении индекса физического восходящего канала управления (PUCCH).

В различных вариантах осуществления логические локализованные индексы и логические распределенные индексы могут чередоваться друг с другом, чтобы обеспечить глобальное индексирование, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления логические распределенные индексы могут быть распределены в различных координатных областях ICIC для передачи ePDCCH в глобальном логическом индексировании, исходя из уровня агрегации ePDCCH.

В различных вариантах осуществления устройство может дополнительно содержать схему, предназначенную для выполнения выделения ресурсов ePDCCH, исходя из логических индексов eCCE.

В различных вариантах осуществления устройство может дополнительно содержать схему, предназначенную для выполнения слепого декодирования ePDCCH, исходя из логических индексов eCCE.

Для создания полезной нагрузки PDCCH DCI может подвергаться множеству процессов обработки, как показано на фиг. 1. Процессы могут включать в себя присоединение 102 информации контроля циклическим избыточным кодом, используемой для обнаружения ошибки в сообщении DCI; канальное кодирование 104 для применения в прямом исправлении ошибок, и согласование 106 скорости, которое применяют для того, чтобы выдавать битовый поток с желаемой кодовой скоростью. Подробные инструкции для выполнения контроля избыточным циклическим кодом, канального кодирования и согласования скорости приведены в спецификациях 3GPP LTE, например, в версиях 8, 9 и 10.

Кодированные сообщения DCI для каждого канала управления могут быть затем мультиплексированы и подвергнуты скремблированию до их модуляции, подвергнуты отображению уровней, предварительному кодированию и отображению ресурсов, как показано на блок-схеме на фиг. 2.

Блоки кодированных битов для каждого канала управления могут быть мультиплексированы 202, например, посредством мультиплексора, для создания блока данных. Размер блоков данных может быть изменен, чтобы гарантировать, что PDCCH начинается на желаемой позиции CCE. Размер блоков данных также может быть изменен, чтобы гарантировать, что блоки битов соответствуют количеству REG, которые могут быть использованы PDCCH. Мультиплексированный блок битов может быть затем подвергнут скремблированию. Один процесс скремблирования, который применяют в настоящее время, заключается в применении побитовой операции XOR со специальной скремблирующей последовательностью соты. Также можно использовать другие типы скремблирования. Процесс кодирования описан в спецификации 3GPP LTE.

Затем, скремблированные биты могут быть подвергнуты модуляции 204, например, посредством модуля модуляции. Часто применяют квадратурную фазовую манипуляцию (QPSK) для создания блока комплекснозначных символов модуляции. В других вариантах осуществления также могут применяться другие типы модуляции, такие как двухфазная манипуляция (BPSK), 16 квадратурная амплитудная модуляция (16-QAM), 32-QAM, 64-QAM и т.д.

Комплексные символы могут быть отображены 206, например, модулем отображения уровней, в зависимости от числа передающих антенн, используемых в eNodeB. В существующих системах применяют одно, два или четыре уровня отображений. Также могут быть использованы дополнительные уровни, например, восемь уровней отображений. Процесс отображения описан в спецификации 3GPP LTE.

Предварительный преобразователь 208 может брать блок из модуля 206 отображения уровней, чтобы выработать выход для каждого входа антенны. Предварительное кодирование для разветвления передачи может быть выполнено для двух или четырех антенн в существующих системах на основе спецификации 3GPP LTE версия 8. Разветвление передачи для более сложных систем, таких как eNodeB с восемью антеннами, также можно применить, используя предварительное кодирование. Одна используемая для предварительного кодирования схема включает в себя схему Аламоути для двух антенн.

Комплекснозначные символы для каждой антенны могут быть, затем разделены на группы для отображения 210 на элементы ресурсов, выполняемого, например, модулем отображения ресурсов. В существующих системах комплеснозначные символы для каждой антенны могут быть разделены на квадруплеты. Наборы кадруплетов затем могут быть подвергнуты перестановке, например, чередованию и циклическому сдвигу, до того, как их отобразят на элементы ресурсов в группах элементов ресурсов.

PDCCH может быть передан перед PDSCH в каждом подкадре, передаваемом от eNodeB на UE. Демодуляцию PDCCH в UE могут осуществлять на основании характеризующего соту опорного сигнала (CRS). Каждой соте назначен только один опорный сигнал. Тем не менее, использование единственного CRS может ограничить число узлов, которые можно развернуть в соте.

UE может принимать PDCCH с использованием слепого декодирования. Ресурсы, используемые UE для слепого декодирования PDCCH, могут называться пространством поиска. Различные пространства поиска могут использоваться для обнаружения и демодуляции ePDCCH для характеризующего UE опорного сигнала (UE-RS) по сравнению с использованием CRS.

Сигнал на физическом (PHY) уровне, используемый для передачи PDCCH, может быть передан посредством eNodeB (усовершенствованным NodeB или eNB) на пользовательское оборудование (UE) с использованием общей структуры кадров LTE, как показано на фиг. 3. На фиг. 3 показан существующий PDCCH.

Длительность Тf радиокадра 300 может составлять 10 миллисекунд (мс). Каждый радиокадр может быть сегментирован или разделен на десять подкадров 310i, каждый длительностью 1 мс. Каждый подкадр может быть дополнительно разделен на два интервала 320a и 320b, длительность каждого интервала 0,5 мс. В существующей системе первый интервал (#0) 320a может включать в себя физический нисходящий канал управления (PDCCH) 360 и физический нисходящий общий канал (PDSCH) 366, а второй интервал (#2) 320b может включать в себя данные, использующие PDSCH. Каждый интервал для компонентной несущей (СС), используемой eNodeB и UE, может включать в себя множество блоков ресурсов (RB) 330a, 330b, 330i, 330m и 330n, исходя из ширины полосы частот СС.

Каждый RB 330i может включать в себя поднесущие 336 12-15кГц (по оси частот) и 6 или 7 символов 332 модуляции с ортогональным частотным разделением каналов (OFDM) (по оси времени) на одну поднесущую. В одном варианте осуществления RB может использовать семь символов OFDM, если применяется короткий или нормальный циклический префикс. В другом варианте осуществления RB может использовать шесть символов OFDM, если применяется расширенный циклический префикс. Блок ресурсов может быть отображен на 84 элемента ресурсов (RE) 340i при использовании короткого или нормального циклического префикса, или блок ресурсов может быть отображен на 72 RE (не показаны) при использовании расширенного циклического префикса. RE может представлять собой блок из одного символа 342 OFDM на одну поднесущую 346 (например, 15 кГц). Каждый RE может передавать два бита 350a и 350b информации с использованием QPSK. Действительное число битов, передаваемых в одном RE, зависит от используемого уровня модуляции.

Управляющая область каждой существующей обслуживающей соты в агрегации несущих состоит из набора CCE. В одном варианте осуществления CCE могут быть занумерованы от 0 до NCCE,k–1, где NCCE,k – общее число CCE в управляющей области подкадра k. UE может отслеживать набор кандидатов PDCCH в одной или нескольких активированных обслуживающих сотах в соответствии с тем, как определено сигналами более высокого уровня для управляющей информации. Используемый здесь термин отслеживание может охватывать попытки UE декодировать каждый из кандидатов PDCCH в наборе в соответствии со всеми отслеживаемыми форматами. Например, UE может использовать один или несколько CCE для отслеживания PDCCH в наборе.

Физический канал управления может быть передан по агрегации одного или более CCE. CCE могут быть переданы последовательно. Как обсуждалось ранее, один пример элемента канала управления может соответствовать девяти группам элементов ресурсов (REG). Каждая существующая REG содержит четыре элемента ресурсов. В одном варианте осуществления число REG, которые не назначены физическому каналу передачи формата (PCFICH) или физическому каналу для передачи гибридного автоматического запроса (ARQ) на повторную передачу (PHICH), обозначено через NREG. CCE, доступные в системе 3GPP LTE, могут быть занумерованы от 0 до NCCE–1, где NCCE = (NREG/9). PDCCH может поддерживать множество форматов. В подкадре может быть передано множество PDCCH.

Описанная в данный момент передача PDCCH и процесс отображения, в соответствии со спецификациями 3GPP LTE версия 8, 9 и 10, могут создать ограничения для улучшений, выполненных в других областях беспроводной связи. Например, отображение CCE на подкадры в символах OFDM может распространиться на управляющую область, чтобы обеспечить пространственный разнос.

Например, будущие сети могут представлять собой сконфигурированные HetNet, которые могут включать в себя множество различных видов узлов передачи в одной области обслуживания макросоты. В HetNet макро- и пикосотами одновременно может быть обслужено больше UE. PDCCH согласно 3GPP LTE вер. 8 разработан так, чтобы демодулировать на основании характеризующих соту опорных сигналов, из-за чего трудно полностью исследовать выгоду разделения соты. Конструкция PDCCH может не подходить для передачи информации, необходимой для того, чтобы позволить UE воспользоваться преимуществом множества узлов передачи в HetNet, чтобы увеличить полосу пропускания и снизить использование батареи UE.

Кроме того, использование многопользовательского режима с многоканальным входом – многоканальным выходом (MU-MIMO), межмашинной связи (M2M), передачи в многоадресной/широковещательной одночастотной сети и совместного планирования в агрегации несущих может потребовать повышенной емкости PDCCH. Использование специфичных для UE опорных сигналов в демодуляции PDCCH ан UE может позволить использовать множество узлов в HetNet. Вместо того чтобы полагаться на единственный общий опорный символ для всей соты, каждый опорный символ может быть специфичным для UE, чтобы обеспечить разнообразие формирования главного лепестка диаграммы направленности антенны и выгоду от разделения соты. Кроме того, координация взаимного влияния соседних сот может использовать процедуры отображения, чтобы гарантировать ортогональность в соседних сотах, тем самым, сокращая или предотвращая коллизии поднесущих. Более того, емкость конструкции ePDCCH может быть увеличена в будущих сетях.

Соответственно расширенный PDCCH (ePDCCH) может быть сконфигурирован с повышенной емкостью, чтобы позволить усовершенствовать конструкцию сотовых сетей и минимизировать известные в настоящий момент проблемы. Не предполагается, что примеры конструкции ePDCCH и принципы отображения являются ограничивающими. Из-за широких аспектов конструкции ePDCCH, включая, но, не ограничиваясь, присоединение CRC, канальное кодирование, согласование скорости, мультиплексирование, скремблирование, модуляцию, отображение уровней, предварительное кодирование, отображение ресурсов и требования пространства поиска, предполагается, что приведенные примеры не ограничивают до некоторой системы. Тем не менее, примеры могут дать усовершенствования, на которые могут быть расширены другие аспекты конструкции ePDCCH и реализация.

В одном варианте осуществления в качестве конструкции ePDCCH может быть использована конструкция физического нисходящего канала управления для ретрансляции (R-PDCCH) с отображением на основе нечередующихся UE-RS для достижения выгоды от планирования и формирования главного лепестка диаграммы направленности антенны, если доступна информация (CSI) обратной связи о состоянии канала. Например, конструкция ePDCCH может быть основана на нечередующейся конструкции R-PDCCH, тем не менее, в некоторых вариантах осуществления конструкция R-PDCCH, ограниченная спецификой ретрансляции, может не требоваться для конструкции ePDCCH, чтобы обеспечить более высокую гибкость планирования на eNB, например, в случае, когда имеется дисбаланс нисходящего-восходящего трафика. В одном варианте осуществления UE может отслеживать блоки ресурсов в обоих интервалах для назначения нисходящего канала и восходящей передачи.

На фиг. 4А представлен пример индексирования элементов (eCCE) расширенного канала управления для уровня агрегации (AGGL) один. Уровень агрегации один может предполагать, что информация DCI в кандидате ePDCCH может быть отображена на один CCE. В одном варианте осуществления каждая пара блоков ресурсов может содержать два блока ресурса, расположенных в первом и втором интервале в подкадре радиокадра, как показано на фиг. 3, причем у каждого блока одна и та же поднесущая. Как показано на фиг. 4А, CCEL может представлять собой локализованный eCCE, а CCED может представлять собой распределенный eCCE. Как показано на фиг. 4А, в одной паре RB имеются четыре CCE; тем не менее, в некоторых вариантах осуществления в одной паре RB может быть другое число CCE (например, 2 или любое другое число, исходя из системных требований).

Например, локализованный ePDCCH может быть отображен на локализованный eCCE 402, который может быть также отображен по частоте и времени на фиксированное число групп (REG) элементов ресурсов, например, 4 REG, в одной паре блоков ресурсов. В качестве альтернативы, число REG в одной паре блоков ресурсов может меняться, исходя из требований к загрузке данных DCI (например, к количеству данных DCI) или других конкурирующих требований в блоке ресурсов, например, требований PCFICH, требований PHICH и требований символа ресурсов для данных, расположенных в каждом блоке ресурсов. Каждая REG может включать в себя несколько элементов ресурсов (например, 9). Элементы ресурсов, на которые отображают локализованный eCCE 402 в паре блоков ресур