Способ дезодорирования

Иллюстрации

Показать все

Изобретение предлагает способ дезодорирования посредством введения в контакт поверхностно-прореагировавшего карбоната кальция с одорантами, причем поверхностно-прореагировавший карбонат кальция представляет собой продукт реакции природного тонкодисперсного или осажденного карбоната кальция с диоксидом углерода и одной или несколькими кислотами, причем диоксид углерода образуется на месте применения посредством кислотной обработки и/или поступает из внешнего источника. Применение поверхностно-прореагировавшего карбоната кальция для дезодорирования, а также продукты для дезодорирования, содержащие поверхностно-прореагировавший карбонат кальция. 3 н. и 10 з.п. ф-лы, 7 ил., 3 табл.

Реферат

Настоящее изобретение предлагает способ дезодорирования, применение поверхностно-прореагировавшего карбоната кальция для дезодорирования, а также продукты для дезодорирования.

Как правило, запахи повсеместно присутствуют в окружающей среде. В то время как некоторые запахи воспринимаются как приятные, существуют также и другие, неприятные запахи, которые вызывают неприятное ощущение, и для устранения которых, таким образом, непрерывно предпринимаются многочисленные и разнообразные попытки.

Один источник неприятных запахов, например, представляют собой любого рода отходы жизнедеятельности человека и животных, включая выделения организма, в том числе жидкие и твердые. Однако существуют также и другие источники неприятных запахов, которые требуется устранять, такие как запахи, которые производят пищевые продукты, например, молочные продукты, мясо и рыба; или текстильные изделия, мебель и стеновые материалы.

Что касается биологических жидкостей человека или животных, существует постоянная потребность устранения их запаха, и для удовлетворения этой потребности непрерывно осуществляются разработки, например, в области личных гигиенических изделий, такие как гигиенические салфетки, ежедневные прокладки, изделия для страдающих недержанием взрослых, детские подгузники, бумажные полотенца, туалетная бумага и косметические салфетки, нетканые изделия для медицинских целей и т. д. Такие изделия часто используются для поглощения и удерживания биологических текучих сред и других выделений, производимых организмом человека.

Например, европейский патент № EP 0510619 A1 описывает широкое разнообразие материалов, которые доказали свою эффективность в определенных обстоятельствах в целях устранения неприятные запахов в составе абсорбирующих изделий личной гигиены. Европейский патент № EP 0959846 A1 описывает такие материалы, содержащие полиакрилатные суперабсорбенты и диоксид кремния. Европейский патент № EP 0811387 A1 описывает абсорбирующие изделия, содержащие дезодорирующую систему на основе цеолита и диоксида кремния. Европейский патент № EP 0963186 A1 описывает дезодорирующую систему, содержащую цеолиты, диоксид кремния и полиакриловые суперабсорбенты. Европейский патент № EP 0912149 A1 описывает хелатообразующие вещества для применения в целях дезодорирования в абсорбирующих изделиях, в частности, многофункционально замещенные ароматические хелатообразующие вещества.

Полимерные суперабсорбенты способны абсорбировать жидкость в большом объеме, но их действие не является очень быстрым. Производители салфеток и подгузников используют полимерные суперабсорбенты для абсорбции жидкости, но требуется потенциальное повышение скорости поглощения в целях предотвращения первоначального вытекания.

Кроме того, многие из используемых в настоящее время абсорбентов являются весьма специфическими и не могут использоваться одновременно для нескольких веществ, обладающих неприятным запахом.

Для решения этой проблемы были предложены, например, сочетания абсорбентов или абсорбентов и блокирующих обоняние веществ. Например, европейский патент № EP 2258408 A1 описывает абсорбирующее изделие, содержащий дезодорирующую систему, причем дезодорирующая композиция содержит дезодорирующие материалы двух классов, причем дезодорирующие материалы первого класса, такие как силикагель, альдегиды или мезопористые цеолиты, уменьшают запах посредством воздействия на неприятные запахи или неприятно пахнущие вещества, содержащиеся в абсорбирующем изделии, и дезодорирующие материалы второго класса уменьшают запах посредством блокирования рецепторов носа пользователя за счет летучей природы выбранных материалов, например, таких как ментол.

Кроме того, например, что касается применения в отношении пищевых продуктов, многие известные абсорбенты не могут использоваться, поскольку они являются опасными для здоровья, таким образом, что часто дезодорирование обеспечивается посредством герметизации источника запаха, что может приводить, однако, к нежелательному ускоренному разрушению. Таким образом, было бы в высокой степени желательным изготовление, например, оберточной бумаги или контейнеров, включающих неопасный материал, абсорбирующий любые имеющие неприятный запах вещества, например, вещества, которые выделяют молочные продукты, мясо или рыба. Такие же условия распространяются на дезодорирование, например, в холодильнике.

Существуют и другие многочисленные применения дезодорирования, такие как улучшение климатических условий в помещениях и т. д., причем наиболее распространенный подход к решению этой проблемы в настоящее время заключается в том, чтобы вытеснить один запах другим запахом, например, посредством применения в помещениях аэрозолей и других средств. Однако это не всегда оказывается желательным, и более предпочтительным является нейтральное дезодорирование.

В данном отношении следует отметить, что не просто любой материал, который способен абсорбировать, например, жидкости, имеющие неприятный запах, обязательно является также подходящим для устранения этого запаха, т. е. летучей части одоранта, и в таком случае в целях устранения запаха требуется удаление комплекса абсорбента и абсорбата.

В идеальном случае вещества для дезодорирования могут уменьшать неприятный запах посредством различных механизмов, например, они могут уменьшать количество имеющих неприятный запах молекул посредством механизмов абсорбции/адсорбции, и/или они могут реагировать с имеющими неприятный запах молекулами, превращая их в имеющие низкую летучесть/слабый запах молекулы, и/или они могут подавлять имеющие неприятный запах молекулы посредством снижения летучести, и/или они могут предотвращать образование неприятного запаха посредством ингибирования процессов разложения, вызываемых метаболической активностью микроорганизмов.

Таким образом, существуют многочисленные области применения дезодорирования, а также постоянная потребность в новых способах дезодорирования и соответствующих веществах, учитывая тот факт, что известные способы и вещества зачастую не являются подходящими для одновременного устранения нескольких запахов, или они не являются пригодными для применения в определенных областях, например, по соображениям безопасности или экономичности.

В настоящее время обнаружено, что карбонат кальция, у которого поверхность обрабатывается определенным способом, проявляет превосходные свойства абсорбции/адсорбции в целях устранения многих обычных неприятных запахов, что является особенно предпочтительным, учитывая тот факт, что карбонат кальция представляет собой распространенный и легкодоступный материал, не производящий никакого опасного воздействия на здоровье.

Таким образом, согласно настоящему изобретению, предлагается новый способ дезодорирования посредством введения в контакт поверхностно-прореагировавшего карбоната кальция с одорантами, причем поверхностно-прореагировавший карбонат кальция представляет собой продукт реакции природного тонкодисперсного или осажденного карбоната кальция с диоксидом углерода и одной или несколькими кислотами, причем диоксид углерода образуется на месте применения посредством кислотной обработки и/или поступает из внешнего источника.

Карбонат кальция, который подвергается поверхностной обработке, может представлять собой природный тонкодисперсный карбонат кальция (GCC) или синтетический, т. е. осажденный карбонат кальция (PCC).

В качестве природного тонкодисперсного карбоната кальция предпочтительно выбираются содержащие карбонат кальция минералы, выбранные из группы, которую составляют мрамор, мел, доломит, известняк и их смеси. Осажденный карбонат кальция предпочтительно выбирается из группы, которую составляют осажденные карбонаты кальция, присутствующие в минералогических кристаллических формах арагонита, фатерита или кальцита, или их смеси.

Согласно предпочтительному варианту осуществления, природный или осажденный карбонат кальция подвергается измельчению перед обработкой одной или несколькими кислотами и диоксидом углерода. Стадия измельчения может осуществляться с применением любого традиционного измельчающего устройства, такого как мельница для тонкого помола, известного специалисту в данной области техники.

Согласно предпочтительному способу изготовления природного и синтетического карбоната кальция, который является тонкодисперсным, например, посредством измельчения, или нет, суспендируется в воде. Суспензия имеет содержание природного или синтетического карбоната кальция, находящееся в интервале предпочтительно от 1 мас.% до 80 мас.%, предпочтительнее от 3 мас.% до 60 мас.% и еще предпочтительнее от 5 мас.% до 40 мас.% по отношению к массе суспензии.

На следующей стадии, кислота, которая, в контексте настоящего изобретения представляет собой кислоту Бренстеда (Brønsted), т. е. донор ионов H3O+, добавляется в водную суспензию, содержащую природный или синтетический карбонат кальция. Предпочтительно кислота имеет значение pKa при 25°C, составляющее 2,5 или менее.

Если значение pKa при 25°C составляет 0 или менее, в качестве кислоты предпочтительно выбирается серная кислота, хлористоводородная кислота, или их смеси. Если значение pKa при 25°C составляет от 0 до 2,5, в качестве кислоты предпочтительно выбирается H2SO3, MHSO4- (M+ представляет собой ион щелочного металла, выбранного из группы, которую составляют натрий, калий, литий или другие металлы группы I), H3PO4, щавелевая кислота или их смеси.

Одна или несколько кислот могут добавляться в суспензию в форме концентрированного раствора или более разбавленного раствора. Молярное соотношение кислоты и природного или синтетического карбоната кальция составляет предпочтительно от 0,05 до 4 и предпочтительнее от 0,1 до 2.

В качестве альтернативы, оказывается также возможным добавление кислоты в воду, прежде чем суспендируется природный или синтетический карбонат кальция.

На следующей стадии природный или синтетический карбонат кальция обрабатывается диоксидом углерода. Если сильная кислота, такая как серная кислота или хлористоводородная кислота, используется для кислотной обработки природного или синтетического карбоната кальция, диоксид углерода автоматически образуется в достаточном количестве для достижения требуемой молярной концентрации. В качестве альтернативы или в качестве дополнения, диоксид углерода может поступать из внешнего источника.

Кислотная обработка и обработка диоксидом углерода могу осуществляться одновременно, и именно в таком случае используется сильная кислота. Оказывается также возможным осуществление кислотной обработки в первую очередь, например, с использованием кислоты средней силы, у которой значение pKa находится в интервале от 0 до 2,5, а затем осуществляется обработка диоксидом углерода, поступающим из внешнего источника.

Концентрация газообразного диоксида углерода в суспензии, в пересчете на объем, устанавливается таким образом, что соотношение объема суспензии и объема газообразного CO2 составляет предпочтительно от 1:0,05 до 1:20 и еще предпочтительнее от 1:0,05 до 1:5.

Согласно предпочтительному варианту осуществления, стадия кислотной обработки и/или стадия обработка диоксидом углерода повторяются, по меньшей мере, один раз и предпочтительнее несколько раз.

После кислотной обработки и обработки диоксидом углерода значение pH водной суспензии, измеряемое при 20°C, естественным образом достигает уровня, составляющего более чем 6,0, предпочтительно более чем 6,5, предпочтительнее более чем 7,0, еще предпочтительнее более чем 7,5, и в результате этого получается поверхностно-прореагировавший природный или синтетический карбонат кальция в форме водной суспензии, у которой значение pH составляет более чем 6,0, предпочтительно более чем 6,5, предпочтительнее более чем 7,0, еще предпочтительнее более чем 7,5. Если водная суспензия может достигать равновесия, значение pH составляет более чем 7. Значение pH, составляющее более чем 6,0, может устанавливаться без добавления основания, когда перемешивание водной суспензии продолжается в течение достаточного периода времени, составляющего предпочтительно от 1 часа до 10 часов и предпочтительнее от 1 до 5 часов.

В качестве альтернативы, перед достижением равновесия, которое устанавливается при на уровне pH, составляющем более чем 7, значение pH водной суспензии может увеличиваться до уровня, составляющего более чем 6, посредством добавления основания после обработки диоксидом углерода. Может использоваться любое традиционное основание, такое как гидроксид натрия или гидроксид калия.

Дополнительные сведения в отношении изготовления поверхностно-прореагировавшего природного карбоната кальция описывают международная патентная заявка № WO 00/39222 A1, международная патентная заявка № WO 2004/083316 A1, международная патентная заявка № WO 2005/121257 A2, международная патентная заявка № WO 2009/074492 A1, европейский патент № EP 2264108 A1, европейский патент № EP 2264109 A1 и патентная заявка США № US 2004/0020410 A1, причем содержание этих документов включаются в настоящую заявку посредством соответствующей ссылки.

Поверхностно-прореагировавший карбонат кальция, который является пригодным для использования согласно настоящему изобретению, может также изготавливаться посредством введения в контакт тонкодисперсного природного карбоната кальция, по меньшей мере, с одной растворимой в воде кислотой и с газообразным CO2, причем одна или несколько вышеупомянутых кислот имеют значение pKa, составляющее более чем 2,5 и составляющее менее чем или равное 7, когда оно измеряется при 20°C, и связанное с ионизацией первого доступного атома водорода, причем соответствующий анион, который образуется при потере этого первого доступного атома водорода, способен образовывать растворимые в воде соли кальция. После этого, по меньшей мере, одна растворимая в воде соль, которая в случае водородсодержащей соли имеет значение pKa, составляющее более чем 7, когда оно измеряется при 20°C, и связанное с ионизацией первого доступного атома водорода, причем дополнительно вводится соответствующий анион, который способен образовывать нерастворимые в воде соли кальция.

В данном отношении, примерные кислоты представляют собой уксусная кислота, муравьиная кислота, пропионовая кислота и их смеси, примерные катионы вышеупомянутой растворимой в воде соли выбираются из группы, которую составляют катионы калия, натрия, лития и их смеси, а примерные анионы вышеупомянутой растворимой в воде соли выбираются из группы, которую составляют фосфат, дигидрофосфат, моногидрофосфат, оксалат, силикат, их смеси и соответствующие гидраты.

Дополнительные сведения в отношении изготовления этих поверхностно-прореагировавших природных карбонатов кальция описывают европейский патент № EP 2264108 A1 и европейский патент № EP 2264109 A1, содержание которых включается в настоящую заявку посредством соответствующей ссылки.

Аналогичным образом, получается поверхностно-прореагировавший осажденный карбонат кальция. Как можно выяснить в подробностях из международной патентной заявки № WO 2009/074492 A1, поверхностно-прореагировавший осажденный карбонат кальция получается посредством введения в контакт осажденного карбоната кальция с ионами H3O+ и с анионами, солюбилизированными в водной среде и способными образовывать нерастворимые в воде соли кальция, в водной среде для образования суспензии поверхностно-прореагировавшего осажденного карбоната кальция, причем вышеупомянутый поверхностно-прореагировавший осажденный карбонат кальция содержит нерастворимую, по меньшей мере, частично кристаллическую соль кальция, которая содержит вышеупомянутый анион и образуется на поверхности, по меньшей мере, части осажденного карбоната кальция.

Вышеупомянутые солюбилизированные ионы кальция соответствуют избытку солюбилизированных ионов кальция по отношению к солюбилизированным ионам кальция, которые естественным путем образуются при растворении осажденного карбоната кальция под действием ионов H3O+, где вышеупомянутые ионы H3O+ присутствуют исключительно в форме противоионов по отношению к анионам, т. е. посредством добавления анионов в форме кислоты или не содержащей кальция соли кислоты и при отсутствии каких-либо дополнительных ионов кальция или источников, производящих ионы кальция.

Вышеупомянутые избыточные солюбилизированные ионы кальция предпочтительно вводятся посредством добавления растворимой нейтральной или кислой соли кальция или посредством добавления кислоты или нейтральной или кислой не содержащей кальция соли, которая производит растворимую нейтральную или кислую соль кальция на месте применения.

Вышеупомянутые ионы H3O+ могут вводиться посредством добавления кислоты или кислой соли вышеупомянутого аниона или посредством добавления кислоты или кислой соли, которая одновременно служит в качестве источника всех или части вышеупомянутых избыточных солюбилизированных ионов кальция.

Согласно предпочтительному варианту осуществления, для изготовления поверхностно-прореагировавшего природного или синтетического карбоната кальция, природный или синтетический карбонат кальция реагирует с кислотой и/или диоксидом углерода в присутствии, по меньшей мере, одного соединения, выбранного из группы, которую составляют силикат, диоксид кремния, гидроксид алюминия, алюминат щелочного металла, такой как алюминат натрия или калия, оксид магния или их смеси. В качестве, по меньшей мере, одного силиката предпочтительно выбирается силикат алюминия, силикат кальция или силикат другого щелочноземельного металла. Эти компоненты могут добавляться в водную суспензию, содержащую природный или синтетический карбонат кальция, перед добавлением кислоты и/или диоксида углерода.

В качестве альтернативы, один или несколько компонентов, представляющих собой силикат и/или диоксид кремния и/или гидроксид алюминия и/или алюминат щелочноземельного металла и/или оксид магния, могут добавляться в водную суспензию природного или синтетического карбоната кальция в то время, когда уже началась реакция природного или синтетического карбоната кальция с кислотой и диоксидом углерода.

Дополнительные сведения в отношении изготовления поверхностно-прореагировавшего природного или синтетического карбоната кальция в присутствии, по меньшей мере, одного или нескольких компонентов, представляющих собой силикат и/или диоксид кремния и/или гидроксид алюминия и/или алюминат щелочноземельного металла, описывает международная патентная заявка № WO 2004/083316 A1, причем содержание этого документа включается в настоящую заявку посредством соответствующей ссылки.

Поверхностно-прореагировавший природный или синтетический карбонат кальция может сохраняться в суспензии, причем его дополнительно стабилизирует необязательное диспергирующее вещество. Может использоваться традиционные диспергирующее вещества, известные специалисту в данной области техники. Предпочтительное диспергирующее вещество представляет собой полиакриловая кислота.

В качестве альтернативы, водная суспензия, которая описывается выше, может высушиваться.

Поверхностно-прореагировавший природный или осажденный карбонат кальция, который используется согласно настоящему изобретению, предпочтительно присутствует в форме высушенного порошка.

Кроме того, согласно предпочтительному варианту осуществления, поверхностно-прореагировавший природный или синтетический карбонат кальция имеет удельную площадь поверхности, составляющую от 1 м2/г до 200 м2/г, предпочтительнее от 40 м2/г до 175 м2/г, предпочтительнее от 50 м2/г до 145 м2/г, особенно предпочтительнее от 60 м2/г до 90 м2/г, наиболее предпочтительнее от 70 м2/г до 80 м2/г при измерении методом BET с использованием азота согласно стандарту ISO 9277.

Оказывается предпочтительным, что поверхностно-прореагировавший карбонат кальция имеет объемный медианный диаметр зерен d50, составляющий от 0,1 до 50 мкм, предпочтительно от 0,5 до 25 мкм, предпочтительнее от 0,8 до 20 мкм, в частности, от 1 до 10 мкм, например, от 4 до 7 мкм при измерении с помощью лазерной дифракционной системы Malvern Mastersizer 2000. Данный метод и прибор известны специалисту в данной области техники и обычно используются для определения размеров зерен наполнителей и пигментов.

Поверхностно-прореагировавший карбонат кальция имеет внутричастичный интрузионный удельный объем пор, который находится в интервале предпочтительно от 0,150 до 1,300 см3/г и предпочтительнее от 0,178 до 1,244 см3/г и вычисляется измерениям методом ртутной интрузионной порометрии, как описывается в экспериментальной части. Полный поровый объем, который определяется по совокупным интрузионным данным, может быть разделен на две области, где интрузионные данные составляют от 214 мкм до приблизительно 1-4 мкм, показывая упаковку крупных частиц образца между любыми агломератными структурами, вносящими значительные вклады. В области диаметров ниже этих пределов находится упаковка мелких частиц между самими частицами. Если они также имеют внутричастичные поры, то эта область оказывается бимодальной. В совокупности эти три области составляют полный итоговый поровый объем порошка, но он зависит в значительной степени от уплотнения исходного образца/усадки порошка у области крупных частиц в распределении.

Когда вычисляется первая производная совокупной интрузионной кривой, получаются распределения пор по размерам на основе эквивалентного диаметра Лапласа (Laplace), неизбежно включающие экранирование пор. Дифференциальные кривые четко показывают крупные область крупных агломератных пористых структур, область межчастичных пор и область внутричастичных пор, если они присутствуют. Если известен интервал диаметров внутричастичных пор, оказывается возможным вычитание остаточного внутричастичного и внутриагломератного порового объема из полного порового объема для вычисления желательного удельного объема пор, которые представляют собой только внутренние поры, в качестве удельного объема пор в расчете на единицу массы. Разумеется, такой же принцип вычитания распространяется на выделение любой из других рассматриваемых областей размеров пор.

Размер пор поверхностно-прореагировавшего карбоната кальция находится предпочтительно в интервале от 10 до 100 нм, предпочтительнее в интервале от 20 и 80 нм, в частности, от 30 до 70 нм, например, 50 нм, что определяется в результате измерений методом ртутной порометрии.

Поверхностно-прореагировавший карбонат кальция может присутствовать в форме порошка и/или гранул. Он может также присутствовать в форме суспензий или составлять часть геля, если это целесообразно. Оказывается особенно предпочтительным, если он присутствует в форме порошка и/или гранул.

Гранулы могут изготавливаться посредством обычных процессов гранулирования, в качестве которых выбираются процессы гранулирования из расплава или в сухом или влажном состоянии, а также посредством уплотнения с помощью валков.

Особенно предпочтительный способ изготовления поверхностно-прореагировавшего карбоната кальция, содержащего гранулы, описывает неопубликованная европейская патентная заявка № 14170578. Согласно этому способу влажного гранулирования, поры частиц поверхностно-прореагировавшего карбоната кальция сначала насыщаются одной или несколькими жидкостями для гранулирования, а после этого добавляются одно или несколько связующих веществ.

В данном отношении, жидкость может, как правило, представлять собой любую жидкость, которая обычно используется в области гранулирования, и предпочтительно она представляет собой воду, поскольку вода она не действует в качестве активного ингредиента, который производит специфическое воздействие на организм и может вызывать специфическую реакцию.

Насыщение жидкостью может осуществляться посредством добавления жидкости в сухой или частично насыщенный поверхностно-прореагировавший карбонат кальция, или, если поверхностно-прореагировавший карбонат кальция присутствует в форме суспензии или отфильтрованного осадка, насыщение может также осуществляться посредством удаления избытка жидкости. Это может осуществляться с применением термических или механических способов, известных специалисту в данной области техники. Частицы определяются в качестве насыщенных жидкостью, если весь их внутричастичный поровый объем заполняется жидкостью.

Связующие вещества, которые могут использоваться, представляют собой вещества, хорошо известные в технике гранулирования, такие как карбоксиметилцеллюлоза или поливинилпиролидон, и они могут также проявлять дезинтегрирующие свойства в определенных условиях.

Одно или несколько связующих веществ добавляются в сухой форме или в форме эмульсий, дисперсий или растворов в насыщенный жидкостью поверхностно-прореагировавший карбонат кальция в количестве, составляющем от 0,5 до 50 мас.% по отношению к массе поверхностно-прореагировавшего карбоната кальция. Связующее вещество может добавляться в перемешивающее устройство одновременно или после добавления насыщенного жидкостью поверхностно-прореагировавшего карбоната кальция, причем может оказаться необходимым регулирование количества связующего вещества, поверхностно-прореагировавшего карбоната кальция и/или насыщенного жидкостью карбоната кальция после объединения насыщенного жидкостью поверхностно-прореагировавшего карбоната кальция и одно или нескольких связующих веществ.

Смесь имеет соответствующую консистенцию, которая обеспечивает достижение желательного размера гранул, или распределения гранул по размерам, соответственно, и при которой может продолжаться перемешивание.

В качестве оборудования для гранулирования может выбираться оборудование, которое традиционно используется для целей гранулирования. Таким образом, перемешивающее устройство может выбираться из группы, которую составляют смесители от компании Eirich, сушилки в псевдоожиженном слое/грануляторы/смесители, смесители от компании Lödige и т. д.

После того, как завершается процесс гранулирования, жидкость удаляется посредством отделения жидкости от образующихся в результате гранул.

Получаемые в результате гранулы могут иметь размеры в широком интервале, причем фракции гранул, которые различаются по размерам, могут разделяться традиционными способами, такими как просеивание.

Как правило, гранулы могут иметь объемный медианный размер гранул, составляющий от 0,1 до 6 мм, предпочтительно от 0,2 до 5 мм и предпочтительнее от 0,3 до 4 мм. В зависимости от заданного применения гранул, могут быть получены фракции гранул, размеры которых составляют от 0,3 до 0,6 мм или 1 мм до 4 мм, а также зерна, размеры которых составляют от 0,6 до 1 мм или 1 до 2 мм, что определяется методом ситового фракционирования.

Гранулы, содержащие поверхностно-прореагировавший карбонат кальция, могут иметь удельную площадь поверхности, составляющую от 1 до 175 м2/г, предпочтительно от 2 до 145 м2/г, предпочтительнее от 10 до 100 м2/г, особенно предпочтительно от 20 до 70 м2/г и наиболее предпочтительно от 30 до 40 м2/г при измерении методом Брунауэра-Эммета-Теллера (Brunauer-Emmett-Teller, BET) с использованием азота согласно стандарту ISO 9277.

Гранулы, получаемые способом согласно настоящему изобретению, оказываются более устойчивыми, чем гранулы, получаемые без связующего вещества или посредством влажного гранулирования без предварительного насыщения жидкостью поверхностно-прореагировавшего карбоната кальция.

"Запах" согласно настоящему изобретению, как правило, определяется как одно или несколько испаряющихся химических соединений, которые обычно присутствуют в очень низкой концентрации, и которые люди или другие животные воспринимают посредством своего чувства обоняния. Соответственно, "одорант" представляет собой химический соединение, которое имеет запах или аромат, т. е. достаточную летучесть, чтобы перемещаться в обонятельную систему, расположенную в верхней части носа.

Предпочтительные запахи, которые устраняются согласно настоящему изобретению, представляют собой запахи, которые вызывают неприятное ощущение, т. е. неприятные запахи, но не ограничиваются этим.

Источники таких запахов могут представлять собой одоранты, которые предпочтительно выбираются из группы, которую составляют одоранты, содержащиеся в жидкостях и выделениях организмов человека и животных, таких как менструальные выделения, кровь, плазма, кровянисто-гнойные выделения; вагинальные выделения, слизь, молоко, моча; фекалии; рвотная масса и пот; одоранты, образующиеся при гниении, например, ткани человека или животных; пищевые продукты, такие как молочные продукты, мясо и рыба; фрукты, такие как плоды дуриана; текстильные изделия; мебель; детали салонов автомобилей; и стеновые материалы.

В частности, эти одоранты могут выбираться из группы, которую составляют амины, такие как триэтиламин, диэтиламин, триметиламин, диаминобутан, тетраметилендиамин, пентаметилендиамин, пиридин, индол, 3-метилиндол; карбоновые кислоты, такие как пропионовая кислота, масляная кислота, 3-метилмасляная кислота, 2-метилпропионовая кислота, капроновая кислота; сероорганические соединения, такие как тиолы, например, метантиол, фосфорорганические соединения, такие как метилфосфин, диметилфосфин; соответствующие производные и их смеси.

Таким образом, согласно предпочтительному варианту осуществления настоящего изобретения, способ дезодорирования включает применение поверхностно-прореагировавшего карбонат кальция, который содержат подгузники, женские гигиенические изделия, такие как прокладки, ежедневные прокладки, гигиенические салфетки, тампоны; изделия для страдающих недержанием; дезодорирующие композиции; бумажные полотенца, туалетная бумага и косметические салфетки; нетканые изделия, такие как протирочные салфетки и медицинские изделия; упаковочный материал, предпочтительно пластмассовый, бумажный или картонный упаковочный материал, такой как оберточная бумага, упаковочный картон; однослойные многослойные конструкции; проницаемые пакеты; абсорбирующие/адсорбирующие прокладки; бумажные изделия, предпочтительно бумажные листы, которые может наполнять и/или покрывать поверхностно-прореагировавший карбонат кальция, и в которых присутствует или отсутствует адгезионный слой; наполнитель для туалета животных; конструкционный и строительный материал; препараты из компоста и органические удобрения.

Соответственно, согласно следующему аспекту настоящего изобретения, предлагается продукт для дезодорирования, который содержит поверхностно-прореагировавший карбонат кальция, и он предпочтительно выбранный из группы, которую составляют подгузники, женские гигиенические изделия, такие как прокладки, ежедневные прокладки, гигиенические салфетки и тампоны; изделия для страдающих недержанием; дезодорирующие композиции; бумажные полотенца, туалетная бумага и косметические салфетки; нетканые изделия, такие как протирочные салфетки и медицинские изделия; упаковочный материал, такой как оберточная бумага, упаковочный картон; однослойные многослойные конструкции; проницаемые пакеты; абсорбирующие/адсорбирующие прокладки; бумажные изделия, предпочтительно бумажные листы, которые может наполнять и/или покрывать поверхностно-прореагировавший карбонат кальция, и в которых присутствует или отсутствует адгезионный слой; наполнитель для туалета животных; конструкционный и строительный материал; препараты из компоста и органические удобрения.

В данном отношении, как правило, оказывается возможным включение поверхностно-прореагировавшего карбоната кальция в любые хорошо известные изделия в форме отдельного слоя в многослойных системах или в качестве добавки, которая вводится, например, в существующие абсорбирующие жидкость слои, в качестве наполнителя, который содержит, например, бумага или пластмасса, например, оберточная бумага, или в качестве покрытия, в форме пакетов или в любой другой форме, которая обеспечивает контакт одоранта и/или его летучей фазы с поверхностно-прореагировавшим карбонатом кальция.

Кроме того, может оказаться предпочтительным печатное нанесение поверхностно-прореагировавшего карбоната кальция, например, посредством краскоструйной печати, флексографии или глубокой печати, на материал, такой как бумага.

Следующие чертежи, примеры и испытания иллюстрируют настоящее изобретение, но не предназначаются для ограничения настоящего изобретения каким-либо образом.

Описание чертежей

Фиг. 1 иллюстрирует результаты исследований абсорбции/адсорбции триэтиламина с использованием нескольких известных абсорбентов/адсорбентов и порошка поверхностно-прореагировавшего карбоната кальция согласно настоящему изобретению.

Фиг. 2 иллюстрирует результаты исследований абсорбции/адсорбции диэтиламина и триэтиламина с использованием нескольких известных абсорбентов/адсорбентов и гранул поверхностно-прореагировавшего карбоната кальция согласно настоящему изобретению.

Фиг. 3 иллюстрирует результаты исследований абсорбции/адсорбции масляной кислоты, 3-метилмасляной кислоты и капроновой кислоты с использованием нескольких известных абсорбентов/адсорбентов и гранул поверхностно-прореагировавшего карбоната кальция согласно настоящему изобретению.

Фиг. 4 иллюстрирует результаты исследований абсорбции/адсорбции масляной кислоты с использованием нескольких известных абсорбентов/адсорбентов и порошков и гранул поверхностно-прореагировавшего карбоната кальция согласно настоящему изобретению.

Фиг. 5 иллюстрирует результаты исследований абсорбции/адсорбции масляной кислоты с использованием нескольких известных абсорбентов/адсорбентов и порошков поверхностно-прореагировавшего карбоната кальция в зависимости от удельной площади поверхности.

Фиг. 6 иллюстрирует результаты исследований по оценке интенсивности запаха мочи в подгузниках, в которых присутствует или отсутствует поверхностно-прореагировавший карбонат кальция.

Фиг. 7 иллюстрирует результаты исследований по гедонической оценке мочи подгузниках, в которых присутствует или отсутствует поверхностно-прореагировавший карбонат кальция.

Примеры

1. Методы измерения

Для оценки параметров, представленных в примерах и формуле изобретения, были использованы следующие методы измерения.

Удельная площадь поверхности (SSA) материала по методу BET

Удельную площадь поверхности по методу BET измеряли, осуществляя метод BET согласно стандарту ISO 9277 с использованием азота после кондиционирования образца посредством нагревания при 250°C в течение 30-минутного периода. Перед данным измерением образец отфильтровывали, промывали и высушивали в печи при 110°C в течение, по меньшей мере, 12 часов.

Распределение частиц по размерам (объемная процентная доля частиц, у которых диаметр составляет менее чем заданное значение X), значение d50 (объемный медианный диаметр зерен) и значение d98 зернистого материала

Объемный медианный диаметр зерен d50 определяли с использованием лазерной дифракционной системы Malvern Mastersizer 2000. Значение d50 или d98, измеряемое с использованием лазерной дифракционной системы Malvern Mastersizer 2000, представляет собой такое значение диаметра, что 50% или 98% объема, соответственно, составляют частицы, у которых диаметр составляет менее чем соответствующее значение. Необработанные данные, получаемые посредством измерения, анализировали с применением теории Ми (Mie), учитывая, что частицы имеют показатель преломления 1,57 и показатель поглощения 0,005.

Массовый медианный диаметр зерен определяли методом седиментации, который представляет собой анализ седиментационного поведения в поле силы тяжести. Измерение осуществляли, используя прибор Sedigraph™ 5100 от компании Micromer