Способ стимуляции роста микроклонов вейгелы цветущей "вариегата" низкими концентрациями хлорида натрия

Иллюстрации

Показать все

Изобретение относится к растениеводству, лесному, лесопарковому и сельскому хозяйству, а именно к питомниководству. Способ стимулирования роста микроклонов включает культивирование микроклонов вейгелы цветущей «вариегата» на питательной среде 1/2 WPM (Woody Plant Medium), содержащей половинное количество макросолей и сахарозы. Питательные среды не содержат антибиотиков. Для достижения ростостимулирующего эффекта питательные среды дополнены солью NaCl, в концентрации 26±1 мМ и 87±1 мМ. На протяжении 14 суток у растений на селективных средах наблюдается больший, чем в контроле, прирост: на концентрации NaCl 26 мМ - в 2 раза, на концентрации 87 мМ - в 3 раза. Предлагаемый способ стимулирования роста микроклонов позволяет получать быстрорастущие клоны декоративных морозоустойчивых кустарников, пригодных для адаптирования к открытому грунту и продаже. 1 табл.

Реферат

Изобретение относится к растениеводству, лесному, лесопарковому и сельскому хозяйству, а именно к питомниководству, и может быть использовано при стимуляции роста микроклонально размноженных растений.

Для стимулирования прорастания семян, роста побегов используют синтетические ауксины и цитокинины - аналоги природных фитогормонов (Роньжина Е.С., Калинина Е.А. Сравнительный анализ действия ауксина и цитокинина на рост и продуктивность однодольных и двудольных растений. Известия КГТУ. 2007. №12. С.125-131). Главным недостатком такого приема является высокая стоимость гормонов. Кроме того, они являются причиной возникновения разнообразных мутаций растений.

Известен другой способ стимуляции роста растений, основанный на применении наноразмерных частиц серебра, включащих полигексаметилен-бигуанид, или полигексаметиленгуанидин, или, по крайней мере, одну соль полигексаметиленбигуанида или полигексаметиленгуанидина [WO 2014062079, МПК A01N 25/02; A01N 25/04; A01N 33/02; A01N 59/00; А01Р 3/00; опубл. 24.04.2014]. Недостатком данного метода является высокая стоимость стимулирующих агентов, ограничивающая их широкое применение.

Задачей настоящего изобретения является удешевление эффекта ростостимуляции микроклонов пестролистного кустарника вейгела цветущая «вариегата» (Weigela florida «Variegata» Bunge A.D.C.)

Технический результат изобретения заключается в разработке дешевого и эффективного способа ростостимуляции микроклонов пестролистного кустарника вейгела цветущая «вариегата» (Weigela florida «Variegata» Bunge A.D.C.) в первые 14 суток роста.

Технический результат достигается тем, что способ стимуляции роста микроклонов вейгелы цветущей «вариегата» Weigela florida «Variegata» Bunge A.D.C.) низкими концентрациями хлорида натрия, включающий укоренение микрорастений на стандартной безгормональной 1/2 WPM, отличающийся тем, что в питательную среду добавляют соль NaCl в концентрации 26±1 мМ или 87±1 мМ.

В таблице 1 приведены значения прироста (в мм) микроклонов вейгелы для разных концентраций соли в питательной среде, где * - различия с контролем достоверны (Р<0,05); а - различия с концентрацией соли 26 мМ достоверны (Р<0,05); б - различия с концентрацией соли 87 мМ достоверны (Р<0,05); с - различия с 30 сутками достоверно (Р<0,05); d - различия с 30 сутками достоверно (Р<0,01).

В качестве исходных эксплантов были использованы одно- и двухузловые сегменты весенних или летних побегов. Выгонка пазушных побегов, мультипликация и укоренение осуществляется на гормональных питательных средах. Один сегмент дает в среднем 3 побега за 10 суток на протяжении 4-6 месяцев, что дает очень высокий коэффициент мультипликации. Используемая питательная среда - Вуди Плант Медиум ( Woody Plant Medium; WPM), имеющая состав: соли кальция, мг/л: 36,3 - CaCl2×2Н2О, 284 - Ca(NO3)2×4Н2О; макроэлементы, мг/л: 495 - KNO3, 185 - K2SO4, 200 - MgSO4×7H2O) (Lloyd, G., McCown В. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot-tip culture // Proc. Inter. Plant Prop.1980. V.30. P. 421-427), содержащая половинное количество макросолей и сахарозы. Микроэлементы, витамины, хелат железа использованы по прописям Мурасиге и Скуга (MS) ((мг/л): 0,025 - CoCl2×6Н2О; 0,025 -CuSO4×5Н2О; 6,2 - Н3ВО3; 0,83 - KI; 16,9 - MnSO4×Н2О; 0,25 - Na2MoO4×2Н2О; 8,6 - ZnSO4×7Н2О), хелат железа, мг/л: 27,8 - FeSO4×7Н2О; 37,3 - Na2EDTA, витамины (мг/л): 0,5 - никотиновая кислота; 0,5 - пиридоксин-НС1; 1,0 - тиамин)) (Murashige Т., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture // Physiol. Plant. 1962. V.15. P.473-497), 0,2 мг/л 6-бензиламинопурина (БАП) и 0,1 мг/л гиббереллина (ГА3). Для укоренения использовали питательную среду вышеуказанного состава (т.е. хлористый и азотнокислый кальций, макросоли - по прописи WPM, а микросоли, витамины и хелат железа - по прописи MS), но вместо БАП и ГА3 используют 1 мг/л индолилуксусную (ИУК) совместно с 1 мг/л индолилмасляной кислотой (ИМК), или 1 мг/л ИМК.

Сущность изобретения заключается в том, что при добавлении в питательную среду соли NaCl в низких концентрациях отмечается положительное влияние хлорида натрия в виде статистически достоверного увеличения прироста микроклонов вейгелы.

В качестве источника соли для изучения влияния различных концентраций хлорида натрия использовали натуральную пищевую морскую соль, ГОСТ Р 51574-2000, произведенную из соли каменной ТУ 9192-002-00352851-04. Состав NaCl 98.8%, Са2+ 0.235%, K+, не более 0.1%, Mg2+ 0.015%, SO42- 0.609%, Влажность 0.025%.

Культивирование проводили на светокультуральных стеллажах в условиях 16-часового периода освещения светодиодными лентами напряжением 12 В, мощностью 4.5 Вт/м (3 светодиода на 10 см ленты), общая освещенность 2500-3000 люкс. На каждой полке была добавлена лента с красными фотодиодами. Светодиоды имеют следующие преимущества: большой срок службы (до 20-50 тысяч часов), малое потребление энергии и малое тепловыделение, что позволяет при большом количестве светокультуральных стеллажей поддерживать оптимальную температуру в растильнях (23-26°С). Использование светодиодных лент позволяет снизить температуру в растильне, значительно уменьшить потребляемую мощность и улучшить световые условия для растений.

Растения высаживались на 30 суток на селективные питательные среды вышеуказанного состава в присутствии следующих концентраций морской соли (в пересчете на NaCl): 26, 43, 87, 130, 260 мМ. Пассирование на свежие питательны среды осуществилось каждые две недели. На селективной среде с добавлением 130 мМ NaCl в течение 14 суток погибало чуть более 50% растений. Эта концентрация была названа «полулетальной». При концентрации соли 260 мМ погибали 100% растений за этот же промежуток времени («летальная концентрация»). На остальных исследуемых концентрациях морской соли - 26, 43 и 87 мМ - растения развивались по-разному. Результаты представлены в таблице 2.

На 14 сутки эксперимента отмечался положительный эффект, на 20 и 30 сутки эффекты присутствия морской соли в культуральной среде перестали выявляться, т.е. эффект выявлялся только в начале эксперимента. Аналогичные эффекты были показаны Кузиным (А.М. Кузин. Стимулирующее действие ионизирующего излучения на биологические процессы. М.: Атомиздат, 1977. 136 с.) при воздействии ионизирующих излучений в стимулирующих дозах на растительные объекты. Концентрация соли также не имеет однозначного стимулирующего воздействия на прирост растений в высоту. Достоверные различия с контролем выявляются только при концентрациях соли 26 и 87 мМ, при концентрации соли 43 мМ стимулирующего эффекта морской соли на изучаемый показатель не обнаруживается. Таким образом, существует две области стимуляции роста стебля: в области концентрации 26 и 87 мМ, в области концентрации 43 мМ стимулирующие эффекты отсутствуют. Полученные данные согласуются с мнением Нариманова и Корыстова (А.А. Нариманов, Ю.Н. Корыстов. Стимуляция развития растений малыми дозами ионизирующего излучения на биологические процессы // Изв. РАН. Сер. Биол. 1996. №5. С.618-620), показавших наличие двух пиков эффектов стимуляции в области малых и больших доз радиации и универсальность этого явления (возможность его выявления не только при облучении объектов ионизирующей радиацией, а при воздействии химических соединений).

При действии малых концентраций соли (26 и 87 мМ) происходит накопление ионов Na+ и Cl- в вакуолях, что и создает стимулирующее воздействие на рост растений в высоту.

Таким образом, для получения стимулирующего эффекта в питательные среды вышеуказанного состава необходимо добавлять следующие концентрации морской соли (в пересчете на NaCl): 26 или 87 мМ. Концентрация выше 87 мМ, а именно 130 мМ является полулетальной и не пригодна для получения стимулирующего воздействия. Положительный ростостимулирующий эффект наблюдается на 14 сутки инкубирования на селективных средах, после чего процессы роста замедляются, несмотря на регулярное пассирование на свежие питательные среды. При этом присутсвие NaCl не оказывал отрицательного действия на корни вплоть до концентрации 130 мМ.

Результаты исследования приведены авторами настоящего изобретения в статье: Землянухина О.А., Калаев В.Н., Воронина B.C. Рост и развитие растений вейгелы цветущей «вариегата» в культуре in vitro в условиях солевого стресса // Современные проблемы науки и образования. - 2016. - №6

Способ стимуляции роста микроклонов вейгелы цветущей «вариегата» (Weigela florida «Variegata» Bunge A.D.C.) низкими концентрациями хлорида натрия, включающий укоренение микрорастений на стандартной безгормональной питательной среде 1/2 WPM, отличающийся тем, что в питательную среду добавляют соль NaCl в концентрации 26±1 мM или 87±1 мM.