Сконструированные микробы и способы получения микробного масла

Иллюстрации

Показать все

Изобретение относится к области генной инженерии, конкретно к получению микробных продуцентов, и может быть использовано для получения микробного масла. Сконструирована жирообразующая клетка дрожжей, способная к конверсии источника углерода в жирную кислоту, производное жирной кислоты и/или триацилглицерин. Полученная клетка характеризуется генетической модификацией, которая увеличивает экспрессию генов диацилглицерин-ацилтрансферазы (DGA1) и ацетил-СоА-карбоксилазы (АСС1) и дополнительно может содержать генетическую модификацию, которая увеличивает экспрессию продукта гена SCD и/или ACL. При этом клетка содержит первую конструкцию нуклеиновой кислоты, содержащую экспрессионную кассету, кодирующую продукт гена DGA1, и гетерологичный усиленный интроном промотор, который содержит сайт инициации транскрипции и интронную последовательность в положении ниже сайта инициации транскрипции; а также вторую конструкцию нуклеиновой кислоты, содержащую экспрессионную кассету, кодирующую продукт гена АСС1. Изобретение позволяет получить дрожжевые продуценты, которые проявляют значительно улучшенные степени конверсии, а также свойства в отношении синтеза и резервирования TAG. 10 н. и 91 з.п. ф-лы, 16 ил., 11 табл.

Реферат

По данной заявке испрашивается приоритет согласно 35 U.S.С. §119 по предварительной патентной заявке США с серийным номером №61/548901, поданной 19 октября 2011 года; и предварительной патентной заявке США с серийным номером №61/663263, поданной 22 июня 2012 года, обе озаглавленные «Сконструированные микробы и способы получения микробного масла», содержание каждой из которых включено в настоящий документ путем отсылки в полном объеме.

Сведения о предшествующем уровне техники

Биотопливо, производимое на устойчивой основе, является альтернативой ископаемым видам топлива и может способствовать уменьшению истощения легкодоступных запасов ископаемых видов топлива, избегая при этом загрязнения и парниковых выбросов, связанных с ископаемыми видами топлива, удовлетворяя, таким образом, растущий спрос на доступную энергию на устойчивой основе. Разработка способов и вырабатывающих масло организмов, пригодных для эффективной конверсии источников углерода в липиды, является необходимым условием широкомасштабного внедрения производства микробного биотоплива.

Краткое описание изобретения

Выработка микробного масла гетеротрофными организмами является наиболее перспективным путем экономически эффективного производства биотоплива из возобновляемых ресурсов при условии достижения высоких степеней конверсии. Ключом к экономически эффективному производству микробного масла из возобновляемого сырья является высокий выход конверсии углеводов в масло. Метаболическая инженерия стала технологией, применяющейся для этой цели, и отмечаются многочисленные примеры успешного конструирования путей обмена веществ, которые значительно улучшили характеристики микробных биокатализаторов при проведении синтеза химических, фармацевтических и топливных продуктов.

Предпринятые ранее усилия по инженерингу микробов для выработки масла были направлены на усиление предполагаемых определяющих скорость стадий в пути синтеза жирных кислот. Одним существенным недостатком таких усилений является то, что увеличение потока углерода на пути синтеза жирных кислот повышает уровень насыщенных жирных кислот в клетке, что активирует петлю сильной отрицательной обратной связи биосинтеза жирных кислот.

Некоторые аспекты данного изобретения обеспечивают стратегию инженеринга микробов, которая объединяет усиление вышерасположенных (upstream), формирующих метаболит путей, также называемое здесь как «push» метаболических путей, с аналогичным увеличением потока нижерасположенных (downstream), секвестирующих продукт путей, также называемым здесь как «pull» путей. Некоторые аспекты данного изобретения предусматривают, что сбалансированное сочетание «push» и «pull» модификаций в микробе приводит к большим усилениям потока углерода на пути синтеза липидов без значительных отклонений концентраций промежуточных метаболитов от их гомеостатических физиологических уровней, что позволяет избежать ингибирования синтеза липидов по типу обратной связи.

Некоторые аспекты данного изобретения относятся к признанию того, что эффекты модификаций по одной линии, например, только «push» модификаций или только «pull» модификаций, на эффективность конверсии, как правило, ограничены по причине компенсаторной регуляции выхода при синтезе в клетке, и что согласованная «push» и «pull» модуляция стадий биосинтеза липидов в микробных клетках приводит к неожиданному синергическому эффекту на выработку липидов.

Например, некоторые аспекты данного изобретения обеспечивают генетически модифицированные жирообразующие микробы (жировые, маслянистые), содержащие комбинацию модификаций в своих путях биосинтеза липидов, также называемых здесь как «push-pull» модификации. В некоторых вариантах осуществления микроб, представленный здесь, содержит модификацию, влияющую на увеличение выработки метаболитов или интермедиатов, необходимых для синтеза липидов, и модификацию, приводящую к секвестрированию продукта синтеза липидов, например триацилглицерина, в форму запасания липида в пределах клетки, ослабляя, таким образом, ингибирование синтеза липидов по типу обратной связи некоторыми его продуктами, например, жирными кислотами или диацилглицеринами. В некоторых вариантах осуществления сочетание модификаций метаболического «push» и метаболического «pull» путей приводит к синергически увеличенной выработке липидов. В некоторых вариантах осуществления модификация «push» приводит к увеличенному уровню строительных блоков синтеза липидов или метаболитов для синтеза липидов в клетке. В некоторых вариантах осуществления модификация «pull» ослабляет ингибирование синтеза липидов по типу обратной связи.

Некоторые аспекты данного изобретения обеспечивают микробы, которые содержат генетические модификации, одновременно влияющие на «push» и «pull» пути биосинтеза липидов. Например, «push» и «pull» модификации вводят в экспериментальный микроб, предназначенный для выработки масла, жирообразущие дрожжи Yarrowia lipolytica. Сверхэкспрессию диацилглицерин-ацилтрансферазы (DGA1), конечный этап на пути синтеза триглицерида (TAG), исследовали как пример «pull» модификации. Сверхэкспрессия DGA1 привела к 4-кратному увеличению выработки липидов по сравнению с контрольными микробами, до содержания липидов, составляющего 33,8% сухого веса клеток (DCW). Сверхэкспрессию ацетил-СоА-карбоксилазы (АСС1), первый осуществляемый этап синтеза жирных кислот, исследовали как пример «push» модификации. Сверхэкспрессия АСС1 увеличила содержание липидов в 2 раза по сравнению с контролем, до содержания липидов, составляющего 17,9%. Одновременную коэкспрессию АСС1 и DGA1 из тандемной экспрессионной генетической конструкции исследовали как пример «push-pull» модификации. Одновременная сверхэкспрессия АСС1 и DGA1 дополнительно увеличила содержание липидов до 41,4%, демонстрируя синергические эффекты коэкспрессии АСС1+DGA1.

Характеристики трансформанта АСС1+DGA1 в отношении выработки липидов использовали для ферментации в биореакторе объемом 2 л, достигая 61,7% содержания липидов через 120 ч. Общий выход и продуктивность составили 0,195 г/г и 0,143 г/л/ч, соответственно, при этом максимальные выход и продуктивность составили 0,270 г/г и 0,253 г/л/ч во время фазы накопления липидов процесса ферментации. Этот результат демонстрирует отличную способность жирообразущих дрожжей Y. Lipolytica вырабатывать липиды, а также эффекты метаболического конструирования двух важных стадий пути синтеза липидов, которые действуют по перенаправлению потока в сторону синтеза липидов и создают движущую силу для синтеза TAG.

Некоторые аспекты данного изобретения обеспечивают новую платформу для сверхэкспрессии для использования в вырабатывающих масло микробах, например, в жирообразущих дрожжах. Некоторые аспекты данного изобретения обеспечивают экспрессионные конструкции, содержащие промотор, управляющий транскрипцией транскрипта, который содержит кодирующую последовательность и интрон, например, промотор фактора элонгации трансляции 1α (TEF), расположенный выше нуклеотидной последовательности, содержащей интрон и кодирующую последовательность. Некоторые аспекты данного изобретения предполагают, что такие интрон-содержащие экспрессионные конструкции способны увеличивать экспрессию по меньшей мере в 17 раз по сравнению с не содержащим интрон промотором TEF.

Некоторые аспекты данного изобретения обеспечивают изолированную жирообразующую клетку, содержащую генетическую модификацию, которая увеличивает экспрессию продукта гена DGA1. В некоторых вариантах осуществления изолированная жирообразующая клетка дополнительно содержит генетическую модификацию, которая увеличивает экспрессию продукта гена АСС1. В некоторых вариантах осуществления изолированная жирообразующая клетка дополнительно содержит генетическую модификацию, которая увеличивает экспрессию продукта гена SCD. В некоторых вариантах осуществления изолированная жирообразующая клетка дополнительно содержит генетическую модификацию, которая увеличивает экспрессию продукта гена ACL. В некоторых вариантах осуществления генетическая модификация содержит конструкцию нуклеиновой кислоты, которая увеличивает экспрессию генного продукта, при этом конструкция нуклеиновой кислоты содержит (а) экспрессионную кассету, содержащую нуклеотидную последовательность, кодирующую продукт гена под контролем пригодного гомологичного или гетерологичного промотора, и/или (b) нуклеотидную последовательность, которая модулирует уровень экспрессии продукта гена при вставке в геном клетки. В некоторых вариантах осуществления промотор представляет собой индуцируемый или конститутивный промотор. В некоторых вариантах осуществления промотор представляет собой промотор TEF. В некоторых вариантах осуществления экспрессионная кассета дополнительно содержит интрон. В некоторых вариантах осуществления интрон расположен ниже сайта инициации транскрипции. В некоторых вариантах осуществления интрон находится в пределах нуклеотидной последовательности, кодирующей продукт гена. В некоторых вариантах осуществления конструкция нуклеиновой кислоты ингибирует или нарушает природную регуляцию нативного гена, кодирующего продукт гена, что приводит к сверхэкспрессии нативного гена. В некоторых вариантах осуществления ингибирование или нарушение природной регуляции нативного гена опосредовано делецией, нарушением, мутацией и/или замещением регуляторного участка, или части регуляторного участка, регулирующего экспрессию гена. В некоторых вариантах осуществления продукт гена представляет собой транскрипт. В некоторых вариантах осуществления продукт гена представляет собой белок. В некоторых вариантах осуществления конструкция нуклеиновой кислоты вставлена в геном клетки. В некоторых вариантах осуществления увеличенная экспрессия продукта гена придает предпочтительный фенотип клетке для превращения источника углерода в липид, например, жирную кислоту, производное жирной кислоты и/или триацилглицерин (TAG). В некоторых вариантах осуществления предпочтительный фенотип содержит модифицированный профиль жирных кислот, модифицированный профиль TAG, увеличенную скорость синтеза жирной кислы и/или триацилглицерина, увеличенный выход конверсии, увеличенное накопление триацилглицерина в клетке и/или увеличенное накопление триацилглицерина в липидном теле клетки. В некоторых вариантах осуществления скорость синтеза жирной кислоты или TAG клетки по меньшей мере в 2 раза увеличена по сравнению с не модифицированными клетками такого же клеточного типа. В некоторых вариантах осуществления скорость синтеза жирной кислоты или TAG клетки по меньшей мере в 5 раз увеличена по сравнению с не модифицированными клетками такого же клеточного типа. В некоторых вариантах осуществления скорость синтеза жирной кислоты или TAG клетки по меньшей мере в 10 раз увеличена по сравнению с не модифицированными клетками такого же клеточного типа. В некоторых вариантах осуществления клетка превращает источник углерода в жирную кислоту или TAG при скорости конверсии в диапазоне от около 0,025 г/г до около 0,32 г/г (например, г выработанного липида/г потребленного источника углерода). В некоторых вариантах осуществления клетка превращает источник углерода в жирную кислоту или TAG при скорости конверсии по меньшей мере около 0,11 г/г. В некоторых вариантах осуществления клетка превращает источник углерода в жирную кислоту или TAG при скорости конверсии по меньшей мере около 0,195 г/г. В некоторых вариантах осуществления клетка превращает источник углерода в жирную кислоту или TAG при скорости конверсии по меньшей мере около 0,24 г/г. В некоторых вариантах осуществления клетка превращает источник углерода в жирную кислоту или TAG при скорости конверсии по меньшей мере около 0,27 г/г. В некоторых вариантах осуществления клетка содержит липидное тело и вакуоль. В некоторых вариантах осуществления клетка представляет собой бактериальную клетку, водорослевую клетку, грибковую клетку или дрожжевую клетку. В некоторых вариантах осуществления клетка представляет собой жирообразующую дрожжевую клетку. В некоторых вариантах осуществления клетка представляет собой клетку Y. Lipolytica.

Некоторые аспекты данного изобретения обеспечивают культуру, содержащую жирообразующую клетку, например, жирообразующую клетку, описанную здесь. В некоторых вариантах осуществления культура дополнительно содержит источник углерода. В некоторых вариантах осуществления источник углерода включает сбраживаемый сахар. В некоторых вариантах осуществления сбраживаемый сахар представляет собой С6 сахар. В некоторых вариантах осуществления источник углерода содержит глюкозу. В некоторых вариантах осуществления источник углерода содержит органическую кислоту. В некоторых вариантах осуществления органическая кислота представляет собой уксусную кислоту. В некоторых вариантах осуществления уксусная кислота содержится при концентрации по меньшей мере 5% об./об., по меньшей мере 10% об./об., по меньшей мере 15% об./об., по меньшей мере 20% об./об., по меньшей мере 25% об./об. или по меньшей мере 30% об./об. В некоторых вариантах осуществления источник углерода содержит ацетат. В некоторых вариантах осуществления ацетат содержится при концентрации по меньшей мере 1% об./об. В некоторых вариантах осуществления ацетат содержится при концентрации по меньшей мере 2% об./об. В некоторых вариантах осуществления ацетат содержится при концентрации по меньшей мере 3% об./об. В некоторых вариантах осуществления ацетат содержится при концентрации по меньшей мере 4% об./об. В некоторых вариантах осуществления ацетат содержится при концентрации по меньшей мере 5% об./об. В некоторых вариантах осуществления культура содержит глицерин. В некоторых вариантах осуществления глицерин содержится при концентрации около 2% об./об. В некоторых вариантах осуществления культура содержит растворенный кислород на уровне по меньшей мере 5%, по меньшей мере 10%, по меньшей мере 15% или по меньшей мере 20%. В некоторых вариантах осуществления культура проявляет рН в диапазоне от рН 7,0 до рН 7,5. В некоторых вариантах осуществления культура содержит сульфат аммония. В некоторых вариантах осуществления культура содержит сульфат аммония и уксусную кислоту в соотношении 1:2. В некоторых вариантах осуществления культура проявляет титр липидов в диапазоне от 5 г/л до 60 г/л. В некоторых вариантах осуществления культура проявляет выработку липидов в диапазоне от 0,04 г/л/ч до 0,60 г/л/ч. В некоторых вариантах осуществления культура проявляет максимальную продуктивность липидов в диапазоне от 0,1 г/л/ч до 1 г/л/ч.

Некоторые аспекты данного изобретения обеспечивают способ, включающий приведение в контакт источника углерода с изолированной жирообразующей клеткой, при этом клетка содержит генетическую модификацию, которая увеличивает экспрессию продукта гена DGA1; и инкубацию источника углерода, приведенного в контакт с клеткой, в условиях, пригодных для по меньшей мере частичной конверсии клеткой источника углерода в жирную кислоту или триацилглицерин. В некоторых вариантах осуществления жирообразующая клетка дополнительно содержит генетическую модификацию, которая увеличивает экспрессию продукта гена АСС1. В некоторых вариантах осуществления жирообразующая клетка дополнительно содержит генетическую модификацию, которая увеличивает экспрессию продукта гена SCD. В некоторых вариантах осуществления жирообразующая клетка дополнительно содержит генетическую модификацию, которая увеличивает экспрессию продукта гена ACL. В некоторых вариантах осуществления изолированная жирообразующая клетка представляет собой инженерную изолированную жирообразующую клетку, описанную здесь. В некоторых вариантах осуществления источник углерода содержит сбраживаемый сахар. В некоторых вариантах осуществления источник углерода содержит глюкозу. В некоторых вариантах осуществления источник углерода содержит ацетат. В некоторых вариантах осуществления ацетат содержится при концентрации по меньшей мере 1% об./об., по меньшей мере 2% об./об., по меньшей мере 3% об./об., по меньшей мере 4% об./об. или по меньшей мере 5% об./об. В некоторых вариантах осуществления источник углерода содержит уксусную кислоту. В некоторых вариантах осуществления уксусная кислота содержится при концентрации по меньшей мере 5% об./об., по меньшей мере 10% об./об., по меньшей мере 15% об./об., по меньшей мере 20% об./об., по меньшей мере 25% об./об. или по меньшей мере 30% об./об. В некоторых вариантах осуществления способ включает приведение в контакт клетки с растворенным кислородом при уровне по меньшей мере 5%, по меньшей мере 10%, по меньшей мере 15% или по меньшей мере 20%. В некоторых вариантах осуществления приведение в контакт и/или инкубацию выполняют при рН в диапазоне от рН 7,0 до рН 7,5. Способ по любому из пунктов 53-69 включает приведение в контакт клетки с сульфатом аммония. В некоторых вариантах осуществления способ включает приведение в контакт клетки с сульфатом аммония и уксусной кислотой в соотношении 1:2. В некоторых вариантах осуществления способ дополнительно включает приведение в контакт клетки с глицерином. В некоторых вариантах осуществления способ включает приведение в контакт клетки с глицерином при концентрации около 2% об.об. В некоторых вариантах осуществления источник углерода, приведенный в контакт с изолированной жирообразующей клеткой, инкубируют в реакторе. В некоторых вариантах осуществления источник углерода приводят в контакт с изолированной жирообразующей клеткой и инкубируют для конверсии источника углерода в жирную кислоту или триацилглицерин в ходе периодического процесса с подпиткой «fed batch process». В некоторых вариантах осуществления источник углерода приводят в контакт с изолированной жирообразующей клеткой и инкубируют для конверсии источника углерода в жирную кислоту или триацилглицерин в ходе непрерывного процесса. В некоторых вариантах осуществления способ дополнительно включает приведение в контакт дополнительного количества источника углерода или некоторого количества дополнительного источника углерода с источником углерода, приведенным в контакт с изолированной жирообразующей клеткой, один или более раз во время стадии инкубации. В некоторых вариантах осуществления жирная кислота или триацилглицерин экстрагирован из источника углерода, приведенного в контакт с изолированной жирообразующей клеткой, путем экстракции растворителем. В некоторых вариантах осуществления экстракция растворителем включает экстракцию смесью хлороформ-метанол. В некоторых вариантах осуществления экстракция растворителем включает экстракцию гексаном. В некоторых вариантах осуществления жирную кислоту или триацилглицерин отделяют от источника углерода, приведенного в контакт с изолированной жирообразующей клеткой, и затем очищают путем переэтерификации.

Некоторые аспекты данного изобретения обеспечивают способ, включающий модификацию профиля жирной кислоты, профиля триацилглицерина, скорости синтеза жирной кислоты, скорости синтеза триацилглицерина, степени накопления производного жирной кислоты, скорости секреции производного жирной кислоты, скорости конверсии углевода в жирную кислоту или производное жирной кислоты, и/или эффективной степени конверсии углевода в жирную кислоту или производное жирной кислоты в жирообразующей клетке путем увеличения в клетке экспрессии продукта гена DGA1. В некоторых вариантах осуществления способ дополнительно включает увеличение в клетке экспрессии продукта гена АСС1, продукта гена SCD и/или продукта гена ACL. В некоторых вариантах осуществления степень накопления производного жирной кислоты представляет собой степень накопления производного жирной кислоты в липидном теле. В некоторых вариантах осуществления производное жирной кислоты представляет собой триацилглицерин. В некоторых вариантах осуществления модификация профиля жирной кислоты, профиля триацилглицерина, скорости синтеза жирной кислоты, скорости синтеза триацилглицерина, степени накопления производного жирной кислоты, скорости секреции производного жирной кислоты, скорости конверсии углевода в жирную кислоту или производное жирной кислоты, и/или эффективной степени конверсии углевода в жирную кислоту или производное жирной кислоты в жирообразующей клетке включает увеличение скорости синтеза жирной кислоты, скорости синтеза триацилглицерина, степени накопления производного жирной кислоты, скорости секреции производного жирной кислоты, скорости конверсии углевода в жирную кислоту или производное жирной кислоты, и/или эффективной степени превращения углевода в жирную кислоту или производное жирной кислоты в жирообразующей клетке. В некоторых вариантах осуществления модификация эффективности конверсии углевода в жирную кислоту или производное жирной кислоты клетки включает увеличение эффективности конверсии по меньшей мере в 2 раза. В некоторых вариантах осуществления модификация эффективности конверсии углевода в жирную кислоту или производное жирной кислоты клетки включает увеличение эффективности конверсии по меньшей мере в 3 раза. В некоторых вариантах осуществления модификация эффективности конверсии углевода в жирную кислоту или производное жирной кислоты клетки включает увеличение эффективности конверсии по меньшей мере в 4 раза. В некоторых вариантах осуществления модификация эффективности конверсии углевода в жирную кислоту или производное жирной кислоты клетки включает увеличение эффективности конверсии, по меньшей мере, в 5 раз. В некоторых вариантах осуществления клетка представляет собой клетку дрожжей. В некоторых вариантах осуществления клетка дрожжей представляет собой клетку Yarrowia sp. В некоторых вариантах осуществления жирообразующие дрожжи представляют собой Y. Lipolytica.

Некоторые аспекты данного изобретения обеспечивают изолированную молекулу нуклеиновой кислоты, содержащую: а) нуклеотидную последовательность, которая кодирует SEQ ID NO: 2 (Y. lipolytica DGA1), или b) нуклеотидную последовательность, которая по меньшей мере на 85% идентична нуклеотидной последовательности а). В некоторых вариантах осуществления нуклеотидная последовательность, которая кодирует SEQ ID NO: 2, содержит SEQ ID NO: 1. Некоторые аспекты данного изобретения обеспечивают экспрессионную кассету, содержащую изолированную молекулу нуклеиновой кислоты, описанную здесь, и гетерологичный промотор. В некоторых вариантах осуществления промотор представляет собой конститутивный промотор или индуцируемый промотор. В некоторых вариантах осуществления гетерологичный промотор представляет собой промотор фактора элонгации трансляции (TEF). В некоторых вариантах осуществления гетерологичный промотор содержит интрон. В некоторых вариантах осуществления гетерологичный промотор дополнительно содержит инициирующий кодон. В некоторых вариантах осуществления интрон расположен ниже сайта инициации трансляции нуклеотидной последовательности, которая кодирует SEQ ID NO: 2. Некоторые аспекты данного изобретения обеспечивают вектор, содержащий экспрессионную кассету, описанную здесь. Некоторые аспекты данного изобретения обеспечивают клетку, содержащую экспрессионную кассету, описанную здесь, или по меньшей мере часть вектора, описанного здесь.

Объект данной заявки может включать, в некоторых случаях, взаимосвязанные продукты, альтернативные решения определенной проблемы и/или совокупность разных способов использования единой системы или изделия.

Другие преимущества, отличительные признаки и применения изобретения будут очевидны из подробного описания определенных неограничивающих вариантов осуществления, чертежей и формулы изобретения.

Краткое описание чертежей

Фигура 1. Общий вид главных метаболических путей для синтеза липидов в Y. Lipolytica.

Фигура 2. Ферментативная активность β-галактозидазы под действием различных промоторов после 50 часов культивирования.

Фигура 3. Ферментация в биореакторе трансформанта ACC1+DGA1 (MTYL065).

Фигура 4. Профиль жирной кислоты (FAP) трансформанта АСС1+DGA1 в ферментационном биореакторе объемом 2 л.

Фигура 5. Профиль жирной кислоты трансформанта АСС+DGA, выращенного в биореакторе объемом 2 л с ацетатом в качестве источника углерода.

Фигура 6. Выработка жирной кислоты АСС+DGA1 Y. Lipolytica на ацетате.

Фигура 7. Схема конструкции комбинаторной экспрессии. Путь клонирования и стратегия конструирования плазмид, содержащих комбинацию генов-мишеней накопления липидов. Эти плазмиды затем были трансформированы в Y. lipolytica для исследования накопления липидов.

Фигура 8. Транскрипционная экспрессия кассеты TEFin-DGA при интегрировании через рМТ053 в сравнении с рМТ092.

Фигура 9. Относительная продуктивность и выход липидов между штаммами Y. Lipolytica, экспрессирующими комбинаторные конструкции, измеренные по общему содержанию жирной кислоты, нормализованному к контрольному штамму. Присутствие (+) или отсутствие (-) трансформированной сверхэкспрессионной кассеты для соответствующего целевого гена указано под графиком. Продуктивность (светло серые столбцы) рассчитывали как относительное накопление липидов в течение первых 100 часов культивирования. Расчеты выходов производились путем деления накопления липидов на потребленный сахар. Отношение C/N среды составило 20. Результаты представляют собой усредненные значения множества экспериментов.

Фигура 10. Транскрипционная экспрессия целевых генов в штамме MTYL089. Экспрессия внутренне нормализована к экспрессии актина, и произведено сравнение с контрольным штаммом (MTYL038), и измерения проводились после 66 часов выращивания.

Фигура 11. Периодическая ферментация в биореакторе штамма MTYL089, сверхэкспрессия АСС, D9, ACL12 и DGA. Молярное отношение C/N равно 100. Все отборы образцов выполняли в трех параллелях.

Фигура 12. Микроскопия штамма MTYL089 в конце ферментации в объеме 2 л. Нормальная световая микроскопия (изображение слева) показывает, что большинство клеток находится в форме дрожжей и содержит большие вакуоли. Флуоресцентная микроскопия (изображение справа) показывает, что эти вакуоли состоят из нейтральных липидов.

Фигура 13. Сравнение профилей жирных кислот между штаммами MTYL065 и MTYL089. Профили жирных кислот, взятые из конечного момента времени в соответствующих ферментациях, нормализованы к общему содержанию жирных кислот.

Фигура 14. Изменения азота (мМ), титры нелипидов и липидов (г/л).

Фигура 15. Изменения титра липидов (г/л), содержание липидов (%) и отношение C/N. Первичная ось показывает титр липидов и содержание липидов в виде % сухого веса клеток. Вторичная ось показывает отношение C/N. Отношение C/N падает в конце по причине быстрого потребления ацетата.

Фигура 16. Вверху - «Плавающие клетки», наблюдаемые под масляно-иммерсионным микроскопом (100Х) без флуоресценции. Внизу - Такая же рамка в условиях флуоресценции показывает яркое красное липидное тело.

Подробное описание определенных вариантов осуществления изобретения

Жидкое биотопливо является перспективной альтернативой ископаемым видам топлива, что может помочь рассеять опасения по поводу изменения климата и сгладить неопределенности, связанные с поставками (1). Биодизель, авиационное масло и другие виды топлива, получаемые из масла, особенно необходимы для авиации и тяжелых транспортных средств. В настоящее время они производятся исключительно из растительных масел, что является затратным и нерациональным путем (2). Привлекательной возможностью является нефотосинтетическая конверсия возобновляемого углеводного сырья в масло (3). Для биодизеля, переход с растительного масла на производство микробного масла имеет множество дополнительных преимуществ: приспособляемость к различным видам сырья, гибкость в отношении требований к земле, эффективный оборот производственного цикла и легкость расширения производства (4). К тому же, биологические платформы для микробного производства легче поддаются генетической модификации для дальнейшей оптимизации.

Ключом к экономически эффективной микробной технологии для конверсии углеводов в масла является высокий выход конверсии углеводов в масло. Метаболическая инженерия стала новой технологией, применяющейся для этой цели, и отмечаются многочисленные примеры успешного конструирования путей обмена веществ, которые значительно улучшили характеристики микробных биокатализаторов при проведении синтеза химических, фармацевтических и топливных продуктов (5). Предпринятые ранее усилия, направленные на инженеринг микробов с высоким выходом липидов, были сфокусированы на усиление предполагаемых определяющих скорость стадий в пути синтеза жирных кислот (6). Эти усилия, однако, дали неоднозначные результаты, по-видимому, по той причине, что модулирующий поток жирной кислоты вызвал образование насыщенных жирных кислот, которые являются сильными аллостерическими ингибиторами ферментов биосинтеза жирных кислот, обеспечивая петлю отрицательной обратной связи для биосинтеза жирной кислоты (7). В настоящем документе авторы описывают подход, который объединяет усиление вышерасположенных (upstream), формирующих метаболит путей, с аналогичным увеличением потока нижерасположенных (downstream), потребляющих метаболит путей. В сбалансированном состоянии эта стратегия «push-and-pull» может привести к большим усилениям потока без значительных отклонений концентраций промежуточных метаболитов от их гомеостатических физиологических уровней.

Жирообразующие дрожжи Yarrowia lipolytica являются перспективным кандидатом для производства микробного масла, которые также продемонстрировали пригодность во многих других областях промышленности: производстве лимонной кислоты, производстве белков (например, протеаз и липаз) и биоремедиации (8-10). С помощью полностью секвенированного генома и растущего числа инструментов генетической инженерии, инженеринг Y. Lipolytica может быть достигнут относительно легко (11). Было также обнаружено, что Y. lipolytica являются устойчивыми при культивировании, могут расти на различных субстратах, и использовались для производства липидов на агропромышленных остатках, промышленном глицерине и промышленных жирах (12-14). Y. lipolytica обладают великолепной способностью накапливать липиды, как правило, накапливая до 36% их сухого веса клеток (DCW) в виде липидов (15).

Метаболические пути de novo синтеза липидов в Y. Lipolytica начинают полностью определяться и существующая в настоящее время модель синтеза липидов проиллюстрирована на Фигуре 1: Глюкоза, вступающая на путь гликолиза, поступает в митохондрию виде пирувата для использования в цикле ТСА; однако, избыток ацетил-соА переносится из митохондрии в цитозоль посредством челночного механизма с участием цитрата. Цитозольный ацетил-СоА затем превращается в малонил-СоА под действием ацетил-СоА-карбоксилазы (АСС), что является первой стадии синтеза жирной кислоты. После синтеза жирной кислоты синтез триацилглицерина (TAG) следует пути Кеннеди, который возникает в эндоплазматическом ретикулуме (ER) и липидных телах. Ацил-СоА является предшественником, используемым для переноса ацильной группы на глицерол-3-фосфата с образованием лизофосфатидной кислоты (LPA), которая затем ацилируется с образованием фосфатидной кислоты (РА). Фосфатидная кислота (РА) затем подвергается дефосфорилированию с образованием диацилглицерина (DAG), и затем конечное ацилирование происходит с помощью диацилглицерол-ацилтрансферазы (DGA) с получением TAG.

Транспорт ацетил-СоА из митохондрии в цитозоль происходит путем опосредованного АТР-цитрат-лиазой (ACL) расщепления цитрата посредством челночного механизма с участием цитрата с получением ацетил-СоА и оксалоацетата (ОАА). Ацетил-СоА-карбоксилаза (АСС) затем катализирует первую осуществляемую стадию в направлении биосинтеза липидов, превращая цитозольный ацетил-СоА в малонил-СоА, который является исходным предшественником для элонгации жирных кислот. Полные жирные цепи ацил-СоА затем переносятся в эндоплазматический ретикулум (ER) или мембраны липидного тела для конечной сборки триацилглицерина (TAG) посредством пути Кеннеди. Свыше 80% накапливаемых липидов, вырабатываемых в Y. lipolytica, находится в форме TAG (16). Цитозольный ОАА превращается в малат под действием дегидрогеназы яблочной кислоты и переносится обратно в митохондрию для завершения цикла по механизму челночного переноса с участием цитрата. Восстановительные эквиваленты в форме NADPH обеспечены либо с помощью пентозофосфатного пути или с помощью малик-фермента в трансгидрогеназной реакции. В Y. lipolytica интенсивный поток через пентозофосфатный путь (РРР) и слабая сверхэкспрессия малик-фермента дает основание предположить, что первое является первичным источником для NADPH (4, 17).

Внутриклеточное накопление липидов может происходить двумя способами: синтез липидов de novo или внедрения ex novo экзогенных жирных кислот и липидов. Накопление липидов чаще всего происходит, когда поступление питательных веществ исчерпывается в присутствии избытка углерода. В культуре это состояние обычно совпадает с началом стационарной фазы. На практике наиболее часто используемым лимитирующим питательным веществом является азот, так как его легко контролировать в композициях среды (15). Несмотря на эти индуцируемые условия, пути синтеза липидов жестко регулируются организмом для уравновешивания роста клеток с накоплением энергии. Например, АСС, взятый отдельно, регулируется на множестве уровнях и множеством факторов (7).

Это жесткое регулирование в некоторых случаях удалось обойти. Путем устранения путей пероксисомального окисления и инженеринга метаболизма глицерина, Y. Lipolytica способны обеспечить 40%-70% липидов посредством ex novo накопления липидов (18, 19). Коэкспрессия генов Δ6- и Δ12-десатуразы обеспечивает значительную выработку γ-линоленовой кислоты (GLA) (20). Однако инженеринг путей биосинтеза липидов в Y. lipolytica все еще сравнительно мало используются и до сих пор разрабатываются стратегии эффективного инженеринга путей выработки липидов для максимального увеличения выхода.

Некоторые аспекты данного изобретения обеспечивают сконструированные микробы для производства биотоплива или предшественника биотоплива. Термин «биотопливо» относится к топливу, которое получено из биологического источника, такого как живая клетка, микроб, гриб или растение. Термин включает, например, топливо, напрямую полученное из биологического источника, например, с помощью обычных способов экстракции, дистилляции или очистки, и топливо, полученное путем обработки предшественника биотоплива, полученного из биологического источника, например, путем химической модификации, такой как процессы переэтерификации. Примерами биотоплива, которое можно получить напрямую, являются спирты, такие как этанол, пропанол и бутанол, жир и масло. Примерами биотоплива, которое можно получить путем обработки предшественника биотоплива (например, липида), являются биодизельное (например, полученное путем переэтерификации липида) и зеленое дизельное/модифицированное дизельное топливо (например, полученное путем гидрирования масла). На сегодняшний день биодизель, также называемый как сложный метиловый (или этиловый) эфир жирной кислоты, является одним из наиболее важных с экономической точки зрения видов биотоплива и может быть получен в промышленном масштабе путем переэтерификации липидов, когда гидроксид натрия и метанол (или этанол) взаимодействуют с липидом, например, триацилглицерином, с получением биодизеля и глицерина.

Сырье для производства в промышленном масштабе биодизеля включает животные жиры, растительные масла, пальмовое масло, пеньку, сою, семена рапса, лен, подсолнечник и масличные водоросли. В других подходах биомасса превращается с помощью микроба в предшественник биотоплива, например, липид, который затем экстрагируют и в дальнейшем обрабатывают с получением биотоплива. Термин «биомасса» относится к материалу, полученному путем роста и/или распространения живой клетки или организма, например, микроба. Биомасса может содержать клетки, микробы и/или внутриклеточное содержимое, например, клеточные жирные кислоты и TAGS, а также внеклеточный материал. Внеклеточный материал вклю