Многокомпонентная кристаллическая система, содержащая нилотиниб и выбранные сокристаллообразователи

Иллюстрации

Показать все

Изобретение относится к новому кристаллическому материалу в одной кристаллической фазе, представляющему собой многокомпонентный сокристалл (a) гидрохлорида нилотиниба и (b) компонента, выбранного из фумаровой кислоты, малеиновой кислоты, янтарной кислоты, гентизиновой кислоты, метилового эфира галловой кислоты и изоникотинамида, или (a) нилотиниба, гидрохлорида нилотиниба или смеси нилотиниба и гидрохлорида нилотиниба и (b) компонента, выбранного из 1,5-нафталиндисульфоновой кислоты. Полученные сокристаллические соединения могут найти применение для лечения патологического состояния, для которого благоприятно ингибирование тирозинкиназы, например для лечения хронического миелолейкоза (ХМЛ), предпочтительно для лечения резистентного к лекарственным средствам хронического миелолейкоза (ХМЛ). Каждое сокристаллическое соединение охарактеризовано показателями рентгеноструктурного анализа. Кристаллический материал, в котором компонентом (а) является моногидрохлорид нилотиниба, а компонентом (b) является фумаровая кислота, характеризуется порошковой дифракционной рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å): 13,6, 7,1, 5,68, 4,84, 4,67, 4,57, 3,87, 3,69, 3,39, 3,36, 3,31 и 3,16 (±0,1 при 2θ). Кристаллический материал, в котором компонентом (а) является моногидрохлорид нилотиниба, а компонентом (b) является малеиновая кислота, характеризуется порошковой дифракционной рентгенограммой, включающей следующие характеристические пики, выраженные в значениях d (Å), (±0,1 при 2θ): a) 17,2, 15,8, 10,8, 9,1, 7,3, 5,89, 3,66 и 3,60, или b) 16,6, 15,7, 13,0, 10,7, 9,2, 8,7, 7,3, 6,0, 5,83, 5,39, 5,22, 3,92, 3,65, 3,53, 3,51, 3,44 и 3,40, или c) 10,8, 9,2, 3,93 и 3,66. Кристаллический материал, в котором компонентом (а) является моногидрохлорид нилотиниба, а компонентом (b) является янтарная кислота, характеризуется порошковой дифракционной рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å): 21,1, 3,56, 3,45 и 3,36 или 10,3, 4,58, 3,52 и 3,35 (±0,1 при 2θ). Кристаллический материал, в котором компонентом (а) является моногидрохлорид нилотиниба, а компонентом (b) является гентизиновая кислота, характеризуется порошковой дифракционной рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å), (±0,1 при 2θ): А) 16,2, 10,1, 3,45, 3,33 и 3,31, который обозначен как форма А сокристалла гидрохлорида нилотиниба и гентизиновой кислоты; или B) 16,1, 10,1, 7,3, 6,0, 5,60, 3,58, 3,42, 3,31, 3,28 и 3,25, который обозначен как форма В сокристалла гидрохлорида нилотиниба и гентизиновой кислоты; или C) 10,1, 7,7, 5,93, 5,02, 3,60 и 3,55, который обозначен как форма С сокристалла гидрохлорида нилотиниба и гентизиновой кислоты; или D) 16,3, 10,2, 6,1, 5,68, 3,62, 3,58, 3,46, 3,35, 3,32 и 3,29, который обозначен как форма D сокристалла гидрохлорида нилотиниба и гентизиновой кислоты; или E) 16,2, 15,8, 9,9, 3,41 и 3,29, который обозначен как форма Е сокристалла гидрохлорида нилотиниба и гентизиновой кислоты. Кристаллический материал, в котором компонентом (а) является моногидрохлорид нилотиниба, а компонентом (b) является изоникотинамид, в котором молярное сооотношение компонента (а) к компоненту (b) составляет от около 2:1 до около 1:1, характеризуется порошковой дифракционной рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å), (±0,1 при 2θ): 13,6, 12,4, 6,2, 3,65, 3,54, 3,48 и 3,38, и обозначен как сокристалл гидрохлорида нилотиниба и изоникотинамида. Кристаллический материал, в котором компонентом (а) является моногидрохлорид нилотиниба, а компонентом (b) является метиловый эфир галловой кислоты, в котором молярное соотношение компонента (а) к компоненту (b) составляет от около 2:1 до около 1:1, характеризуется порошковой дифракционной рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å), (±0,1 при 2θ): 17,2, 15,0, 12,3, 11,5, 8,0, 6,8, 5,66, 5,51 и 3,46, и обозначен как сокристалл гидрохлорида нилотиниба и метилового эфира галловой кислоты. Кристаллический материал, в котором компонентом (b) является 1,5-нафталиндисульфоновая кислота, характеризуется порошковой дифракционной рентгенограммой, включающей характеристические пики, выраженные в значениях d(Å), (±0,1 при 2θ): a) 10,0, 9,4, 9,2, 7,7, 5,95, 4,83, 4,69, 3,53, 3,50 и 3,35, который обозначен как форма 1 сокристалла нилотиниба и нафталиндисульфоновой кислоты; b) 18,4, 9,9, 8,3, 7,8, 6,1, 5,86, 4,85, 4,63, 4,42, 4,29, 4,10, 3,87 и 3,68, который обозначен как форма 2 сокристалла нилотиниба и нафталиндисульфоновой кислоты; c) 16,6, 5,78, 3,52, 3,46 и 3,40, который обозначен как форма 3 сокристалла нилотиниба и нафталиндисульфоновой кислоты; d) 12,0, 7,9, 6,8, 6,6, 5,50, 5,20, 4,74, 4,63, 3,76, 3,68 и 3,48, который обозначен как форма 4 сокристалла нилотиниба и нафталиндисульфоновой кислоты; e) 12,0, 7,9, 7,7, 6,8, 6,0, 5,17, 4,72, 4,65, 3,72 и 3,51, который обозначен как форма 5 нафталиндисульфоната нилотиниба; f) 12,0, 6,8, 5,20, 3,76 и 3,69, который обозначен как форма 6 нафталиндисульфоната нилотиниба. 3 н. и 16 з.п. ф-лы, 18 ил., 24 табл., 27 пр.

Реферат

Настоящее изобретение относится к кристаллическим материалам, предпочтительно включающим или состоящим из многокомпонентных молекулярных кристаллов (сокристаллов), включающих нилотиниб или, предпочтительно, гидрогалогенид нилотиниба и карбоновую кислоту, эфир карбоновой кислоты, амид карбоновой кислоты или сульфоновую кислоту в качестве второго компонента, действующего в качестве сокристаллообразователя. Настоящее изобретение также относится к фармацевтическим композициям, содержащим указанные материалы. Настоящее изобретение также относится к способам получения указанных кристаллических материалов и многокомпонентных молекулярных кристаллов. Настоящее изобретение также относится к способам применения указанных кристаллических материалов или многокомпонентных молекулярных кристаллов для лечения патологического состояния, для которого благоприятно ингибирование тирозинкиназы.

Другие объекты и преимущества настоящего изобретения станут понятны из последующего описания, включая примеры и чертежи, а также из прилагаемой формулы изобретения.

Активное соединение "гидрогалогенид нилотиниба", гидрогалогенидная солевая форма нилотиниба, синоним 4-метил-N-[3-(4-метил-1Н-имидазол-1-ил)-5-(трифторметил)фенил]-3-[(4-пиридин-3-илпиримидин-2-ил)амино]бензамида, описывающегося формулой (1):

Известно, что нилотиниб в форме моногидрата гидрохлорида действует, как ингибитор тирозинкиназы, который селективно ингибирует киназы BCR-ABL, KIT, LCK, ЕРНА3, ЕРНА8, DDR1, DDR2, PDGFRB, МАРK11 и ZAK. Он применим для лечения хронического миелолейкоза (ХМЛ) и продается под названием тасигна® (в Европе, Австралии, Латинской Америке, США). Нилотиниб может находиться в разных полиморфных фазах.

Нилотиниб, как соединение и его различные полиморфные формы, такие как форма А гидрата и форма В гидрата, уже известны.

В WO 2011/163222 А1 раскрыто получение солей нилотиниба и его кристаллических форм. Описаны следующие соли: нилотиниб.HCl, фумарат нилотиниба, 2-хлорманделат нилотиниба, сукцинат нилотиниба, адипат нилотиниба, L-тартрат нилотиниба, глутарат нилотиниба, п-толуолсульфонат нилотиниба, камфорсульфонат нилотиниба, глутамат нилотиниба, пальмитат нилотиниба, хинат нилотиниба, цитрат нилотиниба, малеат нилотиниба, ацетат нилотиниба, L-малат нилотиниба, L-аспартат нилотиниба, формиат нилотиниба, гидробромид нилотиниба, оксалат нилотиниба и малонат нилотиниба.

В WO 2011/086541 А1 раскрыты моногидрат моногидрохлорида нилотиниба и способы его получения, включая его фармацевтические композиции и способы лечения с использованием указанных солей.

В WO 2010/081443 А2 раскрыты комплексы некоторых ингибиторов тирозинкиназы или их соли с некоторыми соединениями, образующими совместные кристаллы, такими как альгиновые кислоты, а также способы получения, включая их фармацевтические композиции и способы лечения с использованием указанных комплексов.

В WO 2010/054056 А2 описаны некоторые кристаллические формы гидрохлорида нилотиниба.

В WO 2007/015871 А1 раскрыто получение солей нилотиниба и его кристаллических форм. Солями являются смеси нилотиниба и одной кислоты, где кислоты, выбраны из группы, включающей хлористоводородную кислоту, фосфорную кислоту, серную кислоту, сульфоновую кислоту, метансульфоновую кислоту, этансульфоновую кислоту, бензолсульфоновую кислоту, п-толуолсульфоновую кислоту, лимонную кислоту, фумаровую кислоту, гентизиновую кислоту, малоновую кислоту, малеиновую кислоту и винную кислоту.

В WO 2007/015870 А2 раскрыты кристаллические формы свободного основания нилотиниба и его солей, а также получение таких солей.

В US 7169791 В2 раскрыты некоторые ингибиторы тирозинкиназы. Наряду с другими соединениями описан нилотиниб.

Хотя известны различные полиморфные фазы (твердые формы) нилотиниба, необходимы (другие) кристаллические фазы нилотиниба, чтобы имелось в распоряжении количество разных кристаллических материалов, достаточное для оптимизации изготовления, улучшения гигроскопичности, увеличения скорости растворения, улучшения методик приготовления и биологической эффективности. Поэтому главной задачей настоящего изобретения является разработка новых кристаллических форм нилотиниба, обладающих значительно улучшенными физико-химическими свойствами.

Сущность изобретения

В настоящем изобретении, в частности, приведено описание новых кристаллических форм нилотиниба, а именно, кристаллических материалов, включающих нилотиниб или, предпочтительно, гидрогалогенид нилотиниба и выбранные сокристаллообразователи и способов их получения. Указанные кристаллические формы обладают улучшенными физическими и/или биологическими характеристиками, что может облегчать их получение или приготовление состава активного соединения и обеспечивать чистоту и однородность, необходимые для утверждения к применению административными органами. Указанные кристаллические формы могут обладать улучшенными фармакологическими характеристиками, например, улучшенной биологической доступностью и/или меньшей гигроскопичностью, что расширяет возможности внесения изменений и разработки улучшены лекарственных средств. Другие преимущества станут понятны их приведенного ниже описания, включающего различные примеры.

Подробное описание изобретения

Главная задача настоящего изобретения решена с помощью кристаллического материала, содержащего или состоящего из

(a) нилотиниба, гидрогалогенида нилотиниба или смеси нилотиниба и гидрогалогенида нилотиниба и

(b) карбоновой кислоты, эфира карбоновой кислоты, амида карбоновой кислоты или сульфоновой кислоты

в одной кристаллической фазе.

В целом настоящее изобретение относится к кристаллическому материалу, предпочтительно в форме многокомпонентных молекулярных кристаллов, содержащему или состоящему из

(а) гидрогалогенида нилотиниба и

(b) карбоновой кислоты

в одной кристаллической фазе.

В качестве дополнительного компонента необязательно может содержаться (с) вода (и/или (другие) растворители).

Кристаллические материалы, соответствующие настоящему изобретению, в которых (i) гидрогалогенидом нилотиниба является моногидрогалогенид нилотиниба или (ii) гидрогалогенидом нилотиниба является гидрохлорид нилотиниба, предпочтительно моногидрохлорид нилотиниба, являются особенно предпочтительными.

Компонентом (b) предпочтительно является карбоновая кислота, предпочтительно 1,2-дикарбоновая кислота или гидроксибензойная кислота, более предпочтительно 1,2-дикарбоновая кислота, выбранная из группы, включающей фумаровую кислоту, малеиновую кислоту и янтарную кислоту, или гидроксибензойная кислота, выбранная из группы, включающей гентизиновую кислоту и галловую кислоту.

Также предпочтительными являются кристаллические материалы, соответствующие настоящему изобретению, в которых карбоновой кислотой является дикарбоновая кислота, предпочтительно в которых дикарбоновой кислотой является 1,2-дикарбоновая кислота. Кроме того, предпочтительными являются кристаллические материалы, соответствующие настоящему изобретению, в которых карбоновой кислотой является гидроксибензойная кислота, выбранная из группы, включающей гентизиновую кислоту и галловую кислоту.

Для фармацевтики особый интерес представляют совместные кристаллы, содержащие в качестве компонента (b) соединение, выбранное из группы, включающей изоникотинамид, метиловый эфир галловой кислоты и нафталиндисульфоновую кислоту.

Новые совместные кристаллические фазы (кристаллические материалы, предпочтительно в форме многокомпонентных молекулярных кристаллов) обладают благоприятными характеристиками гигроскопичности; т.е. менее склонны поглощать воду при условиях высокой относительной влажности, чем известные формы моногидрохлорида. В приведенной ниже таблице 1 представлено изменение содержания воды для совместного кристалла моногидрохлорида нилотиниба и фумаровой кислоты и форм А и В гидрохлорида нилотиниба, когда относительная влажность меняется от 0 до 95% в соответствии с использованной программой измерений (см. фиг. 4).

Наиболее важным преимуществом совместных кристаллических систем, соответствующих настоящему изобретению (кристаллического материала, предпочтительно в форме многокомпонентных молекулярных кристаллов), является увеличенная растворимость в воде, например, по сравнению с растворимостью в воде формы А дигидрата моногидрохлорида нилотиниба и формы В моногидрата моногидрохлорида нилотиниба (которые уже известны из литература), которые определяли при таких же условиях и по такой же методике, как растворимость кристаллического материала, соответствующего настоящему изобретению (как это описано ниже).

Определение растворимости в воде лучше растворимой формы В моногидрата моногидрохлорида нилотиниба приводит к растворимости в воде, равной 0,074 миллиграммов на миллилитр (0,074 мг/мл) при 25°С. Однако даже при учете возможных экспериментальных погрешностей при определении растворимости в случае такой очень низкой растворимости, кристаллические материалы, соответствующие настоящему изобретению, обладают растворимостью в воде, которая по меньшей мере в 2,2-5,7 раза больше, чем растворимость формы В моногидрата моногидрохлорида нилотиниба (см. таблицу 2). Форма А дигидрата моногидрохлорида нилотиниба хуже растворимы, чем форма В моногидрата (см. таблицу 2).

Как установлено в наших экспериментах, кристаллические материалы, соответствующие настоящему изобретению, обладают особенно улучшенными характеристиками, если компонентом (b) является карбоновая кислота, выбранная из группы, включающей фумаровую кислоту, малеиновую кислоту, янтарную кислоту и гентизиновую кислоту (особенно улучшена растворимость в воде). Особенно неожиданным преимуществом совместного кристалла фумаровой кислоты является то, что значительно улучшаются растворимость и характеристики гигроскопичности. Таким образом, особенно предпочтительными являются кристаллические материалы, соответствующие настоящему изобретению, в которых карбоновой кислотой является соединение, выбранное из группы, включающей фумаровую кислоту, малеиновую кислоту и янтарную кислоту; или в которых карбоновой кислотой является гентизиновая кислота.

Отношение количества молей (а) гидрогалогенида нилотиниба к количеству молей компонента (b) предпочтительно находится в диапазоне от около 2:1 до около 1:2, предпочтительно составляет около 1:1 или около 2:1. Термин "около" в этом контексте означает небольшие отклонения для отношения количества молей, которые могут привести для данного отношения к отклонению, обычно находящемуся в диапазоне до 10%. В частности, отношение количества молей предпочтительно составляет около 1:1 (например, находится в диапазоне от 0,9:1 до 1,1:1) для (а) гидрогалогенида нилотиниба (предпочтительно гидрохлорида нилотиниба) и (b) фумаровой кислоты, или (а) гидрогалогенида нилотиниба (особенно гидрохлорида нилотиниба) и (b) янтарной кислоты, и около 2:1 (т.е. от 2,2:1 до 1,8:1) для (а) гидрогалогенида нилотиниба (особенно гидрохлорида нилотиниба) и (b) малеиновой кислоты. Аналогичным образом, для композиции, соответствующей настоящему изобретению, может наблюдаться отклонение от составляющего 1:1 отношения количества молей нилотиниба к количеству молей галогенида водорода (предпочтительно хлорида водорода), что может привести к тому, что для гидрогалогенида нилотиниба в продукте конечное отношение количества молей нилотиниб : галогенид водорода (особенно хлорид водорода) будет находиться в диапазоне от 1,1: 1 до 0,9: 1, предпочтительно от 1,1: 1 до 1:1.

Также предпочтительными являются кристаллические материалы, соответствующие настоящему изобретению, в которых кристаллической формой является безводная или гидрат (например, моногидрат, дигидрат, полуторный гидрат, полугидрат). В частности, кристаллические материалы, включающие (i) (а) гидрогалогенид нилотиниба (предпочтительно гидрохлорид нилотиниба) и (b) фумаровую кислоту, или (ii) (а) гидрогалогенид нилотиниба (предпочтительно гидрохлорид нилотиниба) и (b) малеиновую кислоту, являются предпочтительными в виде безводной формы и кристаллический материал, включающий (а) гидрогалогенид нилотиниба (предпочтительно гидрохлорид нилотиниба) и (b) янтарную кислоту, является предпочтительным в форме гидрата.

Предпочтительно, если кристаллический материал включает или представляет собой

A) многокомпонентный молекулярный кристалл, содержащий

(a) гидрохлорид нилотиниба и

(b) фумаровую кислоту

в одной кристаллической фазе, особенно

B) безводную кристаллическую форму, определенную в А),

в основном состоящую из

(a) гидрохлорида нилотиниба и

(b) фумаровой кислоты

обладающую отношением количества молей [(а):(b)], находящимся в диапазоне от около 1:0,5 до около 1:1,5;

C) многокомпонентный молекулярный кристалл, включающий

(a) гидрохлорид нилотиниба и

(b) малеиновую кислоту

в одной кристаллической фазе, особенно

D) безводную кристаллическую форму, определенную в С), в основном состоящую из

(а) гидрохлорида нилотиниба и

(b) малеиновой кислоты

Имеющую отношение молей [(а):(b)], находящееся в диапазоне от около 1:0,4 до около 1:1,5;

E) многокомпонентный молекулярный кристалл, содержащий

(a) гидрохлорид нилотиниба и

(b) янтарную кислоту

в одной кристаллической фазе, в частности

F) безводную кристаллическую форму, определенную в Е), в основном состоящую из

(a) гидрохлорида нилотиниба,

(b) янтарной кислоты и

(c) воды

имеющую отношение количества молей [(а):(b):(с)], составляющее около 1:0,5-1,5:0,5-2;

G) кристаллическую форму, в основном состоящую из

(a) гидрохлорида нилотиниба и

(b) гентизиновой кислоты

Имеющую отношение количества молей [(а):(b)], составляющее около 1:0,5-1,5;

H) кристаллическую форму, в основном состоящую из

(a) гидрохлорида нилотиниба,

(b) гентизиновой кислоты и

(c) воды

имеющую отношение количества молей [(а):(b):(с)], составляющее около 1: 0,5-1,5:1-2;

I) кристаллическую форму, в основном состоящую из

(a) гидрохлорида нилотиниба и

(b) изоникотинамид

имеющую отношение количества молей [(а):(b)], составляющее около 1:0,5-1;

J) кристаллическую форму, в основном состоящую из

(a) гидрохлорида нилотиниба и

(b) сложного метилового эфира галловой кислоты,

имеющую отношение количества молей [(а):(b)], составляющее около 1:0,5-1; и

K) кристаллическую форму, в основном состоящую из

(a) нилотиниба и/или гидрохлорида нилотиниба,

(b) нафталиндисульфоновой кислоты и необязательно

(c) воды,

имеющую отношение количества молей [(а):(b):(с)], составляющее около 1:0,5-1:0-1,5.

В указанных выше кристаллических формах особенно предпочтительным в качестве гидрохлорида нилотиниба является моногидрохлорид.

Как уже указано выше, термин "около" в контексте отношения количества молей означает небольшие отклонения для отношения количества молей, которые могут привести для данного отношения к отклонению, обычно находящемуся в диапазоне до 10%.

Термин "в основном" в этом контексте означает, что в дополнение к указанным выше компонентам (а), (b) и, если он используется, (с) могут содержаться небольшие количества примесей, которые невозможно исключить даже после тщательной очистки многокомпонентных молекулярных кристаллов (например, предпочтительно, при полном содержании, составляющем менее 2 мас. %, более предпочтительно менее 1 мас. % в пересчете на полную массу многокомпонентного молекулярного кристалла).

В предпочтительном варианте осуществления кристаллического материала (а) гидрохлорид нилотиниба и (b) фумаровая кислота содержатся в одной и той же кристаллической фазе, т.е. образуют совместный кристалл. Такой кристаллический материал, соответствующий настоящему изобретению, и/или такой многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, предпочтительно характеризуются порошковой рентгенограммой, включающей следующие характеристические пики, выраженные в значениях d (Å) (т.е. включающей (по меньшей мере) следующие значения d): 13,6, 7,1, 5,68, 4,84, 4,67, 4,57, 3,87, 3,69, 3,39, 3,36, 3,31 и 3,16, предпочтительно 13,6, 7,1, 7,0, 5,68, 5,61, 4,84, 4,81, 4,67, 4,57, 4,47, 4,32, 4,21, 3,98, 3,87, 3,69, 3,49, 3,39, 3,36, 3,31, 3,28, 3,24, 3,21, 3,16 и 3,09.

Экспериментальная погрешность значений °2θ, определенных с помощью дифрактометра, составляет около от ±0,1° до ±0,2°. Экспериментальная погрешность значений d зависит от угла 2θ и составляет около ±0,2 для последней приведенной значащей цифры, например, 7,1±0,2 или 5,68±0,02.

Кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, предпочтительно характеризуются порошковой рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å), приведенные ниже в таблице:

Здесь и далее указанные в скобках аббревиатуры означают: (vs) = очень высокая интенсивность; (s) = высокая интенсивность; (m) = средняя интенсивность; (w) = низкая интенсивность.

Кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, который обладает характеристической порошковой рентгенограммой, в основном такой, как приведенная на фиг. 1, является особенно предпочтительным.

В (альтернативном) предпочтительном варианте осуществления кристаллического материала (а) гидрохлорид нилотиниба и (b) малеиновая кислота содержатся в одной и той же кристаллической фазе, т.е. образуют совместный кристалл. Такой кристаллический материал, соответствующий настоящему изобретению, и/или такой многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, предпочтительно характеризуются порошковой рентгенограммой, включающей следующие характеристические пики, выраженные в значениях d (Å): 17,2, 15,8, 10,8, 9,1, 7,3, 5,89, 3,66 и 3,60, предпочтительно, 17,2, 15,8, 10,8, 9,1, 8,7, 7,3, 5,89, 5,75, 5,40, 5,22, 3,66 и 3,60.

Особенно предпочтительными являются кристаллический материал, соответствующий настоящему Изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, который обладает порошковой рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å), приведенные ниже в таблице:

Здесь и далее указанные в скобках аббревиатуры означают: (vs) = очень высокая интенсивность; (s) = высокая интенсивность; (m) = средняя интенсивность; (w) = низкая интенсивность; (vw) = очень низкая интенсивность.

В другом (альтернативном) предпочтительном варианте осуществления кристаллического материала (а) гидрохлорид нилотиниба и (b) малеиновая кислота содержатся в одной и той же кристаллической фазе, т.е. образуют совместный кристалл. Такой кристаллический материал, соответствующий настоящему изобретению, и/или такой многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, предпочтительно характеризуются порошковой рентгенограммой, включающей следующие характеристические пики, выраженные в значениях d (Å): 16,6, 15,7, 13,0, 10,7, 9,2, 8,7, 7,3, 6,0, 5,83, 5,39, 5,22, 3,92, 3,65, 3,53, 3,51, 3,44 и 3,40.

Особенно предпочтительными являются кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, который обладает порошковой рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å), приведенные ниже в таблице:

Кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, которые обладают характеристическими порошковыми рентгенограммами, в основном такими, как приведенные на фиг. 2, являются особенно предпочтительными.

В (альтернативном) предпочтительном варианте осуществления кристаллического материала (а) гидрохлорид нилотиниба и (b) янтарная кислота содержатся в одной и той же кристаллической фазе, т.е. образуют совместный кристалл. Такой кристаллический материал, соответствующий настоящему изобретению, и/или такой многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, характеризуются порошковой рентгенограммой, включающей следующие характеристические пики, выраженные в значениях d (Å): 21,1, 3,56, 3,45 и 3,36, предпочтительно 21,1, 10,4, 3,77, 3,68, 3,56, 3,45 и 3,36, или 10,3, 4,58, 3,52 и 3,35.

Предпочтительный кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, предпочтительно характеризуются порошковой рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å), приведенные ниже в таблице:

Здесь и далее указанные в скобках аббревиатуры означают: (vs) = очень высокая интенсивность; (s) = высокая интенсивность; (m) = средняя интенсивность; (w) = низкая интенсивность; (vw) = очень низкая интенсивность.

Кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, который обладает характеристической порошковой рентгенограммой, в основном такой, как приведенная на фиг. 3, являются особенно предпочтительными.

В другом предпочтительном варианте осуществления кристаллического материала (а) гидрохлорид нилотиниба и (b) гентизиновая кислота содержатся в одной и той же кристаллической фазе, т.е. образуют совместный кристалл. Такой кристаллический материал, соответствующий настоящему изобретению, и/или такой многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, характеризуются порошковой рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å):

A) 16,2, 10,1, 3,45, 3,33 и 3,31, который в настоящем изобретении определен, как форма А совместного кристалла гидрохлорида нилотиниба и гентизиновой кислоты; или

B) 16,1, 10,1, 7,3, 6,0, 5,60, 3,58, 3,42, 3,31, 3,28 и 3,25, который в настоящем изобретении определен, как форма В совместного кристалла гидрохлорида нилотиниба и гентизиновой кислоты; или

C) 10,1, 7,7, 5,93, 5,02, 3,60 и 3,55, который в настоящем изобретении определен, как форма С совместного кристалла гидрохлорида нилотиниба и гентизиновой кислоты; или

D) 16,3, 10,2, 6,1, 5,68, 3,62, 3,58, 3,46, 3,35, 3,32 и 3,29, который в настоящем изобретении определен, как форма D совместного кристалла гидрохлорида нилотиниба и гентизиновой кислоты; или

E) 16,2, 15,8, 9,9, 3,41 и 3,29, который в настоящем изобретении определен, как форма Е совместного кристалла гидрохлорида нилотиниба и гентизиновой кислоты;

особенно предпочтительными из указанных выше совместных кристаллов являются обладающие характеристическими пиками (выраженными в значениях; Å) при:

16,2, 10,1, 7,4, 6,1, 5,59, 4,61, 3,61, 3,45, 3,33, 3,31 и 3,27, который в настоящем изобретении определен, как форма А совместного кристалла гидрохлорида нилотиниба и гентизиновой кислоты; или

16,2, 15,8, 9,9, 7,1, 5,97, 5,53, 4,76, 3,58, 3,53, 3,41, 3,29 и 3,23, который в настоящем изобретении определен, как форма Е совместного кристалла гидрохлорида нилотиниба и гентизиновой кислоты.

Также предпочтительным является кристаллический материал, соответствующий настоящему изобретению, в котором компонентом (b) является амид карбоновой кислоты или эфир карбоновой кислоты, предпочтительно изоникотинамид или метиловый эфир галловой кислоты, и в котором отношение количества молей компонента (а) к количеству молей компонента (b) составляет от около 2:1 до около 1:1, предпочтительно около 3:2.

Примером этого варианта осуществления является кристаллический материал, соответствующий настоящему изобретению, в котором компонентом (b) является изоникотинамид и который характеризуется порошковой рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å): 13,6, 12,4, 6,2, 3,65, 3,54, 3,48 и 3,38, который в настоящем изобретении определен, как совместный кристалл гидрохлорида нилотиниба и изоникотинамида.

Другим примером этого варианта осуществления является кристаллический материал, соответствующий настоящему изобретению, в котором компонентом (b) является метиловый эфир галловой кислоты и который характеризуется порошковой рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å): 17,2, 15,0, 12,3, 11,5, 8,0, 6,8, 5,66, 5,51 и 3,46, который в настоящем изобретении определен, как совместный кристалл гидрохлорида нилотиниба и метилового эфира галловой кислоты.

В другом предпочтительном варианте осуществления кристаллического материала компонентом (а) является свободное основание нилотиниба, гидрохлорид нилотиниба или смесь свободного основания и гидрохлорида и компонентом (b) является 1,5-нафталиндисульфоновая кислота; совместный кристалл характеризуется порошковой рентгенограммой, включающей характеристические пики, выраженные в значениях d (Å):

a) 10,0, 9,4, 9,2, 7,7, 5,95, 4,83, 4,69, 3,53, 3,50 и 3,35, который в настоящем изобретении определен, как нилотиниба и нафталиндисульфоновой кислоты форма 1 совместного кристалла;

b) 18,4, 9,9, 8,3, 7,8, 6,1, 5,86, 4,85, 4,63, 4,42, 4,29, 4,10, 3,87 и 3,68, который в настоящем изобретении определен, как форма 2 совместного кристалла нилотиниба и нафталиндисульфоновой кислоты;

c) 16,6, 5,78, 3,52, 3,46 и 3,40, который в настоящем изобретении определен, как форма 3 совместного кристалла нилотиниба и нафталиндисульфоновой кислоты;

d) 12,0, 7,9, 6,8, 6,6, 5,50, 5,20, 4,74, 4,63, 3,76, 3,68 и 3,48, который в настоящем изобретении определен, как форма 4 совместного кристалла нилотиниба и нафталиндисульфоновой кислоты;

e) 12,0, 7,9, 7,7, 6,8, 6,0, 5,17, 4,72, 4,65, 3,72 и 3,51, который в настоящем изобретении определен, как форма 5нафталиндисульфоната нилотиниба;

f) 12,0, 6,8, 5,20, 3,76 и 3,69, который в настоящем изобретении определен, как форма 6 нафталиндисульфоната нилотиниба.

Таким образом, предпочтительным вариантом осуществления настоящего изобретения предпочтительно является кристаллический материал, в основном состоящий из

(a) нилотиниба, гидрогалогенида нилотиниба или смеси нилотиниба и гидрогалогенида нилотиниба;

(b) фумаровой кислоты, малеиновой кислоты, янтарной кислоты, гентизиновой кислоты, изоникотинамида, метилового эфира галловой кислоты или 1,5-нафталиндисульфоновой кислоты и необязательно

(c) до 2,5 моля воды на 1 моль нилотиниба.

Кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, можно использовать для лечения патологического состояния, для которого благоприятно ингибирование тирозинкиназы.

Поэтому кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, являются предпочтительными для применения для лечения организма человека или животного.

Также предпочтительными являются кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, предназначенный для применения в качестве лекарственного средства (или его части), предпочтительно для лечения хронического миелолейкоза (ХМЛ), более предпочтительно для лечения резистентного к лекарственным средствам хронического миелолейкоза (ХМЛ) и/или для ингибирования тирозинкиназы.

Настоящее изобретение также относится к способу лечения заболевания, предпочтительно ХМЛ, включающему введение (нуждающемуся в нем лицу) эффективного количества композиции, включающей кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению.

Другим объектом настоящего изобретения является способ получения кристаллического материала, соответствующего настоящему изобретению, и/или многокомпонентного молекулярного кристалла, соответствующего настоящему изобретению, включающий следующие стадии:

(i) получение или использование нилотиниба, галогенида водорода (предпочтительно хлорида водорода) и карбоновой кислоты, эфира карбоновой кислоты, амида карбоновой кислоты или сульфоновой кислоты (предпочтительно фумаровой кислоты, малеиновой кислоты, янтарной кислоты, гентизиновой кислоты) и

(ii) смешивание всех компонентов, полученных или использованных на стадии (i).

В предпочтительном способе 1, 2 или все компоненты, полученные или использованные на стадии (i), растворяют в подходящем растворителе. Подходящими растворителями, которые можно использовать обычно являются органические растворители, обладающие смешиваемостью с водой при комнатной температуре, составляющей не менее 10% ("полярные органические растворители") или смеси воды с полярными органическими растворителями; особенно предпочтительным является метанол. Такими растворами предпочтительно являются концентрированные растворы. Концентрация нилотиниба в смеси, полученной на стадии (ii), предпочтительно равна от 0,1 до около 300 мг/мл растворителей (включая воду), более предпочтительно от 10 до 100 мг/мл.

Предпочтительный способ, соответствующий настоящему изобретению, дополнительно включает стадию (iii) отделения осадка и/или выпаривания растворителей (сушка).

Способ предпочтительно проводят при температуре в диапазоне 20-100°С, предпочтительно 20-80°С. В предпочтительном способе стадии (i) и (ii) проводят при температуре в диапазоне 20-80°C или смесь нагревают до температуры, находящейся в указанном диапазоне, например, около до 80°С, с образованием раствора, в особенности в случае, когда нилотиниб получают или используют на стадии (i) в виде твердого вещества. Затем приготовленный таким образом раствор предпочтительно охлаждают перед стадией (iii).

Кристаллические материалы, соответствующие настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, описанный выше или полученный способом, описанным выше, можно использовать в фармацевтических композициях таким же образом, как известные ранее другие формы нилотиниба.

Другим объектом настоящего изобретения является фармацевтическая композиция, включающая кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению.

Предпочтительная фармацевтическая композиция, соответствующая настоящему изобретению, также включает 1, 2, 3 или большее количество фармацевтически приемлемых носителей, ингредиентов или разбавителей.

На количество кристаллического материала, соответствующего настоящему изобретению, и/или многокомпонентного молекулярного кристалла, соответствующего настоящему изобретению, содержащегося в фармацевтической композиции, соответствующей настоящему изобретению, не налагаются особые ограничения; однако доза должна быть достаточной для лечения, облегчения протекания или смягчения патологического состояния.

Количество кристаллического материала, соответствующего настоящему изобретению, и/или многокомпонентного молекулярного кристалла, соответствующего настоящему изобретению, существенно зависит от типа состава и доз, желательных для периодов введения. Количество в составе для перорального введения может составлять от 0,1 до 800 мг, предпочтительно от 100 до 600 мг и более предпочтительно от 300 до 500 мг.

Предпочтительная фармацевтическая композиция, соответствующая настоящему изобретению, является особенно подходящей для лечения хронического миелолейкоза (ХМЛ) в связи с необходимостью ингибирования тирозинкиназы.

Предпочтительными являются фармацевтические композиции, соответствующие настоящему изобретению, в которых карбоновой кислотой является фумаровая кислота и которые характеризуются по меньшей мере одним характеристическим пиком на порошковой рентгенограмме, выраженным в значениях d (Å), выбранным из группы, включающей 13,6, 7,1, 5,68, 4,84, 4,67, 4,57, 3,87, 3,69, 3,39, 3,36, 3,31 и 3,16; или

в которых карбоновой кислотой является малеиновая кислота и которые характеризуются по меньшей мере одним характеристическим пиком на порошковой рентгенограмме, выраженным в значениях d (Å), выбранным из группы, включающей 17,2, 15,8, 10,8, 9,1, 7,3, 5,89, 3,66 и 3,60; или

в которых карбоновой кислотой является малеиновая кислота и которые характеризуются по меньшей мере одним характеристическим пиком на порошковой рентгенограмме, выраженным в значениях d (Å), выбранным из группы, включающей 16,6, 15,7, 13,0, 10,7, 9,2, 8,7, 7,3, 6,0, 5,83, 5,39, 5,22, 3,92, 3,65, 3,53, 3,51, 3,44 и 3,40; или

в которых карбоновой кислотой является малеиновая кислота и которые характеризуются по меньшей мере одним характеристическим пиком на порошковой рентгенограмме, выраженным в значениях d (Å), выбранным из группы, включающей 10,8, 9,2, 5,4, 5,22, 3,93, 3,66, 3,54, 3,51 и 3,45; или

в которых карбоновой кислотой является янтарная кислота и которые характеризуются по меньшей мере одним характеристическим пиком на порошковой рентгенограмме, выраженным в значениях d (Å), выбранным из группы, включающей 21,1, 3,56, 3,45 и 3,36, или 10,3, 4,58, 3,52 и 3,35; или

в которых карбоновой кислотой является гентизиновая кислота и которые характеризуются по меньшей мере одним характеристическим пиком на порошковой рентгенограмме, выраженным в значениях d (Å), выбранным из группы, включающей 16,2, 10,1, 3,45, 3,33 и 3,31; или

в которых карбоновой кислотой является гентизиновая кислота и которые характеризуются по меньшей мере одним характеристическим пиком на порошковой рентгенограмме, выраженным в значениях d (Å), выбранным из группы, включающей 16,2, 15,8, 9,9, 3,41 и 3,29.

Фармацевтические композиции, соответствующие настоящему изобретению, необязательно можно смешивать с другими формами нилотиниба и/или другими активными ингредиентами. Кроме того, фармацевтические композиции, соответствующие настоящему изобретению, могут содержать неактивные ингредиенты, такие как разбавители, носители, наполнители, агенты, увеличивающие объем, связующие, разрыхлители, вещества, замедляющие распад, ускорители всасывания, смачивающие агенты, смазывающие вещества, агенты, придающие скользкость, поверхностно-активные агенты, вкусовые агенты и т.п.

Композиции для перорального введения могут представлять собой твердые композиции, такие как капсулы, таблетки, пилюли и пастилки, или жидкие композиции, такие как водные суспензии, эликсиры и сиропы. Использование твердых и жидких композиций также включает введение твердых форм, соответствующих настоящему изобретению, в жидкие или твердые пищевые продукты.

Кристаллический материал, соответствующий настоящему изобретению, и/или многокомпонентный молекулярный кристалл, соответствующий настоящему изобретению, можно непосредственно использовать в виде порошков (микронизированных частиц), гранул, суспензий или растворов, или их можно объединять с другими фармацевтически приемлемыми ингредиентами в виде смеси компонентов и необязательно с тонким измельчением и затем наполнять капсулы, изготовленные, например, из твердого или мягкого желатина, прессовать в таблетки, пилюли или пастилки или суспендировать или растворять их в носителях для суспензий, эликсиров и сиропов. Покрытия можно наносить после прессования в форму пилюли.

Подходящие для разных типов составов фармацевтически приемлемые ингредиенты хорошо известны и могут представлять собой, например, связующие (такие как натуральные или синтетические полимеры), инертные наполнители, смазывающие вещества, поверхностно-активные вещества, подсластители, вкусовые агенты, материалы покрытий, консерванты, красители, загустители, вспомогательные вещества, противомикробные агенты и носители для составов разных типов.

Примерами связующих являются трагакантовая камедь, камедь ака