Способ обнаружения шумящих объектов в мелком и глубоком море

Иллюстрации

Показать все

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на основе комбинированного приемника, в которой формируется множество информативных параметров. Способ обнаружения включает прием шумового сигнала комбинированным приемником, содержащим приемник звукового давления и трехкомпонентный приемник вектора колебательной скорости, частотно-временную обработку принятого сигнала, вычисление в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, трех компонент вещественной составляющей вектора интенсивности и трех компонент мнимой составляющей вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса сигнал плюс помеха и для помехи отдельно, формирование в каждом частотном канале усредненных за время Т1 значений трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления, формирование в каждом частотном канале усредненных за время Т2=10 T1 комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления, нормирование всех 21 информативных параметров, вычисленных для суммарного процесса сигнал плюс помеха, на соответствующие значения информативных параметров, вычисленные для помехи, вычисление максимального отношения сигнал/помеха для одного из 21 информативных параметров и принятие решения об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного в одном из 21 информативных параметров. 1 ил.

Реферат

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования.

Известен способ обнаружения шумящих объектов, изложенный в монографии Л. Кампа (Подводная акустика, пер. с англ. Мир, 1972, С. 262-263), в соответствии с которым с помощью антенны и энергетического приемника сигнала можно обнаружить цель в пассивном режиме путем сравнения отношения сигнал/помеха в зоне акустической освещенности с пороговым значением. Этот способ обнаружения содержит следующие операции:

- прием гидроакустического шумового сигнала звукового давления с помощью приемной антенны с развитой апертурой в горизонтальной плоскости, причем антенна не обеспечивает разрешения по углу прихода в вертикальной плоскости траекторий лучей,

- частотно-временную обработку принятых шумовых сигналов звукового давления для каждого пространственного канала наблюдения в горизонтальной плоскости,

- измерение уровня на выходе пространственного канала веера, включая накопление во времени, центрирование и нормирование в единицах сигнал/помеха,

- развертывание на последовательных циклах обзора принятых шумовых сигналов звукового давления пространственных каналов веера в горизонтальной плоскости на панорамном индикаторе в координатах угол-время.

Недостатком данного способа является малая помехоустойчивость и дальность действия приемной системы при ее работе на низких частотах в мелком море, когда ее размеры становятся соизмеримыми с длиной волны.

Известен также способ обнаружения шумящих в море объектов в фиксированном частотном диапазоне (патент РФ №2298203, МПК G01S 3/80, G01S 15/04, опубликован 27.04.2007 г.), включающий прием шумового сигнала звукового давления в горизонтальной плоскости, при котором осуществляют частотно-временную обработку принятых шумовых сигналов звукового давления для каждого пространственного канала наблюдения в горизонтальной плоскости, квадрируют, усредняют по времени, центрируют и нормируют шумовые сигналы звукового давления к помехе, осуществляют накопление на последовательных циклах обзора принятых нормированных шумовых сигналов звукового давления и принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал-помеха, при этом осуществляют прием шумового сигнала звукового давления статическим вертикальным веером одновременно в нескольких направлениях вертикальной плоскости каждого пространственного канала наблюдения в составе статического веера в горизонтальной плоскости, оптимизируют прием каждым горизонтальным пространственным каналом путем выбора наиболее вероятных углов приема в вертикальной плоскости для существующих гидроакустических условий подводного наблюдения. Для этого измеряют волнение поверхности моря, измеряют скорость звука в воде в зависимости от глубины, рассчитывают в каждом вертикальном пространственном канале уровень шумового сигнала на различных расстояниях и глубинах от точки приема по измеренным данным и по известным характеристикам дна, решая уравнение гидроакустики в пассивном режиме для шумящего объекта с заданным уровнем шумоизлучения с учетом характеристик приемной системы, рассчитывают уровень шумов моря в каждом вертикальном пространственном канале с учетом характеристик приемной системы по измеренным данным и известным характеристикам дна. Затем нормируют относительно расчетных шумов моря в вертикальных пространственных каналах расчетные уровни шумовых сигналов в каждом пространственном канале, полученные для заданных расстояний до шумящего объекта и глубин, рассчитывают для каждого расстояния и глубины шумящего объекта в вертикальных пространственных каналах отношение сигнал-помеха. После чего осуществляют обработку принимаемых шумовых сигналов звукового давления с весами, пропорциональными расчетному отношению сигнал-помеха в вертикальных пространственных каналах, перед накоплением на последовательных циклах обзора, и суммируют с расчетными весами принятые нормированные к помехе шумовые сигналы звукового давления вертикальных пространственных каналов. Для реализации данного способа введены новые операции, а именно:

- прием шумовых сигналов звукового давления статическим вертикальным веером одновременно в нескольких направлениях вертикальной плоскости каждого пространственного канала наблюдения в составе веера горизонтальной плоскости,

- оптимизация приема для каждого горизонтального пространственного канала в наклоненных по вертикали веерах путем выбора наиболее вероятных углов приема в существующих гидроакустических условиях наблюдения, для чего осуществляют:

- измерение скорости звука в воде в зависимости от глубины,

- измерение волнения поверхности моря,

- вычисление в каждом вертикально наклоненном пространственном канале уровня шумового сигнала звукового давления на различных расстояниях и глубинах от точки приема по измеренным данным и по известным характеристикам дна,

- вычисление уровня звукового давления для шумов моря в каждом вертикальном пространственном канале с учетом характеристик приемной системы по измеренным данным и по известным характеристикам дна,

- нормирование относительно расчетных шумов моря соответствующих вертикальных пространственных каналов расчетных уровней шумовых сигналов звукового давления в каждом пространственном канале, полученных для заданных расстояний до шумящего объекта и глубин, вычисление для каждого расстояния и глубины шумящего объекта в вертикальных пространственных каналах отношения сигнал-помеха,

- обработку принимаемых шумовых сигналов звукового давления с весами, пропорциональными расчетному отношению сигнал-помеха в вертикальных каналах, до межциклового накопления,

- суммирование с расчетными весами принятых нормированных к помехе шумовых сигналов звукового давления вертикальных пространственных каналов,

- регистрация картины совокупности принимаемых сигналов на выходе приемной системы для которых выполнены указанные выше процедуры.

Данный способ является наиболее близким к заявленному изобретению и принят за прототип.

Недостатком данного способа является малая помехоустойчивость и малая дальность действия приемной системы при работе на низких частотах, когда размер приемной системы соизмерим с длиной волны, и при работе в мелком и глубоком море, когда алгоритмы формирования пространственной направленности становятся неэффективными из-за дисперсионных искажений сигналов.

Задачей заявляемого способа является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования комбинированного приемника и формирования на его выходе множества информативных параметров.

Для решения поставленной задачи в способе обнаружения шумящих в море объектов в фиксированном частотном диапазоне, включающем прием шумового сигнала звукового давления приемной системой статическим веером в горизонтальной плоскости, прием шумового сигнала звукового давления статическим вертикальным веером одновременно в нескольких направлениях в вертикальной плоскости, при котором осуществляют частотно-временную обработку принятых шумовых сигналов звукового давления для каждого пространственного канала наблюдения в горизонтальной плоскости и для каждого пространственного канала наблюдения в вертикальной плоскости, квадрируют, усредняют по времени, центрируют и нормируют шумовые сигналы звукового давления к помехе, осуществляют накопление на последовательных циклах обзора принятых нормированных шумовых сигналов звукового давления и принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха, используют в качестве приемной системы комбинированный приемник, содержащий, кроме приемника звукового давления, трехкомпонентный приемник вектора колебательной скорости, и вводят новые операции, а именно:

- формируют методами частотно-временной обработки сигналов набор частотных каналов в заданном фиксированном частотном диапазоне в гидрофонном канале и в векторных каналах комбинированного приемника,

- вычисляют в каждом частотном канале комплексные амплитуды звукового давления, трех компонент вектора колебательной скорости, трех компонент вещественной составляющей вектора интенсивности и трех компонент мнимой составляющей вектора интенсивности в локальной системе координат, связанной с комбинированным приемником, для суммарного процесса сигнал плюс помеха,

- усредняют за заранее определенный временной интервал T1 значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха,

- выделяют из текущих значений суммарного случайного процесса сигнал плюс помеха текущие значения помехи,

- вычисляют в каждом частотном канале текущие значения комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для помехи,

- усредняют за заранее определенный временной интервал T1 значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи,

- вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха,

- вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи,

- нормируют квадрат звукового давления и компоненты комплексного вектора интенсивности, усредненные за время T1, вычисленные для суммарного процесса сигнал плюс помеха, на соответствующие значения квадрата звукового давления и компоненты комплексного вектора интенсивности, усредненные за время T1, вычисленные для помехи,

- нормируют вычисленные за время Т2=10 Т1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха на соответствующие текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи,

- вычисляют максимальное отношение сигнал/помеха из набора 21 информативных параметров, 7 информативных параметров для усредненных за время T1 нормированных на помеху значений комплексного вектора интенсивности и квадрата звукового давления и 14 информативных параметров для усредненных за время Т2=10 T1 нормированных на помеху значений комплексных амплитуд нулевой и первой гармоник вторичного спектра для комплексного вектора интенсивности и квадрата звукового давления,

- принимают в качестве модельной статистики поля помехи в гидрофонном канале и в каналах вектора колебательной скорости гауссову статистику,

- принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности лапласову статистику,

- вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал-помеха по методу максимального правдоподобия,

- принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 21 информативных параметров.

В предлагаемом способе существенными признаками, общими с прототипом, являются следующие операции:

- прием шумовых сигналов звукового давления приемной системой,

- частотно-временная обработка в фиксированном частотном диапазоне принятых шумовых сигналов звукового давления,

- измерение уровня звукового давления для суммарного процесса шумовой сигнал плюс помеха на выходе приемной системы, включая накопление во времени,

- измерение уровня звукового давления для помехи на выходе приемной системы, включая накопление во времени,

- центрирование и нормирование шумовых сигналов звукового давления в единицах сигнал-помеха,

а отличительными существенными признаками предлагаемого способа являются следующие операции:

- используют в качестве приемной системы комбинированный приемник, содержащий, кроме приемника звукового давления, трехкомпонентный приемник вектора колебательной скорости,

- формируют методами частотно-временной обработки сигналов набор частотных каналов в заданном фиксированном частотном диапазоне в векторных каналах комбинированного приемника,

- вычисляют в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, текущие значения комплексных амплитуд трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для суммарного процесса сигнал плюс помеха,

- усредняют за заранее определенный временной интервал T1 значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха,

- выделяют из текущих значений суммарного случайного процесса сигнал плюс помеха текущие значения помехи,

- вычисляют в каждом частотном канале текущие значения комплексных амплитуд трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для помехи,

- усредняют за заранее определенный временной интервал T1 значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи,

- вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха,

- вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи,

- нормируют квадрат звукового давления и компоненты комплексного вектора интенсивности, усредненные за время T1, вычисленные для суммарного процесса сигнал плюс помеха, на соответствующие значения квадрата звукового давления и компоненты комплексного вектора интенсивности, усредненные за время T1, вычисленные для помехи,

- нормируют вычисленные за время Т2=10 Т1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха на соответствующие текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи,

- вычисляют максимальное отношение сигнал/помеха из набора 21 информативных параметров, 7 информативных параметров для усредненных за время T1 нормированных на помеху значений комплексного вектора интенсивности и квадрата звукового давления и 14 информативных параметров для усредненных за время Т2=10 T1 нормированных на помеху значений комплексных амплитуд нулевой и первой гармоник вторичного спектра для комплексного вектора интенсивности и квадрата звукового давления,

- принимают в качестве модельной статистики поля помехи в гидрофонном канале и в каналах вектора колебательной скорости гауссову статистику,

- принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности Лапласову статистику,

- вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал-помеха по методу максимального правдоподобия,

- принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 21 информативных параметров.

Таким образом, именно такая совокупность существенных признаков заявленного способа позволяет сформировать с помощью комбинированного приемника множество информативных параметров, повысить помехоустойчивость и дальность действия приемной системы.

Новизна предлагаемого способа заключается в том, что в нем с использованием комбинированного приемника и мультипликативных алгоритмов обработки сигналов сформированы 21 информативных параметров, 7 информативных параметров для усредненных за время T1 нормированных на помеху значений комплексного вектора интенсивности и квадрата звукового давления и 14 информативных параметров для комплексных амплитуд нулевой и первой гармоник вторичного спектра для комплексного вектора интенсивности и квадрата звукового давления, вычисленных за время обращения к сигналу Т2=10 T1.

Увеличение числа информационных каналов, обладающих направленностью на любых, сколь угодно низких частотах, увеличивает помехоустойчивость комбинированного приемника и дальность действия приемной системы в режиме обнаружения слабых сигналов. При этом нулевые гармоники представляют потенциальную составляющую вектора интенсивности, для которой велико отношение сигнал-помеха в зонах интерференционных максимумов, а первые гармоники представляют вихревую составляющую вектора интенсивности, для которой велико отношение сигнал-помеха в зонах интерференционных минимумов.

Блок-схема, поясняющая заявленный способ обнаружения, приведена на фиг. 1

Здесь цифрами обозначены следующие элементы.

1 - комбинированный приемник,

2 - анализатор спектра суммарного процесса сигнал плюс помеха (S+N),

3 - блок выделения шумовой помехи (N),

4 - блок формирования набора М информативных параметров для суммарного процесса (S+N),

5 - блок формирования набора М информативных параметров для шумовой помехи (N),

6 - блок формирования отношения сигнал/помеха по каждому информативному параметру (S/N)m, m=1-M,

7 - компаратор, выбирающий информативный параметр с максимальным отношением (S/N)max,

8 - автоматический обнаружитель порогового типа, устанавливающий пороговое значение отношения (S/N)0,

9 - визуальный обнаружитель (планшет), формирующий сонограмму процесса обнаружения в координатах частота-время наблюдения.

Заявленный способ реализуется следующей последовательностью действий.

Сигнал от шумящего объекта принимается комбинированным приемником 1, с выхода которого сигналы звукового давления и компонент вектора колебательной скорости поступают в блок 2 - анализатора спектра суммарного процесса сигнал плюс помеха (S+N). В этом блоке:

- формируют методами частотно-временной обработки сигналов набор частотных каналов в заданном фиксированном частотном диапазоне в канале давления и в векторных каналах комбинированного приемника,

- вычисляют в каждом частотном канале текущие значения комплексных амплитуд звукового давления и трех компонент вектора колебательной скорости для суммарного процесса сигнал плюс помеха (S+N).

Вычисленные в блоке 2 сигналы поступают на вход блока 3 выделения шумовой помехи (N) по алгоритму (1)

где ƒ0 - средняя частота частотного канала, Δƒ0 - варьируемый параметр, примерно на порядок превышающий ширину дискретной составляющей Δƒ в спектре суммарного процесса (сигнал плюс помеха), AS+N, - любой из перечисленных ниже информативных параметров, вычисленный для суммарного процесса сигнал плюс помеха (S+N) и для помехи (N) соответственно.

Сформированные в блоках 2, 3 сигналы поступают в блоки 4, 5 формирования набора информативных параметров для суммарного процесса сигнал плюс помеха и для шумовой помехи, в которых:

- вычисляют в каждом частотном канале по формулам (2) текущие значения квадрата звукового давления, трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для суммарного процесса сигнал плюс помеха (S+N)

где p(ƒ,t), νn(ƒ,t) - комплексные амплитуды звукового давления и компонент вектора колебательной скорости,

- вычисляют в каждом частотном канале по формулам (2) текущие значения квадрата звукового давления, трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для помехи (N), выделенной из суммарного процесса по алгоритму (1),

- вычисляют средние для времени усреднения Т1 значения квадрата звукового давления, трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для суммарного процесса сигнал плюс помеха (S+N),

- вычисляют средние для времени усреднения T1 значения квадрата звукового давления, трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для помехи (N),

- вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха (S+N),

- вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи (N),

- нормируют квадрат звукового давления и компоненты комплексного вектора интенсивности, усредненные за время T1, вычисленные для суммарного процесса сигнал плюс помеха, на соответствующие значения квадрата звукового давления и компоненты комплексного вектора интенсивности, усредненные за время T1, вычисленные для помехи,

- нормируют вычисленные за время Т2=10 T1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха на соответствующие текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи,

- вычисляют максимальное отношение сигнал/помеха из набора 21 информативных параметров, 7 информативных параметров для усредненных за время T1 нормированных на помеху значений комплексного вектора интенсивности и квадрата звукового давления и 14 информативных параметров для усредненных за время Т2=10 T1 нормированных на помеху значений комплексных амплитуд нулевой и первой гармоник вторичного спектра для комплексного вектора интенсивности и квадрата звукового давления,

- принимают в качестве модельной статистики поля помехи в гидрофонном канале и в каналах вектора колебательной скорости гауссову статистику,

- принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности Лапласову статистику,

- вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал-помеха по методу максимального правдоподобия,

- принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 21 информативных параметров.

При выборе интервалов усреднения T1, Т2 учитывают, что время усреднения T1, необходимое для усреднения изотропной составляющей помехи, должно составлять порядка 50-60 с, а время усреднения Т2, необходимое для усреднения анизотропной составляющей помехи, должно составлять порядка 10Т1.

С выхода блоков 4, 5 сигналы поступают в блок 6 формирования отношения сигнал/помеха по каждому информативному параметру (S/N)m, m=1-M, для чего:

- нормируют во всех 21 информационных каналах компоненты комплексного вектора интенсивности и квадрат звукового давления, усредненные за время T1, вычисленные для суммарного процесса сигнал плюс помеха, на соответствующие компоненты комплексного вектора интенсивности и квадрат звукового давления, усредненные за время T1, вычисленные для помехи,

- нормируют вычисленные за время Т2=10 Т1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха на соответствующие текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи,

а сформированные нормированные сигналы поступают на вход блока 7 - компаратора, в котором

- вычисляют максимальное отношение сигнал/помеха по одному из 21 информативных параметров,

- принимают в качестве модельной статистики поля помехи в гидрофоном канале и в каналах вектора колебательной скорости гауссову статистику,

- принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности Лапласову статистику,

- вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал-помеха по методу максимального правдоподобия.

Вычисленные максимальные значения отношения сигнал/помеха сравниваются с заданным в блоке 8 пороговым значением отношения сигнал/помеха и отображаются в блоке 9, который представляет собой визуальный обнаружитель (планшет), формирующий сонограмму процесса обнаружения в координатах частота-время наблюдения.

По визуальному портрету сонограммы звукового поля и заданной вероятности правильного обнаружения принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 21 информативных параметров.

Способ обнаружения шумящих объектов в мелком и глубоком море в фиксированном частотном диапазоне, включающий прием гидрофонной антенной шумового сигнала звукового давления статическим веером в горизонтальной плоскости, прием шумового сигнала звукового давления статическим вертикальным веером в вертикальной плоскости, при котором осуществляют частотно-временную обработку принятых шумовых сигналов звукового давления для каждого пространственного канала наблюдения в горизонтальной плоскости, квадрируют, усредняют по времени, центрируют и нормируют шумовые сигналы звукового давления к помехе, осуществляют накопление на последовательных циклах обзора принятых нормированных шумовых сигналов звукового давления и принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха, отличающийся тем, что в качестве приемной системы используют комбинированный приемник, содержащий канал звукового давления и трехкомпонентный приемник вектора колебательной скорости, вычисляют в каждом частотном канале, сформированном в результате частотно-временной обработки принятых шумовых сигналов, текущие значения комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для суммарного процесса сигнал плюс помеха, усредняют за заранее определенный временной интервал Т1 значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха, выделяют из текущих значений суммарного случайного процесса сигнал плюс помеха текущие значения помехи, вычисляют в каждом частотном канале текущие значения комплексных амплитуд звукового давления, трех компонент вектора колебательной скорости, текущие значения амплитуд трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности для помехи, усредняют за заранее определенный временной интервал Τ1 значения трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи, вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 Τ1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха, вычисляют в каждом частотном канале за заранее определенный временной интервал Т2=10 Τ1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи, нормируют квадрат звукового давления и компоненты комплексного вектора интенсивности, усредненные за время Τ1, вычисленные для суммарного процесса сигнал плюс помеха, на соответствующие значения квадрата звукового давления и компоненты комплексного вектора интенсивности, усредненные за время Τ1, вычисленные для помехи, нормируют вычисленные за время Т2=10 Τ1 текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для суммарного процесса сигнал плюс помеха на соответствующие текущие значения комплексных амплитуд нулевой и первой гармоник вторичного спектра для трех компонент вещественной составляющей вектора интенсивности, трех компонент мнимой составляющей вектора интенсивности и квадрата звукового давления для помехи, вычисляют максимальное отношение сигнал/помеха из набора 21 информативных параметров, 7 информативных параметров для усредненных за время Τ1 нормированных на помеху значений комплексного вектора интенсивности и квадрата звукового давления и 14 информативных параметров вычисленных за время Т2=10 Τ1 нормированных на помеху значений комплексных амплитуд нулевой и первой гармоник вторичного спектра для комплексного вектора интенсивности и квадрата звукового давления, принимают в качестве модельной статистики поля помехи в гидрофоном канале и в каналах вектора колебательной скорости гауссову статистику, принимают в качестве модельной статистики поля помехи в каналах вектора интенсивности Лапласову статистику, вычисляют на основе принятых статистик аналитическую зависимость вероятности правильного обнаружения при заданной вероятности ложной тревоги от порогового отношения сигнал/помеха по методу максимального правдоподобия, принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал/помеха максимального отношения сигнал/помеха, вычисленного из набора 21 информативных параметров.