Новая кристаллическая солевая форма 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-n-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида для медицинского применения

Иллюстрации

Показать все

Изобретение относится к соли метансульфокислоты и основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида. Изобретение относится также к кристаллической соли мономезилата 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида, к вариантам способа получения кристаллической соли, к фармацевтической композиции, обладающей активностью в отношении Bcr-Abl киназы и её мутантных форм, к способу лечения онкологического заболевания. Технический результат: получена новая соль метансульфокислоты и основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида, характеризующаяся высокой растворимостью в воде, высокой ингибирующей активностью в отношении Bcr-Abl киназы и её мутантных форм и эффективная для лечения онкологических заболеваний, опосредованных активностью Bcr-Abl киназы и её мутантных форм. 6 н. и 31 з.п. ф-лы, 62 ил., 14 табл.

Реферат

Область техники

Данное изобретение относится к химии органических соединений, фармакологии и медицине, а именно, к солевой форме соединения, а также к ее кристаллическим (полиморфным) формам, обладающим улучшенными физико-химическими свойствами, а также высокой эффективностью и безопасностью по сравнению со свободным основанием.

Уровень техники

При изготовлении лекарственных препаратов важно, чтобы лекарственное вещество находилось в форме, удобной для его обработки и обращения с ним. Это важно не только с точки зрения получения коммерчески жизнеспособного производственного процесса, но также с точки зрения последующего производства фармацевтических препаратов, содержащих это активное соединение. Химическая стабильность, стабильность в твердом состоянии и стабильность при хранении активных ингредиентов также являются очень важными факторами. Лекарственное вещество и композиции, содержащие его, должны обладать способностью к эффективному хранению в течение приемлемых периодов времени, не проявляя значительного изменения в физико-химических характеристиках активного компонента, таких как химический состав, плотность, гигроскопичность и растворимость. В этом отношении использование аморфных форм вещества в качестве лекарственных веществ представляется нежелательным. Например, с такие формы вещества обладают нестабильными физико-химическими свойствами, такими как растворимость, гигроскопичность, сыпучесть, слеживаемость и другими. Таким образом, в производстве коммерчески жизнеспособных и фармацевтически приемлемых лекарственных композиций важно, по возможности, представлять лекарство в кристаллической и стабильной форме(ах).

Твердые вещества, включая фармацевтически активные соединения, часто имеют более чем одну кристаллическую форму; данное явление известно как полиморфизм. Полиморфизм имеет место, когда соединение кристаллизуется во множестве разных твердых фаз, которые отличаются кристаллической упаковкой. Обычно полиморфные модификации (полиморфы) имеют разные физические характеристики, включая растворимость и физическую и химическую стабильность. Различные твердые солевые формы одного и того же лекарственного вещества, и более того, различные полиморфы одной и той же твердой солевой формы, могут различаться по скорости высвобождения лекарственного средства, по стабильности твердого состояния солевой формы а также по пригодности для изготовления фармацевтического препарата.

Подбор подходящей солевой формы для соответствующего фармакологически активного вещества является важным моментом в доклинической фазе разработки лекарственного препарата. Изменение солевой формы действующего вещества лекарства является общераспространенным средством модификации его химических и биологических характеристик, не ведущим к модификации его структуры. Выбор конкретной солевой формы может глубоко повлиять на физико-химические свойства данного лекарства (например, скорость растворения, растворимость, устойчивость и гигроскопичность). Замена одной солевой формы в лекарстве на другую может изменить терапевтическую эффективность и/или безопасность применения, которые являются особо важными для оптимального состава лекарственной формы крупномасштабного производства. Тем не менее, отсутствует надежный способ точного прогнозирования, как повлияет изменение солевой формы активного вещества лекарства на безопасность его применения или его биологическую активность. Более того даже исследование физико-химических свойств различных солевых форм активного вещества не позволяет однозначно идентифицировать солевые формы, обладающие желаемыми фармакокинетическими свойствами, эффективностью и безопасностью. Коротко говоря, не существует надежного способа предсказания влияния конкретных видов солей на поведение исходного соединения в лекарственных формах (Berge et al., Pharmaceutical Salts// Journal Pharm. Sci., 1977, Vol. 66, No. 1; Verbeeck et al. Generic substitution: The use of medicinal products containing different salts and implications for safety and efficacy // EP Journal Pharm. Sci, 28, 2006, 1-6.).

Фармакокинетические параметры являются важнейшими характеристиками, определяющими пригодность твердой солевой формы (или конкретной полиморфной модификации) для использования в качестве лекарственного средства. Среднесуточная и максимальная концентрация лекарственного препарата в крови животных и человека может существенно зависеть от состава солевой формы и ее полиморфной модификации. Как правило, солевые формы вещества, обладающее большей растворимостью в воде позволяют достичь более высоких максимальных концентрация лекарственного препарата в крови и тканях экспериментальных животных и человека. Необходимо отметить, что повышение максимальных концентраций лекарственного препарата в крови животных как правило коррелирует с увеличением токсических эффектов, вызванных лекарственным препаратом. По этой причине изменение солевой формы вещества может привести к изменению профиля безопасности препарата.

Твердые солевые формы обычно являются предпочтительными для пероральных препаратов, поскольку именно они склонны к проявлению желаемых физических характеристик; и в случае основных лекарственных средств соли присоединения кислоты часто являются предпочтительной солевой формой. Как уже упоминалось выше, различные кислоты сильно различаются по их способности придавать желаемые свойства соответствующим солевым формам (такие как стабильность при хранении, легкость процесса получения и очистки, фармакокинетические параметры), и такие свойства не могут быть предсказаны с достаточной точностью. Например, некоторые соли представляют собой твердые вещества при температуре окружающей среды, в то же время другие соли представляют собой жидкости, вязкие масла или смолы. Кроме того, некоторые солевые формы являются стабильными к воздействию тепла и света в экстремальных условиях, а другие легко разлагаются при гораздо более мягких условиях. Таким образом, разработка подходящей формы соли присоединения кислоты основного лекарственного средства для использования в фармацевтической композиции является крайне важным и далеко не всегда предсказуемым процессом.

Протеинкиназы являются важным семейством белков, участвующим в регуляции ключевых клеточных процессов, нарушение активности которых может приводить к различным заболеваниям. Перспективным подходом для терапии заболеваний, ассоциированных с нарушенной активностью протеинкиназ, является применение низкомолекулярных химических соединений для ингибирования их активности. Примерами таких ингибиторов, одобренных для применения в клинической практике, являются: Иматиниб (Imatinib), Нилотиниб (Nilotinib), Дазатитниб (Dasatinib), Сунитиниб (Sunitinib), Сорафениб (Sorafenib), Лапатиниб (Lapatinib), Гефитиниб (Gefitinib), Эрлотиниб (Erlotinib), Кризотиниб (Crizotinib). Большое количество лекарственных кандидатов, ингибиторов киназ, находятся в настоящее время на стадии клинических испытаний или на стадии предклинической разработки.

BCR-ABL - гибридный белок (англ. fusion protein), продукт гибридного гена BCR-ABL1, формирующегося в результате реципрокной транслокации между хромосомами 9 и 22 (филадельфийская хромосома). BCR-ABL является конститутивно активной тирозинкиназой, ответственной за онкогенную трансформацию клеток (онкобелком). Постоянная активность этой тирозинкиназы делает клетку способной делиться без воздействия факторов роста и вызывает ее избыточную пролиферацию. BCR-ABL является ключевым патогенетический фактором развития подавляющего количества случаев хронического миелолейкоза и 20-50% случаев острого В-лимфобластного лейкоза взрослых. Таким образом, ингибирование киназной активности гибридного белка BCR-ABL является перспективной стратегией борьбы с различными онкологическими заболеваниями и в частности с хроническим миелолейкозом.

Ранее в патенте RU 247772 были описаны производные 1,2,4-триазоло[4,3-а]пиридина и, в частности, 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметил-фенил)бензамид, обладающие эффективностью и селективностью в ингибировании активности Abl-киназы и ее мутантных форм, а также других терапевтически значимых киназ.

В ходе проведенных in vitro и in vivo исследований была показана потенциальная возможность применения этих соединений для лечения онкологических заболеваний, в частности лейкемии, острого миелолейкоза, хронического миелолейкоза, гепатоцеллюлярной карциномы, немелкоклеточного рака легкого и гастроинтестинальных стромальных опухолей у животных и человека.

Раскрытие изобретения

Задачей настоящего изобретения является разработка и создание новой солевой формы ингибитора киназ, в частности Abl киназы, содержащей фармакологически приемлемый противоион, обладающей кристалличностью, высокой растворимостью в воде, постоянством состава, легкостью масштабирования процесса получения и очистки и являющейся перспективной для применения в клинической практике для лечения заболеваний, связанных с нарушением активности различных киназ.

Техническим результатом данного изобретения является разработка и получение новой солевой формы ингибитора киназ, в частности Abl киназы, в том числе ее новых полиморфных модификаций (кристаллических форм), характеризующихся высокой растворимостью в воде и высокой ингибирующей активностью по отношению к Abl киназе (и клинически важных мутантных форм этого фермента), высокой среднесуточной концентрацией, а также высоким значением параметра AUC (площади под кривой «концентрация-время») в крови животных и человека, обладающей благоприятным профилем безопасности и эффективной для лечения заболеваний, связанных с нарушением активности протеинкиназ, включая, но не ограничиваясь, лейкемию, острый миелолейкоз, хронического миелолейкоза, острый лимфолейкоз, рак груди, немелкоклеточный рак легкого, гастроинтестинальные стромальные опухоли, рак яичников, лимфому.

Техническим результатом настоящего изобретения также является разработка и получение солевой формы ингибитора киназ, характеризующейся легкостью масштабирования процесса получения и очистки, использованием малотоксичных растворителей, а также характеризующейся высокой чистотой получаемого продукта при минимальном использовании стадий очистки получаемого соединения.

Указанный технический результат достигается путем получения соли метансульфокислоты и основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида

или ее гидрата, сольвата, а также полиморфных модификаций, обладающих способностью ингибировать активность киназ, в частности Abl киназы.

Одним из предпочтительных вариантов воплощения изобретения является полиморфная модификация соли метансульфокислоты и основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида, представляющая собой кристаллическую фазу со следующими параметрами элементарной ячейки, определенными методом порошковой рентгеновской дифракции при 25±5°С с использованием CuKα1 излучения при длине волны 1,5406 , равными: a=51,46±0,05 ; b=7,81±0,05 и c=7,63±0,05 , β=108,9±0,1°, V=2898,9±0,5 ; пространственная группа P21/n и характеристическими пиками в дебаеграмме с величинами углов дифракции (2θ) 3,6; 7,2; 11,4; 11,8; 12,5; 13,4; 14,5; 16,2; 16,5; 16,9; 17,2; 17,4; 17,8; 18,1; 18,4; 18,7; 20,8; 21,4; 22,7; 22,8; 23,0; 23,2; 23,4; 24,1; 24,5; 25,4; 25,9; 26,0; 26,2; 26,7; 27,1; 28,4; 33,0; 33,3 и 36,7.

Другим предпочтительным вариантом воплощения изобретения является полиморфная модификация соли метансульфокислоты и основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида, представляющая собой кристаллическую фазу со следующими параметрами элементарной ячейки, определенными методом порошковой рентгеновской дифракции при 25±5°С с использованием CuKα1 излучения при длине волны 1,5406 , равными а=13,77±0,05 ; b=8,09±0,05 и с=30,83±0,05 , β=117.8±0,1, V=3036,36±0,5 и пространственной группой Р21/с и характеристическими пиками в дебаеграмме с величинами углов дифракции (2θ) 7,1; 7,3; 11,6; 11,8; 12,7; 12,9; 13,1; 14,2; 14,6; 16,9; 17,2; 17,4; 17,6; 18,1; 18,3; 19,4; 19,7; 20,8; 21,2; 21,6; 22,0; 22,5; 22,6; 23,2; 23,4; 23,8; 24,9; 25,1; 25,6; 25,9; 26,1; 26,6; 28,3; 28,8; 29,6 и 30,1.

Указанный технический результат достигается также посредством применения соли или ее гидрата, сольвата, а также полиморфных модификаций по изобретению для получения фармацевтической композиции для предупреждения и/или лечения расстройства, связанного с активностью киназ человека или животных. Причем в некоторых вариантах воплощения изобретения киназа выбрана из группы, состоящей из рецепторных тирозинкиназ, нерецепторных протеинкиназ и серин/треонин-протеинкиназ, в частности, ABL1, ABL2/ARG, BLK, DDR1, DDR2, ЕРНА2, ЕРНА8, ЕРНВ2, FGR, FLT4/VEGFR3, FMS, FRK/PTK5, FYN, НСK, KDR/VEGFR2, LCK, LYN, LYN В, Р38а/МАРK14, PDGFRa, PDGFRb, RAF1, RET, RIPK3, ZAK/MLTK (Mian et al., PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation // Leukemia., 2015, Vol. 29, No. 5).

Кроме того, изобретение предусматривает фармацевтические композиции для предупреждения и/или лечения расстройства, связанного с активностью киназ, и характеризующиеся тем, что они содержат эффективное количество соединения по изобретению и, по меньшей мере, одно вспомогательное вещество. В некоторых вариантах воплощениях изобретения вспомогательное вещество представляет собой фармацевтически приемлемый носитель и/или эксципиент. Такие композиции предназначены для модулирования активности киназ, выбранных из группы, состоящей из рецепторных тирозинкиназ, нерецепторных протеинкиназ и серин/треонин-протеинкиназ, в частности Abl киназы, c-Src, Yes, Lyn, Lck, EGFR1 (Flt-1), VEGFR2, VEGFR3, PDGFR киназ.

Настоящее изобретение также относится к способу модулирования каталитической активности киназы, включающий приведение указанной киназы в контакт с соединением по изобретению. Такой способ предназначен для модулирования активности киназ, выбранных из группы, состоящей из рецепторных тирозинкиназ, нерецепторных протеинкиназ и серин/треонин-протеинкиназ, в частности Abl киназы, c-Src, Yes, Lyn, Lck, EGFR1 (Flt-1), VEGFR2, VEGFR3, PDGFR киназ.

Изобретение также включает способ предупреждения и/или лечения расстройства, связанного с активностью киназы в организме, включающий введение в указанный организм фармацевтической композиции по изобретению. Такое расстройство, связанное с активностью киназы, представляет собой онкологическое, хроническое воспалительное или другое заболевание, в частности, лейкемию, острый миелолейкоз, хронический миелолейкоз, гепатоцеллюлярную карциному, немелкоклеточный рак легкого или гастроинтестинальную стромальную опухоль. В частных случаях воплощения изобретения организм представляет собой человека или животного. В некоторых вариантах воплощения изобретения животное представляет собой кошку, собаку или лошадь.

Достижение указанного технического результата обеспечивается также за счет способа получения кристаллов соединений по изобретению, включающего следующие этапы:

a. введение раствора метансульфокислоты или ее гидрата в органическом растворителе в суспензию или раствор основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида в органическом растворителе или смеси растворителей; введение раствора метансульфокислоты или ее гидрата может быть осуществлено как при комнатной температуре, так и при нагревании или охлаждении каждого из компонентов; также может быть использован обратный порядок смешивания реагентов;

b. кристаллизацию получившейся соли из раствора;

c. отделение кристаллов соли от растворителя.

В некоторых вариантах воплощения изобретения растворитель на стадии (а), используемый в качестве среды для суспендирования 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида, представляет собой ацетон.

В частных случаях воплощения изобретения растворитель на стадии (а), используемый для приготовления раствора метансульфокислоты или ее гидрата представляет собой этанол.

В некоторых вариантах воплощения изобретения после стадии (с) дополнительно осуществляют перекристаллизацию соли.

В некоторых других частных случаях воплощения изобретения дополнительно применяют стадию инициирования образования кристаллов в случаях получения соли из растворов. Инициирование образования кристаллов может быть достигнуто путем внесения в раствор небольших количеств той же соли или другими способами.

В частных случаях дополнительно применяют стадию очистки основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида путем превращения его в соль серной, соляной, бензолсульфо-, 4-метилбензолсульфо-, 2-метилбензолсульфо-, метансульфо-, лимонной, фосфорной, трифторуксусной, 4-нитробензолсульфо-, тетрафторборной, гексафторфосфорной или иной кислоты с последующим получением из этой соли основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида и повторным синтезом из этого основания соли с метансульфокислотой.

Свободное основание 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида известно и описано в патенте RU 247772.

Определения (термины)

Термин «С», когда он используется со ссылкой на температуру, означает стоградусную шкалу или температурную шкалу Цельсия.

Термин «IC50» означает концентрацию тестируемого соединения, при которой достигается полумаксимальное ингибирование активности киназы.

Термин «суспензия» относится к твердому веществу, суспендированному в жидкой среде, обычно воде или органическом растворителе.

Термин «модулирование» в настоящем документе относится к изменению каталитической активности киназы. В частности, модулирование относится к активации или ингибированию каталитической активности киназы.

Термин «полиморфная модификация» относится к твердой фазе вещества, которая проявляется в нескольких отличающихся формах вследствие разного расположения и/или конформации молекул в кристаллической решетке. Полиморфные модификации обычно имеют разные химические и физические свойства. Кроме того термин «полиморфная модификация» также относится к сольватам (т.е. кристаллическим формам, содержащим растворитель или воду) равно как и к разным несольватированным кристаллическим формам соединения.

Термин «сольват» используется для описания молекулярного комплекса, содержащего соединение по изобретению и одну или более молекул фармацевтически приемлемого растворителя, например этанола. Термин «гидрат» используется, когда указанным растворителем является вода.

Термин «картина порошковой рентгеновской дифракции» или «PXRD-картина» относится к экспериментально наблюдаемой дифрактограмме или полученным из нее параметрам. Обычно картины порошковой рентгеновской дифракции характеризуются положением пика (абсцисс) и интенсивностью пика (ординат). Термин «интенсивность пика» относится к относительной интенсивности сигнала на данной картине рентгеновской дифракции. Факторами, влияющими на относительную интенсивность пика, являются толщина образца и предпочтительная ориентация (т.е. распределение кристаллических частиц не является случайным). Термин «положения пика», как используется в настоящей заявке, относится к положению рентгеновского рефлекса, измеренного и наблюдаемого в экспериментах порошковой дифракции. Положения пиков напрямую связаны с размерами элементарной ячейки. Пики, идентифицированные по их соответствующему положению, получают, исходя из картины дифракции для различных полиморфных форм солей 2,2-диметил-6-((4-((3,4,5-триметоксифенил)амино)-1,3,5-триазин-2-ил)амино)-2Н-пиридо[3,2-b][1,4]оксазин-3(4Н)-она.

Термин «значение 2 тета» или «2θ» относится к положению пика в градусах, исходя из экспериментальных данных рентгеновской дифракции, и в основном представляет собой единицу измерения на оси абсцисс на картинах дифракции. В основном, экспериментальная установка требуется, если отраженные лучи преломляются, когда падающий луч образует угол тета (θ) с определенной плоскостью решетки, а отраженный луч будет регистрироваться при угле 2 тета (2θ). Следует понимать, что отсылка в данной заявке на специфические значения 2θ для специфической полиморфной формы предполагает значение 2θ в градусах, измеренные с использованием экспериментальных условий рентгеновской дифракции, раскрытых в настоящей заявке.

Термин «аберрантная активность» киназы в настоящем документе означает киназную активность, существенно отличающуюся от базового уровня активности этой киназы в клетках при отсутствии патологии. Аберрантная активность может быть вызвана изменением уровня экспрессии киназы, нарушением процессов, приводящих к активации киназы, дерегулированием путей деградации, а также другими факторами.

Термин «вспомогательное вещество» означает любое фармацевтически приемлемое вещество неорганического или органического происхождения, входящее в состав лекарственного препарата или используемое в процессе производства, изготовления лекарственного препарата для придания ему необходимых физико-химических свойств.

Термин «AUC» означает фармакокинетический параметр, характеризующий суммарную концентрацию лекарственного препарата в плазме крови в течение всего времени наблюдения. Математически определяется как интеграл от 0 до ∞ функции концентрации препарата (фармакокинетической кривой) в плазме крови от времени и равен площади фигуры, ограниченной фармакокинетической кривой и осями координат.

Термины «лечение», «терапия» охватывают лечение патологических состояний у млекопитающих, предпочтительно у человека, и включают: а) снижение, б) блокирование (приостановку) течения заболевания, в) облегчение тяжести заболевания, т.е. индукцию регрессии заболевания, г) реверсирование заболевания или состояния, к которому данный термин применяется, или одного или более симптомов данного заболевания или состояния.

Термин «профилактика», «предотвращение» охватывает устранение факторов риска, а также профилактическое лечение субклинических стадий заболевания у млекопитающих, предпочтительно у человека, направленное на уменьшение вероятности возникновения клинических стадий заболевания. Пациенты для профилактической терапии отбираются на основе факторов, которые, на основании известных данных, влекут увеличение риска возникновения клинических стадий заболевания по сравнению с общим населением. К профилактической терапии относится а) первичная профилактика и б) вторичная профилактика. Первичная профилактика определяется как профилактическое лечение у пациентов, клиническая стадия заболевания у которых еще не наступила. Вторичная профилактика - это предотвращение повторного наступления того же или близкого клинического состояния заболевания.

Возможность объективного проявления технического результата при использовании изобретения подтверждена достоверными данными, приведенными в примерах, содержащих сведения экспериментального характера, полученные в процессе проведения исследований по методикам, принятым в данной области. Сущность изобретения поясняется фигурами чертежей.

Следует понимать, что эти и все приведенные в материалах заявки примеры не являются ограничивающими и приведены только для иллюстрации настоящего изобретения.

Способ терапевтического применения соединений

Предмет данного изобретения также включает введение субъекту, нуждающемуся в соответствующем лечении, терапевтически эффективного количества соединения по изобретению. Под терапевтически эффективным количеством подразумевается такое количество соединения, вводимого или доставляемого пациенту, при котором у пациента с наибольшей вероятностью проявится желаемая реакция на лечение (профилактику). Точное требуемое количество может меняться от субъекта к субъекту в зависимости от возраста, массы тела и общего состояния пациента, тяжести заболевания, методики введения препарата, комбинированного лечения с другими препаратами и т.п.

Соединение по изобретению, или фармацевтическая композиция, содержащая соединение, может быть введено любым путем в организм пациента в количестве, эффективным для лечения или профилактики заболевания.

После смешения лекарственного препарата с конкретным подходящим фармацевтически допустимым носителем в желаемой дозировке, композиции, составляющие суть изобретения, могут быть введены в организм человека или других животных перорально, парентерально, местно и т.п.

Введение может осуществляться как разово, так и несколько раз в день, неделю (или любой другой временной интервал), или время от времени. Кроме того, соединение может вводиться в организм пациента ежедневно в течение определенного периода дней (например, 2-10 дней), а затем следует период без приема вещества (например, 1-30 дней).

В том случае, когда соединение по изобретению используется как часть режима комбинированной терапии, доза каждого из компонентов комбинированной терапии вводится в течение требуемого периода лечения. Соединения, составляющие комбинированную терапию, могут вводиться в организм пациента как единовременно, в виде дозировки, содержащей все компоненты, так и в виде индивидуальных дозировок компонентов.

Фармацевтические композиции

Изобретение также относится к фармацевтическим композициям, которые содержат соединения по изобретению (или пролекарственную форму или другое фармацевтически приемлемое производное) и один или несколько фармацевтически приемлемых носителей, адъювантов, растворителей и/или наполнителей, таких, которые могут быть введены в организм пациента совместно с соединением, составляющем суть данного изобретения, и которые не разрушают фармакологической активности этого соединения, и являются нетоксичными при введении в дозах, достаточных для доставки терапевтического количества соединения.

Фармацевтические композиции, заявляемые в данном изобретении, содержат соединения данного изобретения совместно с фармацевтически приемлемыми носителями, которые могут включать в себя любые растворители, разбавители, дисперсии или суспензии, поверхностно-активные вещества, изотонические агенты, загустители и эмульгаторы, консерванты, вяжущие вещества, смазочные материалы и т.д., подходящие для конкретной формы дозирования. Материалы, которые могут служить фармацевтически приемлемыми носителями, включают, но не ограничиваются, моно- и олигосахариды, а также их производные; желатин; тальк; эксципиенты, такие как какао-масло и воск для суппозиториев; масла, такие как арахисовое, хлопковое, сафроловое, кунжутное, оливковое, кукурузное и соевое масло; гликоли, такие как пропиленгликоль; сложные эфиры, такие как этилолеат и этиллаурат; агар; буферные вещества, такие как гидроксид магния и гидроксид алюминия; альгиновая кислота; апирогенная вода; изотонический раствор, раствор Рингера; этиловый спирт и фосфатные буферные растворы. Также в составе композиции могут быть другие нетоксичные совместимые смазочные вещества, такие как лаурилсульфат натрия и стеарат магния, а также красители, разделительные жидкости, пленкообразователи, подсластители, вкусовые добавки и ароматизаторы, консерванты и антиоксиданты.

Предметом данного изобретения являются также лекарственные формы - класс фармацевтических композиций, состав которых оптимизирован для определенного пути введения в организм в терапевтически эффективной дозе, например, для введения в организм орально, местно, пульмональным, например, в виде ингаляционного спрея, или внутрисосудистым способом, интраназально, подкожно, внутримышечно, а также инфузионным способом, в рекомендованных дозировках.

Лекарственные формы данного изобретения могут содержать составы, полученные методами использования липосом, методами микрокапсулирования, методами приготовления наноформ препарата, или другими методами, известными в фармацевтике.

При получении композиции, например в форме таблетки, активное начало смешивают с одним или несколькими фармацевтическими эксципиентами, такими как желатин, крахмал, лактоза, стеарат магния, тальк, кремнезем, аравийская камедь, маннит, микрокристаллическая целлюлоза, гипромеллоза или аналогичные соединения.

Таблетки можно покрыть сахарозой, целлюлозным производным или другими веществами, подходящими для нанесения оболочки. Таблетки могут быть получены различными способами, такими как непосредственное сжатие, сухое или влажное гранулирование или горячее сплавление в горячем состоянии.

Фармацевтическую композицию в форме желатиновой капсулы можно получить, смешивая активное начало с растворителем и заполняя полученной смесью мягкие или твердые капсулы.

Для введения парентеральным путем используются водные суспензии, изотонические солевые растворы или стерильные растворы для инъекций, которые содержат фармакологически совместимые агенты, например пропиленгликоль или бутиленгликоль.

Примеры фармацевтических композиций

Вещества, описанные в данном изобретении, могут быть использованы для профилактики и/или лечения болезней человека или животных в виде следующих составов (под «Веществом» понимается активный ингредиент):

Данные составы могут быть приготовлены в соответствии со стандартными фармацевтическими методиками. Таблетки (I)-(II) могут быть покрыты кишечнорастворимой оболочкой с использованием, например, фталата ацетата целлюлозы. Аэрозольный состав (I) может быть использован в сочетании со стандартными диспенсерами; в качестве суспендирующего агента вместо триолеата сорбитана и соевого лецитина может быть использован моноолеат сорбитана, полуолеат сорбитана, полисорбат 80, олеат полиглицерина или олеиновая кислота.

Краткое описание чертежей

Таблица 2. Кристаллизация солей 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида в масштабе 100 мг.

Таблица 3. Кристаллизация солей 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида в масштабе 100 мг после добавления метилтретбутилового эфира.

Фиг. 1. Картины дифракции рентгеновских лучей на порошке свободного основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида

А) образец - HAL-G-194-1 (полиморфная модификация I);

Б) образец - HAL-G-194-2 (полиморфная модификация II).

Фиг. 2. Фотография кристаллов образца свободного основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида (образец - HAL-G-194-1, полиморфная модификация I), полученная методом поляризационной микроскопии.

Фиг. 3. Спектр ядерного магнитного резонанса 1Н образца свободного основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида

А) образец - HAL-G-194-1 (полиморфная модификация I);

Б) образец - HAL-G-194-2 (полиморфная модификация II).

Фиг. 4. Кривая ДСК (дифференциальная сканирующая калориметрия) образца свободного основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида (образец - HAL-G-194-1, полиморфная модификация I).

Фиг. 5. Кривая ТГА (термогравиметрический анализ) образца свободного основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида (образец - HAL-G-194-1, полиморфная модификация I).

Фиг. 6. Гигроскопичность образца свободного основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметил-фенил)бензамида (образец - HAL-G-194-1, полиморфная модификация I) по данным гравиметрического влагопоглощения.

Фиг. 7. Картины дифракции рентгеновских лучей на порошке соли хлороводородной кислоты и свободного основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил) бензамида

а) образец - HAL-G-194-1 (свободное основание, полиморфная модификация I);

б) образец - HAL-G-196-2 (полиморфная модификация I);.

в) образец - HAL-G-196-3 (полиморфная модификация II).

Фиг. 8. Спектр ядерного магнитного резонанса 1Н образца соли хлороводородной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида

А) образец - HAL-G-196-2 (полиморфная модификация I);

Б) образец - HAL-G-196-3 (полиморфная модификация II).

Фиг. 9. Кривая ТГА (термогравиметрический анализ) образца соли хлороводородной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида (образец - HAL-G-196-2, полиморфная модификация I).

Фиг. 10. Кривая ДСК (дифференциальная сканирующая калориметрия) образца соли хлороводородной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида

А) образец - HAL-G-196-2 (полиморфная модификация I);

Б) образец - HAL-G-194-3 (полиморфная модификация II).

Фиг. 11. Гигроскопичность образца соли хлороводородной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида (образец - HAL-G-196-2, полиморфная модификация I) по данным гравиметрического влагопоглощения.

Фиг. 12. Картины дифракции рентгеновских лучей на порошке соли серной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида (образец - HAL-G-196-6).

Фиг. 13. Спектр ядерного магнитного резонанса 1Н образца соли серной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида (образец - HAL-G-196-6).

Фиг. 14. Кривая ДСК (образца соли серной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметил-фенил)бензамида (образец - HAL-G-196-6).

Фиг. 15. Картины дифракции рентгеновских лучей на порошке соли бромоводородной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил) бензамида

а) образец - HAL-G-196-7 (полиморфная модификация I);

б) образец - HAL-G-196-8 (полиморфная модификация II).

Фиг. 16. Спектр ядерного магнитного резонанса 1Н образца соли бромоводородной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида

А) образец - HAL-G-196-7 (полиморфная модификация I);

Б) образец - HAL-G-196-8 (полиморфная модификация II).

Фиг. 17. Кривая ДСК (дифференциальная сканирующая калориметрия) образца соли бромоводородной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида

А) образец - HAL-G-196-7 (полиморфная модификация I);

Б) образец - HAL-G-196-8 (полиморфная модификация II).

Фиг. 18. Кривая ТГА (термогравиметрический анализ) образца соли бромоводородной кислоты и 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил)бензамида (образец - HAL-G-196-7, полиморфная модификация I).

Фиг. 19. Картины дифракции рентгеновских лучей на порошке соли фосфорной кислоты и свободного основания 3-(1,2,4-триазоло[4,3-а]пиридин-3-илэтинил)-4-метил-N-(4-((4-метилпиперазин-1-ил)метил)-3-трифторметилфенил) бензамида

а) образец - HAL-G-196-13;

б) образец - HAL-G-198-3 (после десольватации HAL-G-196-13).

Фиг. 20. Спектр яд